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Abstract: Electromagnetic metamaterials are artificial subwavelength composites with periodic
structures, which can interact strongly with the incident light to achieve effective control of the light
field. Metamaterial absorbers can achieve nearly 100% perfect absorption of incident light at a specific
frequency, so they are widely used in sensors, optical switches, communication, and other fields.
Based on the development history of metamaterials, this paper discusses the research background
and significance of metamaterial perfect absorbers. Some perfect absorption mechanisms, such as
impedance matching and coherent perfect absorption, are discussed. According to the functional
division, the narrowband, dual frequency, multi-frequency, broadband, and tunable metamaterial
perfect absorbers are briefly described.

Keywords: electromagnetic metamaterials; perfect absorption; terahertz; impedance matching;
coherent absorption; narrow band absorbers; dual-frequency absorbers; multi-frequency absorbers;
broadband absorbers; tunable absorbers

1. Introduction
1.1. Development History of Metamaterials

Electromagnetic metamaterial, an artificial material with sub-wavelength size and pe-
riodic array structure that has optical properties that traditional natural optical materials do
not have in nature, has been used to realize more extensive and rich optical functions [1,2].
Such optical properties depend not only on chemical composition but also on the geometric
parameters of the structure [3]. The development of metamaterials can be traced back to
the 1960s, when Veselago first proposed a material with a negative dielectric constant and
negative magnetic permeability [4]; it is also called left-handed material because it conforms
to the left-handed rule [5,6]. In 1996, Pendry et al.designed the periodically arranged thin
metal wire and split-ring resonator (SRR) structure [1] and proved that this structure can
realize negative dielectric constant and negative permeability, respectively. The concept
of metamaterial emerged at this point. In the last twenty years, the development of nan-
otechnology has provided opportunities for the precise machining and control of materials
far smaller than the wavelength, and has further promoted the theoretical research and
functional expansion of metamaterials [7,8]. The theory of transformation optics [9], the
plasmon-induced transparency (PIT) [10], the generalized reflection and refraction law,
including the linear phase change of interface space [11], and the concept of Huygens
metasurface [12] have been put forward one after another. At the same time, scientists are
skillfully combining metamaterials with various optical phenomena to realize the effective
regulation of the interaction between light and matter [13], such as perfect absorption [14],
regulation of the polarization state of the light field [15], Fano resonance [16], wavefront
modulation [3], electromagnetic wave phase regulation, and amplitude regulation [17], etc.

During the development of metamaterials in the past 60 years, there have been many
difficulties and challenges hindering the practical application of metamaterials, such as
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high loss and strong dispersion related to resonant response, and the use of metal struc-
tures, high dependence on wavelength, and difficulties in manufacturing micro–nano
three-dimensional structures. The metasurface, a two-dimensional (2D) metamaterial with
sub-wavelength thickness, can be prepared by traditional micro–nano processing methods,
such as lithography and nanoimprinting [18]. The metasurface has provided answers to the
difficulties present in three-dimensional materials. The unit structure of the metasurface is
composed of meta-atoms, and through the types and arrangement of meta-atoms, the inter-
action between light and matter can be efficiently regulated. Compared with traditional
optical components, the metasurface can better meet the development requirements of
miniaturization, integration, and multifunction. According to Huygens’ principle, the hy-
persurface can subtly reshape the electromagnetic wave, resulting in new physical defects,
such as abnormal refraction and reflection of light, surface wave coupling, etc. In addition,
the metasurface can break the optical diffraction limit and realize super-resolution. At
present, scientists use metasurface exploration to discover more extraordinary electromag-
netic characteristics and expand into more application fields, such as filtering, holographic
imaging, communication, energy, sensing, and so on.

1.2. Metamaterial Perfect Absorber and Its Research Significance

Perfect absorption (PA) refers to the phenomenon where the absorption is nearly
100% for a certain frequency, or for a certain frequency at a specific incident angle [19].
Metamaterials can supply many unconventional optical properties, and the electromagnetic
properties are simple to control. Based on the impedance matching between metamaterials
and free space, Landy et al. realized the perfect absorption of metamaterials in microwave
band for the first time in 2008 [14]. Since then, the metamaterial perfect absorber (MPA) has
gradually expanded to terahertz [20–22], mid-infrared [23,24], infrared [25,26], and visible
light [27].

