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Abstract: This research proposes a method for the simultaneous acquisition of the second harmonic
(2f) signal of quartz-enhanced photoacoustic spectroscopy (QEPAS) and the first harmonic (1f)
signal of quartz-enhanced photothermal spectroscopy (QEPTS) based on the dual-quartz-enhanced
photoacoustic—photothermal spectroscopy. The laser beam is first wavelength-modulated by the
injection current and then intensity-modulated by an acoustic-optic modulator. The frequency of the
wavelength modulation is half of the QTF1 resonant frequency, and the frequency of the intensity
modulation is equal to the QTF2 resonant frequency. A modulated laser beam traveled through
the two arms of the QTF1 and converged on the root of the QTF2. The 2f photoacoustic and 1f
photothermal signals are concurrently obtained using the frequency division multiplexing technology
and lock-in amplifiers, which allows the simultaneous detection of the gas concentration and laser
light intensity. CHy is chosen as the target gas, and the variations of the 2f photoacoustic and 1f
photothermal signals are evaluated at various gas concentrations and light intensities. According
to the experiments, the amplitude of the 1f photothermal signal has a good linear connection with
light intensity (R? = 0.998), which can be utilized to accurately revise the 2f photoacoustic signal
while light intensity fluctuates. Over a wide range of concentrations, the normalized 2f photoacoustic
signals exhibit an excellent linear response (R? = 0.996). According to the Allan deviation analysis,
the minimum detection limit for CHy is 0.39 ppm when the integration time is 430 s. Compared with
the light intensity correction using a photodetector for the QEPAS system, this approach offers a
novel and effective light intensity correction method for concentration measurements employing 2f
analysis. It also has the advantages of low cost and compact volume, especially for mid-infrared and
terahertz systems.

Keywords: quartz-enhanced photoacoustic spectroscopy; quartz-enhanced photothermal spectroscopy;
wavelength modulation; intensity modulation; harmonic analysis; light intensity correction

1. Introduction

The advantages of laser absorption spectroscopy, which is based on the Beer-Lambert
law, include high selectivity and sensitivity, as well as non-invasive and real-time detec-
tion [1,2]. Additionally, it is crucial for poisonous and flammable gas [3], combustion
diagnosis [4], life science [5], and fire alarms [6]. Quartz-enhanced photoacoustic spec-
troscopy (QEPAS) is one of the most promising technologies for trace gas sensing. In
QEPAS, a quartz tuning fork (QTF) is employed in place of the microphones used in con-
ventional photoacoustic spectroscopy (PAS) to detect acoustic waves [7]. The QTF has
greater quality factor, narrower response bandwidth, and higher resonance frequency [8,9].
As a result, QEPAS has the advantages of ultra-high sensitivity, immunity to environmental
noise, and compact volume [10,11].
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Since the non-radiative relaxation of the gas absorption, acoustic waves are produced
when the modulated laser passes through the gas sample to be measured [12,13]. The
QTF serves as a transducer for the detection of the acoustic signal, and the photoacoustic
sensitivity is often improved by using an appropriate acoustic microresonator [14,15]. Other
laser absorption spectroscopy methods, such as tunable diode laser absorption spectroscopy
(TDLAS) [16], are different from the QEPAS. The ability to enhance sensor performance by
boosting the excitation light source power is a crucial benefit of QEPAS [17,18].

Unlike QEPAS, quartz-enhanced photothermal spectroscopy (QEPTS) is another laser
absorption spectroscopy technique based on QTF [19]. In QEPTS, the QTF is used as a
high-performance photothermal transducer [20,21]. When the modulated laser light is
incident on the QTF surface through the gas analytes, some of the light energy absorbed by
the QTF is converted into photothermal energy due to photo-thermo-elastic conversion,
which leads to thermo-elastic expansion and deformation of the QTF and brings about
mechanical vibration of the QTF [22]. Based on the QTF with the piezoelectric effect, the
vibration caused by photo-thermal-elastic conversion generates a piezoelectric charge
on the surface of the QTF, which is eventually converted into a piezoelectric signal [23].
The QEPTS is a non-contact trace gas detection technique. By using this technology, it is
possible to monitor the laser light intensity in addition to detecting dangerous chemicals
at a distance [24,25]. By applying the method of scanning wavelength modulation, the
amplitude of the demodulated 1f component is proportional to the light intensity and can
be used to accurately track fluctuations in light intensity [26]. As a result, several academics
paid close attention to QEPTS [27,28].

