A Review on Zernike Coefficient-Solving Algorithms (CSAs) Used for Integrated Optomechanical Analysis (IOA)
Abstract
:1. Introduction
2. Typical Applications of IOA
3. Zernike Coefficient-Solving Algorithms (CSAs)
3.1. Least Squares Method
3.2. Gram–Schmidt Orthogonalized Method
3.3. Householder Transformation
3.4. Singular Value Decomposition (SVD)
4. The Potential for ANN Use in IOA
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, Z.-p.; Wang, C.-x.; Yu, Y.; Wang, P.-P.; Zhang, H.-Y.; Sui, Y.-Y.; Li, M.; Luo, Z.-y. Integrated optomechanical analyses and experimental verification for a thermal system of an aerial camera. Appl. Opt. 2019, 58, 6996–7005. [Google Scholar] [CrossRef]
- Zheng, Z.; Lang, Y.; Weifeng, D.; Tianye, L.; Menjiya, T.; Yongjie, L.; Hui, W.; Xu, X. Mechanical sensitivity analysis and optimization of a large-aperture KDP frequency converter for higher SHG efficiency. Appl. Opt. 2019, 58, 2205–2215. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhou, Y.; Wang, H.; Gu, Y.; Gao, M.; Guo, X.; Xu, H. Impact of microvibration on the optical performance of an airborne camera. Appl. Opt. 2021, 60, 1283–1293. [Google Scholar] [CrossRef]
- Zhou, P.; Xu, S.; Yan, C.; Zhang, X. Research on neutral surface of lightweight, horizontally supported mirror. Opt. Eng. 2018, 57, 025107. [Google Scholar] [CrossRef]
- Transon, J.; D’andrimont, R.; Maugnard, A.; Defourny, P. Survey of hyperspectral earth observation applications from space in the sentinel-2 context. Remote Sens. 2018, 10, 157. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y.; Yao, Y.; Xu, Y.; Shen, H.; Ding, Y. Relationship analysis between transient thermal control mode and image quality for an aerial camera. Appl. Opt. 2017, 56, 1028–1036. [Google Scholar] [CrossRef]
- Maamar, F.; Boudjemai, A. Optomechanical optimal design configuration and analysis of glue pad bonds in lens mounting for space application. Adv. Space Res. 2020, 65, 2263–2275. [Google Scholar] [CrossRef]
- Tinghai, Q.; Xusong, Q.; Guoqing, P.; Han, Y.; Xu, X.; Lang, Y.; Weifeng, D.; Zhao, X.; Changchun, L. Surface control apparatus and method of optical transmission with large aperture based on self-adaptive force-moment technology. Opt. Express 2017, 25, 15358–15369. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Hatch, M.; Green, K. Predicting performance of optical systems undergoing thermal/mechanical loadings using integrated thermal/structural/optical numerical methods. Opt. Eng. 1981, 20, 166–174. [Google Scholar] [CrossRef]
- Collados, M.; Bettonvil, F.; Cavaller, L.; Ermolli, I.; Gelly, B.; Grivel-Gelly, C.; Pérez, A.; Socas-Navarro, H.; Soltau, D.; Volkmer, R. European solar telescope: Project status. In Proceedings of the Ground-Based and Airborne Telescopes III, San Diego, CA, USA, 27 June–2 July 2010; pp. 202–214. [Google Scholar]
- Amundsen, R.; Feldhaus, W.; Little, A.; Mitchum, M. Integration of Design, Structural, Thermal and Optical Analysis: And User’s Guide for Structural-to-Optical Translator (PATCOD); NAS 1.15110153, NASA-TM-110153 95N24559; Langley Research Center: Hampton, VA, USA, 1995. [Google Scholar]
- Freedman, W.L.; Madore, B.F.; Gibson, B.K.; Ferrarese, L.; Kelson, D.D.; Sakai, S.; Mould, J.R.; Kennicutt Jr, R.C.; Ford, H.C.; Graham, J.A. Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 2001, 553, 47. [Google Scholar] [CrossRef]