The typical metamaterial absorber is composed of a metal resonant layer, dielectric
layer, and base layer from top to bottom [28,29]. Scientists have fused the absorber with the
metasurface structure to achieve excellent absorption performance in a sub-wavelength
size, and further realized multi-functional control by optimizing the parameters, such as
the type and arrangement of metal particles in the structured metal layer. The development
of the metasurface provides a unique opportunity for the planarization and miniaturization
of the perfect absorber. The ultra-thin perfect absorber based on the metasurface is of great
importance for unified application.

The bandwidth of the absorber is very important for many scientific and technological
applications. Narrow-band absorbers are widely used in sensing fields, such as temper-
ature sensing, refractive index sensing, absorption filtering, and optical flare processing.
Broadband absorbers have pioneering applications in photovoltaic cells, photodetectors,
and other applications. In Section 3, according to the function of MPA, narrow-band ab-
sorbers, dual-frequency and multi-frequency absorbers, broadband absorbers, and tunable
absorbers are systematically introduced.

2. Perfect Absorption Mechanism
2.1. Impedance Matching

Impedance matching is a necessary state for perfect absorption [30]. Broadly, the
metamaterial absorber is usually configured with three layers, including the metamaterial
layer, the dielectric compartment layer, and the grounding plane. The traditional structure
takes the form of metal–dielectric–metal (MDM), that is, the top metal resonance structure,
the middle dielectric layer, and the bottom metal reflection layer. The relationship between
absorption, transmission, and reflection is as follows [14]:

A(ω) = 1 − T(ω) − R(ω), T(ω) = |t(ω)|2, R(ω) = |r(ω)|2 (1)

T(ω) = R(ω) = 0 is required for the absorption to arrive at 100%.
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The bottom layer of MDM is metal, and its thickness is much greater than the skin
depth of light in this metal, which can block the transfer of light waves, T(ω) = 0.

Suppose the impedance of free space and the equivalent impedance of absorber are Z0
and Z1, respectively. Then the expression of reflection coefficient R is:

R =
Z1 − Z0

Z1 + Z0
(2)

The impedance of the free space and the equivalent impedance of the MPA can be
expressed as:

Z0 =

√
ε0

µ0
, Z1 =

√
ε1

µ1
(3)

The impedance matching condition requires that R = 0 when the surface impedance
of metamaterial matches the impedance in free space, and Z0 = 1 when the surrounding
environment is air. It can be seen from the above formula that Z1 = 1 can match the surface
impedance of metamaterial with the air impedance. Therefore, it is necessary to adjust the
efficient dielectric continuous ε1 and the permeability µ1 by designing the metamaterial
structure and making them identical [31,32].

2.2. Four Theoretical Models

Impedance matching introduced in the previous section is a necessary condition for
absorption. In the research process of metamaterials, many theoretical models have been
developed, among which four are popular, namely, effective medium theory, transmis-
sion line modelling, coupled mode theory, and interference theory. The following briefly
introduces various models and analyzes their advantages and disadvantages [33].

2.2.1. Effective Medium Model

Metamaterials can produce an electromagnetic response through their special struc-
tures. Often the working wavelength is much larger than the periodic size of metamaterials,
so for the convenience of analysis, metamaterials can be approximated as homogeneous ma-
terials. Because of the sub-wavelength structure, the average electromagnetic response of
metamaterials can be described by frequency-dependent effective dielectric constant εeff(ω)
and magnetic permeability µeff(ω). Ignoring anisotropy, effective dielectric constant and
permeability can be extracted from S parameters. The effective impedance of metamaterials
can be expressed as:

Z =

√
µe f f

εe f f
Z0 (4)

When the material has high electromagnetic wave loss, the imaginary parts of εeff(ω)
and µeff(ω) are very large. When impedance matching and high loss are realized at
the same time, metamaterials can achieve perfect absorption. The effective medium
model provides an intuitive explanation for achieving perfect absorption. However, be-
cause the absorber is regarded as a uniform model of reflection and transmission coeffi-
cients, the effective medium model cannot decouple the contributions of each part of the
metamaterial absorber.

2.2.2. Transmission Line Modelling

At first, the transmission line modelling was applied to the interpretation of Salisbury
screen, Jaumann absorption, and circuit analog absorption. Due to the expansibility of
electromagnetic theory, the metamaterial absorber can also use transmission line modelling
to explain its working principle after appropriate modification. In transmission line mod-
elling, the metamaterial layer can be regarded as a coupled resonance mode connected
in parallel.