In the QEPAS system, the amplitude of 2f photoacoustic signal is proportional to the
laser light intensity. Therefore, the system sensitivity is affected by the jitter of laser light
intensity during long-term field measurements [29]. As a result, it is necessary to monitor
the laser light intensity. As a low-cost commercial device, the QTF has the advantages
of small size, large dynamic range, and no wavelength selectivity [30]. In this paper, a
dual-quartz-enhanced photoacoustic—-photothermal spectroscopy for the simultaneous
measurement of gas concentration and light intensity is proposed. Two QTFs are used
for the simultaneous detection of photoacoustic and photothermal signals. A laser beam
passing through the QEPAS system is incident directly on the bottom of other QTFs to excite
the photothermal signal. Eventually, the light intensity of the laser beam can be monitored
while achieving high sensitivity for the detection of trace gases. The methane (CHj)
absorption line at 1653.72 nm is chosen for the experiment. Simultaneous measurement of
gas concentration and light intensity based on the dual-quartz-enhanced photoacoustic—
photothermal spectroscopy system is investigated.

2. Experimental Setup

The experimental setup diagram for simultaneous measurement of gas concentration
and light intensity of the dual-quartz-enhanced photoacoustic-photothermal spectroscopy
system is shown in Figure 1. Standard commercial QTFs with a resonant frequency of
~32 kHz are used as acoustoelectric transducers. In this experiment, a fiber-coupled, dis-
tributed feedback (DFB), continuous-wave (CW) diode laser (NLK1U5FAAA, NEL) with
a wavelength of 1653.72 nm and maximum output power of 20 mW is selected as the
excitation source. The CHy absorption line located at 1653.72 nm is investigated. The laser
is controlled using a homemade laser control circuit. Wavelength modulation spectroscopy
(WMS) and harmonic detection technology based on the modulation capability of the
DFB-CW laser are adopted. The superposition of a ramp signal with a scanning frequency
of 0.05 Hz and a sinusoidal modulating signal with a frequency of f1/2, where f1 is just
the resonance frequency of the QTF1 that produced the photoacoustic signal, is utilized
to modulate the DFB laser injection current. Once more having its intensity modulated,
the modulated laser is connected to the acousto-optic modulator (AOM) (SGTF80-1654,
SMART) through the flange. The drive current of the acousto-optic modulator has a
frequency of f,, which is also the resonant frequency of the QTF2 that produces the pho-
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tothermal signal. All modulating and scanning signals are generated by the waveform
generator (SDG1032X, Siglent). To ensure no loss of laser power, the laser beam is collimated
and put into the QEPAS system by using a fiber collimator (FC). Acoustic microresonators
are typically utilized in QEPAS to boost the system detection sensitivity through the am-
plification of the acoustic signal. The experiment utilized the more popular dual acoustic
microresonator. The high sensitivity of the system is ensured by this technique, and the
structure is also rather straightforward, making it simple to install and modify. The laser
beam passing through the QEPAS system, with almost no loss of light intensity, ensures
that a sufficient photothermal signal can be excited in the QEPTS system. The laser beam
is focused directly on the root of the QTF2. Since the volume of the photoacoustic cell
is about 3 mL, the absorption generated in the QEPTS system can be neglected. In the
experiment, the laser light intensity is adjusted using a fiber optic attenuator (OA) when
the laser light intensity needs to be altered. The piezoelectric currents generated by the
photoacoustic and photothermal effects, respectively, are converted into voltage signals
by homemade low-noise transimpedance amplifier circuits with 10 M() feedback resistors.
The photoacoustic and photothermal signals are subsequently demodulated using two
lock-in amplifiers (RS865A, Stanford Research Systems). The 2f signals are demodulated
from the photoacoustic signal for measuring the concentration of target gas; the 1f signals
are demodulated from the photothermal signal for monitoring the jitter in the laser light
intensity. The integration time of the lock-in amplifier is set to 300 ms, and the reference
signals used for demodulation are generated by the waveform generator. Finally, the 2f
photoacoustic and 1f photothermal signal data are acquired by a data acquisition device
(USB 6363, National Instruments) with a sampling rate of 2 kS/s and a vertical resolution
of 16 bits. The experiments are conducted in the laboratory at a temperature of 25 °C and
atmosphere pressure.