- Dalcanton, J.J. 18 years of science with the Hubble Space Telescope. Nature 2009, 457, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Zhang, L.; Jia, X. Optomechanical integrated optimization of a lightweight mirror for space cameras. Appl. Opt. 2021, 60, 539–546. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, B.; Chen, L.; Xu, B.; Gu, G. Thermal design and analysis of the high resolution MWIR/LWIR aerial camera. Optik 2019, 179, 37–46. [Google Scholar] [CrossRef]
- Rausch, P.; Verpoort, S.; Wittrock, U. Unimorph deformable mirror for space telescopes: Design and manufacturing. Opt. Express 2015, 23, 19469–19477. [Google Scholar] [CrossRef]
- Yang, D.; Jiang, Z.; Li, X. Integrated thermal disturbance analysis of optical system of astronomical telescope. In Proceedings of the Modeling Systems Engineering, and Project Management for Astronomy III, Marseille, France, 23–28 June 2008; pp. 526–537. [Google Scholar]
- Cho, M.; Corredor, A.; Vogiatzis, K.; Angeli, G. Thermal performance prediction of the tmt telescope structure. In Optical Modeling and Performance Predictions IV; SPIE: San Diego, CA, USA, 2009; pp. 138–152. [Google Scholar]
- LI, R.; WANG, S.; SHI, H.-l.; CHEN, Z.-p.; ZHANG, J.-y. Thermal Analysis on the Main Reflector in Deep-space Solar Observatory. Acta Photonica Sin. 2014, 43, 93–98. [Google Scholar]
- Dipasquale, D.; Debei, S.; Cremonese, G.; Capaccioni, F.; Palumbo, P. Optical performance evaluation of the high spatial resolution imaging camera of BepiColombo space mission. Opt. Laser Technol. 2021, 141, 107172. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Y.-q.; Wu, F. Thermal-structural-optical analysis for the lens of high-precision interferometer. In Proceedings of the 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, Xiamen, China, 26–29 April 2012; pp. 540–545. [Google Scholar]
- Tan, Y.; Wang, J.; Ren, G.; Xie, Z.; He, B. Thermal control analysis of a primary mirror for large-aperture telescope. J. Korean Phys. Soc. 2017, 71, 28–36. [Google Scholar] [CrossRef]
- Kihm, H.; Yang, H.-S. Design optimization of a 1-m lightweight mirror for a space telescope. Opt. Eng. 2013, 52, 091806. [Google Scholar] [CrossRef]
- Di Varano, I. Characterization of optical aberrations induced by thermal gradients and vibrations via Zernike and Legendre polynomials. Opt. Photonics J. 2016, 6, 113–123. [Google Scholar] [CrossRef]
- Huang, B.-K.; Huang, P.-H. Finite element and wavefront error analysis of the primary mirror of an experimental telescope with reverse engineering. In Optical Modeling and Performance Predictions VIII; SPIE: San Diego, CA, USA, 2016; pp. 158–166. [Google Scholar]
- Lin, J.; Tian, J.; Lu, M.; Ran, T.; Zhou, J. Modeling and experimental analysis on the effect of carrier aircraft vibration on the imaging quality of an aspherical aerial camera. Optik 2021, 232, 166571. [Google Scholar] [CrossRef]
- Kan, F.W.; Eggers, D.W. Wind vibration analyses of giant Magellan telescope. In Proceedings of the Modeling, Systems Engineering, and Project Management for Astronomy II, Orlando, FL, USA, 30–31 May 2006; SPIE: San Diego, CA, USA, 2006; pp. 271–283. [Google Scholar]
- Lee, H. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils. Opt. Lett. 2010, 35, 2173–2175. [Google Scholar] [CrossRef] [PubMed]
- Cruces, S. Bounded component analysis of noisy underdetermined and overdetermined mixtures. IEEE Trans. Signal Process. 2015, 63, 2279–2294. [Google Scholar] [CrossRef]