Lock-in |
amplifier

A1+l

Computer

DAQ

Signal
generator

Figure 1. Schematic diagram of the experimental setup. AOM: acousto-optic modulator; OA: fiber

Lock-in
amplifier

optic attenuator; and FC: fiber collimator.

3. Results and Discussion
3.1. Frequency Response of QTF

In this sensor system, two standards ~32 kHz QTFs are used to, respectively, measure
the photoacoustic and photothermal signals. Since the response frequency of QTF is
affected by environmental changes, it is necessary to calibrate the response frequency
of QTF. Experiments are conducted to measure the response frequency of QTF utilizing
electrical excitation. A function generator is utilized to generate a sinusoidal signal with an
amplitude of 50 mV. The frequency ranges from 32,730 Hz to 32,780 Hz, and the response
frequencies of QTF1 and QTF2 are measured, respectively. The experimental result is shown
in Figure 2, and the center response frequencies of QTF and the quality factor Q values are
calculated by fitting the Lorentz function. Table 1 demonstrates the center frequencies of
QTF1 and QTF2, as well as the quality factor Q.
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Figure 2. Response frequency curve of two QTFs measured by the electrical excitation method.

Table 1. Measurement parameters of QTFs.

QTF No. Resonant Frequency f (Hz) Q Factor
QTF1 32,751.94 7214
QTF2 32,758.87 8666

3.2. Modulation Signal Optimization

To improve the amplitude of the 2f photoacoustic signal, the modulation depth of
the laser needs to be optimized when the 2f signal is detected in the QEPAS system. A
fixed concentration of CHy:N, mixture gas is passed into the photoacoustic cell, and the
amplitude of the 2f photoacoustic signal with different modulation depths is recorded.
Figure 3 depicts the amplitude of the 2f photoacoustic signal as a function of the laser
modulation depth. The amplitude of the 2f photoacoustic signal has the maximum value
when the modulation depth is 0.26 cm ™!, which is the optimal condition. In the following
experiments, the optimal modulation depth is chosen to be 0.26 cm ™.

500ppmv CH,:N,
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e
g 1.0 )/.’..-—.—._._"—I—.
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Figure 3. The amplitude of the 2f photoacoustic signal relative to the modulation depth of the laser.

3.3. Investigation on Light Intensity Correction

To verify the light intensity normalization of the 2f photoacoustic signal using the 1f
photothermal signal, the experiments are measured simultaneously for the 2f photoacoustic
and 1f photothermal signals at different light intensities. The laser light intensity is varied
from 3.18 mW to 16.66 mW using a fiber optic attenuator. Figure 4a illustrates the 2f
photoacoustic signal at various light intensities. A linear fit to the amplitude of the 2f
photoacoustic signal is performed to obtain the linearity of the 2f photoacoustic signal
with light intensity with a linearity (R2) of 0.998. The result is shown in Figure 4b. Hence,
it can be seen that the amplitude of the 2f photoacoustic signal is positively correlated
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with the light intensity. Similarly, Figure 5a shows the 1f photothermal signal at different
light intensities, from which it can be seen that the amplitude, as well as the bias of the
1f photothermal signal, are positively correlated with the light intensity. When the laser
power is 16.66 mW, the amplitude of the 1f photothermal signal is ~483 mV with a 1o-
noise level of 0.238 mV, resulting in a signal-to-noise ratio (SNR) of ~ 2029. Therefore,
the sensitivity of laser intensity detection is estimated to be about 7.3 uW. As shown in
Figure 5b, the linear fit to the amplitude of the 1f photothermal signal is performed and
obtains the linearity (R?) of 0.998. The experimental result demonstrated that the amplitude
of the 1f photothermal signal is linearly related to light intensity. Therefore, the jitter of
light intensity can be monitored using the 1f photothermal signal, which can protect the
2f photoacoustic signal from the detrimental effects of the jitter of light intensity. Finally,
the amplitude of the 1f photothermal signal is used to normalize the amplitude of the
2f photoacoustic signal, and the result is shown in Figure 6. The result shows that the
amplitude fluctuation of the normalized 2f photoacoustic signal is less than 1.6%. It is
demonstrated that normalization of the 2f photoacoustic signal using the 1f photothermal
signal can effectively be immunized from the effects of light intensity changes in the 2f
measurement in the QEPAS system.
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Figure 4. QEPAS system measurements at different light intensities. (a) The 2f photoacoustic signal
at different light intensities; and (b) linear fitting curve of the amplitude of the 2f photoacoustic signal
at different light intensities.
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Figure 5. QEPTS system measurements at different light intensities. (a) The 1f photothermal signal at
different light intensities; and (b) linear fitting curve of the amplitude of the 1f photothermal signal
at different light intensities.
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Figure 6. The amplitude of normalized the 2f photoacoustic signal relative to light intensities.