- Du, H.; Gao, H. Three-frame self-calibration phase shift algorithm using the Gram–Schmidt orthonormalization approach. Appl. Opt. 2016, 55, 6713–6717. [Google Scholar] [CrossRef]
- Noble, J.H.; Lubasch, M.; Stevens, J.; Jentschura, U.D. Diagonalization of complex symmetric matrices: Generalized Householder reflections, iterative deflation and implicit shifts. Comput. Phys. Commun. 2017, 221, 304–316. [Google Scholar] [CrossRef]
- Bai, X.; Huang, G.-X.; Lei, X.-J.; Reichel, L.; Yin, F. A novel modified TRSVD method for large-scale linear discrete ill-posed problems. Appl. Numer. Math. 2021, 164, 72–88. [Google Scholar] [CrossRef]
- Liao, M.; Liu, Y.; Shang, S.-L.; Zhou, F.; Qu, N.; Chen, Y.; Lai, Z.; Liu, Z.-K.; Zhu, J. Elastic3rd: A tool for calculating third-order elastic constants from first-principles calculations. Comput. Phys. Commun. 2021, 261, 107777. [Google Scholar] [CrossRef]
- Kusche, J. On fast multigrid iteration techniques for the solution of normal equations in satellite gravity recovery. J. Geodyn. 2002, 33, 173–186. [Google Scholar] [CrossRef]
- Wang, D.; Zhi, X.; Zhang, W.; Yin, Z.; Jiang, S.; Niu, R. Influence of ambient temperature on the modulation transfer function of an infrared membrane diffraction optical system. Appl. Opt. 2018, 57, 9096–9105. [Google Scholar] [CrossRef]
- Kim, D.W.; Lewis, B.J.; Burge, J.H. Open-source data analysis and visualization software platform: SAGUARO. In Proceedings of the Optical Manufacturing and Testing IX, San Diego, CA, USA, 22–24 August 2011; SPIE: San Diego, CA, USA, 2011; pp. 75–84. [Google Scholar]
- Banyal, R.K.; Ravindra, B.; Chatterjee, S. Opto-thermal analysis of a lightweighted mirror for solar telescope. Opt. Express 2013, 21, 7065–7081. [Google Scholar] [CrossRef]
- Banyal, R.K.; Ravindra, B. Thermal characteristics of a classical solar telescope primary mirror. New Astron. 2011, 16, 328–336. [Google Scholar] [CrossRef]
- Song, X.; Li, L.; Huang, Y. Method of determining effects of heat-induced irregular refractive index on an optical system. Appl. Opt. 2015, 54, 7701–7707. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Liu, Q. Roundoff Error Estimates of the Modified Gram–Schmidt Algorithm with Column Pivoting. Bit Numer. Math. 2003, 43, 627–645. [Google Scholar] [CrossRef]
- Amiri-Simkooei, A. Weighted total least squares with singular covariance matrices subject to weighted and hard constraints. J. Surv. Eng 2017, 143, 04017018. [Google Scholar] [CrossRef]
- Swantner, W.; Chow, W.W. Gram–Schmidt orthonormalization of Zernike polynomials for general aperture shapes. Appl. Opt. 1994, 33, 1832–1837. [Google Scholar] [CrossRef]
- Upton, R.; Ellerbroek, B. Gram–Schmidt orthogonalization of the Zernike polynomials on apertures of arbitrary shape. Opt. Lett. 2004, 29, 2840–2842. [Google Scholar] [CrossRef]
- Zheng, Y.; Wei, K.; Liang, B.; Li, Y.; Chu, X. Zernike like functions on spherical cap: Principle and applications in optical surface fitting and graphics rendering. Opt. Express 2019, 27, 37180–37195. [Google Scholar] [CrossRef]
- Mo, W.-D.; Fan, Q.; Zhang, H.-F.; Feng, M.-D.; Yang, B.-Y.; Jia, J.-C. The research on equivalence of the algorithms in fitting interference wave surface with zernike polynomials. J. Air Force Eng. Univ. (Nat. Sci.) 2010, 11. [Google Scholar] [CrossRef]