3.4. Concentration Calibration

To evaluate the linear concentration response of this sensor system, samples of stan-
dard gas mixtures of CH4:N; are measured at different concentrations. The 2f photoacoustic
signal at various concentrations is depicted in Figure 7a. Since the volume of the pho-
toacoustic cell is about 3 mL, the absorption optical path in the QEPTS system is very
short and the absorption of the gas at different concentrations can be negligible. Thus,
the measured 1f photothermal signals are almost identical at different gas concentrations.
The 1f photothermal signal at varying concentrations is demonstrated in Figure 7b. The
amplitude of the 1f photothermal signal is used to normalize the amplitude of the 2f pho-
toacoustic signal, and the amplitude of the normalized 2f photoacoustic signal at different
concentrations is fitted linearly. Figure 7c illustrates the result, and it shows that there is an
excellent linear relationship between concentration and the amplitude of the normalized 2f
photoacoustic signal, with a linearity (R?) of 0.996.
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Figure 7. The system measured different concentrations of target gases. (a) The 2f photoacoustic signal
at different gas concentrations; (b) the 1f photothermal signal at different gas concentrations; and (c) the
relationship between the amplitude of the normalized 2f photoacoustic signal and target gas concentrations.
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3.5. Allan Deviation

Finally, long-term continuous measurements of gas samples with constant concen-
trations are performed to evaluate the detection sensitivity of the sensor system. A gas
sample of a CH4:Nj mixture with a concentration of 500 ppm is continuously passed into the
photoacoustic cell, and the 2f photoacoustic and 1f photothermal signals are recorded for
approximately 3 h, and the amplitude of the 2f photoacoustic signal is normalized using the
amplitude of the 1f photothermal signal. Allan deviation analysis [31,32] is performed on
the amplitude of the normalized 2f photoacoustic signal, and the result is shown in Figure 8.
When the integration time is 20 s, the detection limit of the sensor system is 3.42 ppm.
When the integration time is 420 s, the detection limit of the sensor system is 0.39 ppm. The
experimental result showed that the sensor system has a high detection sensitivity.

—=— Allan deviation

Detection sensitivity (ppm)
58]
1

100 1000

Integration time (s)
Figure 8. Allan deviation analysis of the amplitude of normalized 2f photoacoustic signal.

4. Conclusions

In summary, this research proposed the method for the simultaneous acquisition
of the 2f signal of the QEPAS system and the 1f signal of QEPTS system based on the
dual-quartz-enhanced photoacoustic-photothermal spectroscopy. Two QTFs are used to
detect the photoacoustic signal as well as the photothermal signal, and the 2f photoacoustic
signal and the 1f photothermal signal are obtained simultaneously using frequency division
multiplexing technique and lock-in amplifier. The laser light intensity can be obtained
simultaneously with the detection of the concentration of target gas. The experimental result
demonstrated that both the 2f photoacoustic and 1f photothermal signals have a good linear
relationship with the light intensity (R? = 0.998). The amplitude of the 1f photothermal
signal is used to normalize the 2f photoacoustic signal, and the amplitude fluctuation of
the normalized 2f signal is obtained to be less than 1.6%. To put it another way, the 1f
photothermal signal is used to normalize the 2f photoacoustic signal so that it is protected
from the harmful effects of the jitter of light intensity throughout the measurement process.
The normalized 2f photoacoustic signal is displayed with a good linear response (R? = 0.996)
over a wide range of concentrations. Finally, according to Allan deviation analysis, the
minimum detection limit for CHy is 0.39 ppm when the integration time is 430 s. This
method provides a novel and effective means of simultaneously obtaining gas concentration
and light intensity measurements for the QEPAS system. It shows tremendous advantages
for the light intensity drift caused by various environmental unpredictabilities during
long-term field measurements, especially in its harsh environment.
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