- Van De Geijn, R.A.; Van Zee, F.G. High-performance up-and-downdating via householder-like transformations. ACM Trans. Math. Softw. (TOMS) 2011, 38, 1–17. [Google Scholar] [CrossRef]
- Wang, F.-g.; Yang, F.; Wu, X.-x.; Liu, H.-w. Based on householder transform of the Zernike polynomial wavefront fitting method to solve active optics correction force. In Proceedings of the Infrared Materials, Devices, and Applications, Beijing, China, 12–15 November 2007; SPIE: San Diego, CA, USA, 2008; pp. 509–513. [Google Scholar]
- CAO, Z.; Liao, W.; Shen, J. A new algorithm for human eye’s wave-front aberration fitting with Zernike polynomial. Opt. Precis. Eng. 2006, 14, 308–314. [Google Scholar]
- Xiao, Y.; Xu, W.; Zhao, C. Integrated Simulation of Opto-Mechanical System. Acta Opt. Sin. 2016, 36, 247–254. [Google Scholar]
- Bouhamidi, A.; Jbilou, K.; Reichel, L.; Sadok, H.; Wang, Z. Vector extrapolation applied to truncated singular value decomposition and truncated iteration. J. Eng. Math. 2015, 93, 99–112. [Google Scholar] [CrossRef]
- Li, Z.C.; Huang, H.T.; Wei, Y. Ill-conditioning of the truncated singular value decomposition, Tikhonov regularization and their applications to numerical partial differential equations. Numer. Linear Algebra Appl. 2011, 18, 205–221. [Google Scholar] [CrossRef]
- Xu, P. Truncated SVD methods for discrete linear ill-posed problems. Geophys. J. Int. 1998, 135, 505–514. [Google Scholar] [CrossRef]
- Gan, M.; Zhu, H.-T.; Chen, G.-Y.; Chen, C.P. Weighted generalized cross-validation-based regularization for broad learning system. IEEE Trans. Cybern. 2020, 52, 4064–4072. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, S.; Huang, Z.; Zhang, J. An improved TSVD-GCV inversion algorithm of pore size distribution in time-domain induced polarization using migration Hankel matrix. J. Pet. Sci. Eng. 2019, 183, 106368. [Google Scholar] [CrossRef]
- Huang, Q.-X.; Liu, D.; Wang, F.; Yan, J.-H.; Chi, Y.; Cen, K.-F. Study on three-dimensional flame temperature distribution reconstruction based on truncated singular value decomposition. Acta Phys. Sin. 2007, 56, 6742–6748. [Google Scholar] [CrossRef]
- Xie, Z.-C.; Wang, F.; Yan, J.-H.; Cen, K.-F. Comparative studies of Tikhonov regularization and truncated singular value decomposition in the three-dimensional flame temperature field reconstruction. Acta Phys. Sin. 2015, 64, 21–28. [Google Scholar]
- Lu, L.; Hou, Q. Wavefront fitting with Zernike polynomials based on total variation regularization method. In Proceedings of the Optical Design and Testing V, Beijing, China, 5–7 November 2012; pp. 465–472. [Google Scholar]
- Coronato, P.A.; Juergens, R.C. Transferring FEA results to optics codes with Zernikes: A review of techniques. Optomechanics 2003 2003, 5176, 1–8. [Google Scholar]
- Jin, X.; Liu, Q.; Long, H. Impact of cost–benefit analysis on financial benefit evaluation of investment projects under back propagation neural network. J. Comput. Appl. Math. 2021, 384, 113172. [Google Scholar] [CrossRef]
- Hu, Q.; Souza, L.F.d.F.; Holanda, G.B.; Alves, S.S.; Silva, F.H.d.S.; Han, T.; Reboucas Filho, P.P. An effective approach for CT lung segmentation using mask region-based convolutional neural networks. Artif. Intell. Med. 2020, 103, 101792. [Google Scholar] [CrossRef]
- Petmezas, G.; Haris, K.; Stefanopoulos, L.; Kilintzis, V.; Maglaveras, N. Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets. Biomed. Signal Process. Control 2021, 63, 102194. [Google Scholar] [CrossRef]
- Xia, M.; Wang, T.; Zhang, Y.; Liu, J.; Xu, Y. Cloud/shadow segmentation based on global attention feature fusion residual network for remote sensing imagery. Int. J. Remote Sens. 2021, 42, 2022–2045. [Google Scholar] [CrossRef]
- Li, Y.; Cao, W. An extended multilayer perceptron model using reduced geometric algebra. IEEE Access 2019, 7, 129815–129823. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Y.; Chu, E.K.-w. Neural network for computing GSVD and RSVD. Neurocomputing 2021, 444, 59–66. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Guo, D.; Mu, B.; Zheng, H. Different Zhang functions leading to various ZNN models illustrated via solving the time-varying overdetermined system of linear equations. In Proceedings of the 2013 IEEE Third International Conference on Information Science and Technology (ICIST), Yangzhou, China, 23–25 March 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 771–776. [Google Scholar]
- Zhang, Z.; Zheng, L.; Qiu, T.; Deng, F. Varying-parameter convergent-differential neural solution to time-varying overdetermined system of linear equations. IEEE Trans. Autom. Control 2019, 65, 874–881. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, X.; Zheng, L. A review on varying-parameter convergence differential neural network. Neurocomputing 2022, 490, 54–65. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Zheng, L.; Li, S.; Yu, Z.; Li, Y. A new varying-parameter convergent-differential neural-network for solving time-varying convex QP problem constrained by linear-equality. IEEE Trans. Autom. Control 2018, 63, 4110–4125. [Google Scholar] [CrossRef]
- Qian, C.; Xu, B.; Chang, L.; Sun, B.; Feng, Q.; Yang, D.; Ren, Y.; Wang, Z. Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries. Energy 2021, 227, 120333. [Google Scholar] [CrossRef]
- Xiao, D.; Chen, Y.; Li, D.U. One-Dimensional Deep Learning Architecture for Fast Fluorescence Lifetime Imaging. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–10. [Google Scholar] [CrossRef]
- Davood, M. One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural network. Geophys. J. Int. 2020, 222, 247–259. [Google Scholar]
- Li, X.; Lu, R.; Wang, Q.; Wang, J.; Zhou, Y. One-dimensional convolutional neural network (1D-CNN) image reconstruction for electrical impedance tomography. Rev. Sci. Instrum. 2020, 91, 124704. [Google Scholar] [CrossRef]
- Du, M.; Bi, S.; Zhang, X.; Li, Y.; Li, T.; Shi, R. Mode angular degree identification in subgiant stars with convolutional neural networks based on power spectrum. Mon. Not. R. Astron. Soc. 2020, 501, 614–622. [Google Scholar] [CrossRef]
- Dos, S.; Paulo, P.J. Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks. ACM Comput. Surv. (CSUR) 2021, 54, 1–25. [Google Scholar]
- Yang, Z.; Xu, P.; Zhang, B.; Xu, C.; Zhang, L.; Xie, H.; Duan, Q. Nuclear power plant sensor signal reconstruction based on deep learning methods. Ann. Nucl. Energy 2022, 167, 108765. [Google Scholar] [CrossRef]
- Borden, M.; Lewis, D.; Ochoa, H.; Jones-Wilson, L.; Susca, S.; Porter, M.; Massey, R.; Clark, P.; Netterfield, B. Thermal, Structural, and Optical Analysis of a Balloon-Based Imaging System. Publ. Astron. Soc. Pac. 2017, 129, 035001. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, L.; Loo, S.Y.; Wang, J.; Wang, C.; Meng, Q.H.; Zhang, H. Robustness Improvement of Using Pre-Trained Network in Visual Odometry for On-Road Driving. IEEE Trans. Veh. Technol. 2021, 70, 12415–12426. [Google Scholar] [CrossRef]
- Zheng, Y.; Lin, L.; Zhang, T.; Chen, H.; Duan, Q.; Xu, Y.; Wang, X. Enabling Robust DRL-Driven Networking Systems via Teacher-Student Learning. IEEE J. Sel. Areas Commun. 2022, 40, 376–392. [Google Scholar] [CrossRef]
- Couellan, N. Probabilistic robustness estimates for feed-forward neural networks. Neural Netw. 2021, 142, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Quan, X.; Wang, H.; Liu, T.; Xiong, Z.; Yuan, X.; Rong, Y. Optomechanical analysis of the flexure mounting configuration of large-aperture laser transport mirror. Opt. Eng. 2017, 56, 025103. [Google Scholar] [CrossRef]
- Chen, D.; Yu, Y.; Chu, D.; Wang, H. Performance analysis and optimization of inertial confinement fusion cascaded frequency converters based on the integrated optomechanical method. Opt. Eng. 2020, 59, 105101. [Google Scholar] [CrossRef]
- Chalifoux, B.D.; Heilmann, R.K.; Schattenburg, M.L. Correcting flat mirrors with surface stress: Analytical stress fields. JOSA A 2018, 35, 1705–1716. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Huang, B.K.; You, Z.T.; Chan, C.Y.; Huang, T.M. Optimization of lightweight structure and supporting bipod flexure for a space mirror. Appl. Opt. 2016, 55, 10382–11039. [Google Scholar] [CrossRef]
- Dong, T.; Han, X.; Chen, C.; Li, M.; Fu, Y. Research on a wavefront aberration calculation method for a laser energy gradient attenuator. Laser Phys. Lett. 2013, 10, 096001. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, L.; Gong, X.; Ma, D.M. Design and optimization for main support structure of a large-area off-axis three-mirror space camera. Appl. Opt. 2017, 56, 1094. [Google Scholar] [CrossRef]
- Wei, Y.; Duan, Q.; Yuan, R.; Yan, X.; Yang, Y. Dropout neuronal unit with tunable probability based on NbO_x stochastic memristor for efficient suppression of overfitting. Microelectron. Eng. 2022, 259, 111778. [Google Scholar] [CrossRef]
- Xie, Z.; He, F.; Fu, S.; Sato, I.; Tao, D.; Sugiyama, M. Artificial Neural Variability for Deep Learning: On Overfitting, Noise Memorization, and Catastrophic Forgetting. Neural Comput. 2021, 33, 2163–2192. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Maggi, M.A.; Ruggieri, F. Artificial neural network prediction of multilinear gradient retention in reversed-phase HPLC: Comprehensive QSRR-based models combining categorical or structural solute descriptors and gradient profile parameters. Anal. Bioanal. Chem. 2015, 407, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Pan, Y.; Zhang, N.; Xu, X. A Review on Zernike Coefficient-Solving Algorithms (CSAs) Used for Integrated Optomechanical Analysis (IOA). Photonics 2023, 10, 177. https://doi.org/10.3390/photonics10020177
Hu M, Pan Y, Zhang N, Xu X. A Review on Zernike Coefficient-Solving Algorithms (CSAs) Used for Integrated Optomechanical Analysis (IOA). Photonics. 2023; 10(2):177. https://doi.org/10.3390/photonics10020177
Chicago/Turabian StyleHu, Motong, Yue Pan, Ning Zhang, and Xiping Xu. 2023. "A Review on Zernike Coefficient-Solving Algorithms (CSAs) Used for Integrated Optomechanical Analysis (IOA)" Photonics 10, no. 2: 177. https://doi.org/10.3390/photonics10020177
APA StyleHu, M., Pan, Y., Zhang, N., & Xu, X. (2023). A Review on Zernike Coefficient-Solving Algorithms (CSAs) Used for Integrated Optomechanical Analysis (IOA). Photonics, 10(2), 177. https://doi.org/10.3390/photonics10020177