Photonics 2023, 10, 205 4 of 26

For example, the metamaterial layer is simulated by LC oscillation circuit and dipole
resonance mode, as shown in Figure 1. Through mutual inductance coupling, the impedance
of LC and dipole resonance mode (ZL, Zd) can be expressed as:

ZL,d = RL,d +
2εi

ωCL,d(εr + 1)2 + iωLL,d +
2

iωCl,d(εr + 1)
(5)

where εr and εi are the real and imaginary parts of the dielectric constant of the dielectric
layer, and RLd, LLd, and CLd are the impedance, inductance, and capacitance of the structure,
respectively. To simplify the calculation and analysis, the coupling between the two modes
is ignored, so the impedance of metamaterial can be calculated as:

Z =
ZL·Zd

ZL + Zd
(6)
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When impedance matching is satisfied, perfect absorption occurs. The transmission
line model can analyze the contribution of each part of the metamaterial to absorption
by analyzing the circuit, but the near-field coupling between the metamaterial resonant
layer and substrate is ignored in the analysis, which leads to the blue shift of the fitted
absorption peak. To solve this problem, in the use of transmission line modelling, this
near-field coupling effect can be included in capacitance or inductance to compensate for
frequency mismatch [34].

2.2.3. Coupled Mode Theory

Coupled mode theory is a theory that studies the coupling of a harmonic oscillator
with one or more ports or other harmonic oscillators. This theory describes a system with
lumped parameters, and each parameter corresponds to the specific physical meaning of the
whole system. Coupled mode theory is widely used in the research of optical resonators,
waveguides, photonic crystals, and metamaterials because of its low requirements for
algebra and simple physical concepts.

In coupled mode theory, the metamaterial absorber can be regarded as a single-port
single-mode resonator, which can be described by the following formula:

da
dt

= iω0a− 1
τ0

a− 1
τe

a +
√

2
τe

s+ (7)

s− = −s+ +

√
2
τe

a (8)

where a is the amplitude of resonance, ω0 is the angular frequency of resonance, 1/τ0 is the
internal loss of Joule heat and other materials, 1/τe is the energy loss, such as radiation loss
from resonance, and s+ and s− are the amplitudes of the incident wave and reflected wave,
respectively. The first equation represents the energy change in the resonant cavity, and the
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second equation represents the total reflected wave. Therefore, the reflection coefficient can
be expressed as:

r =
s−
s+

=
1
τe
− 1

τ0
− i(ω−ω0)

1
τe
+ 1

τ0
+ i(ω−ω0)

(9)

It can be seen that the expression of the metamaterial absorber is relatively simple,
able to be described only by three parameters: ω0, τ0, and τe. However, these parameters
are difficult for complex metamaterial analysis, and more parameters need to be considered
to analyze the contribution of other resonance modes.

2.2.4. Interference Theory

In the traditional interpretation, the superposition of multiple reflections between the
metamaterial layer and the substrate constitutes the overall reflection of the metamaterial
absorber, as shown in Figure 2, and perfect absorption can be achieved through the de-
structive interference of reflection amplitude. The interference theory model provides a
relatively simple mathematical model to understand the metamaterial absorber from the
optical point of view. This provides a platform for studying the properties of metamaterial
absorbers and exploring the internal relationship between material properties and absorber
properties [35].
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With the refractive index n of the dielectric layer, the angular wave number k in
a vacuum, and the thickness d of the dielectric layer, the one-way phase delay can
be expressed:

β = nkd (10)

Assuming that the reflection coefficient of the substrate is −1, the overall reflection
coefficient can be expressed as:

r = r12 −
t12t21

r21 + e−2iβ (11)

The reflection and transmission coefficients of metallic interfaces (r12, t12, r21 and t21)
can be obtained from the impedance of the metamaterial layer. The reflection coefficient
is optimized to 0 to achieve perfect absorption. By analyzing the above formula, it can be
found that when other parameters are fixed, the critical spacer thickness is mainly deter-
mined by the loss of the metamaterial absorber, and the frequency is mainly determined by
the resonance frequency of the metamaterial layer.

Although the interference model is intuitive and concise, it usually ignores the near-
field coupling between the metamaterial layer and the base reflective layer. Generally, the
near-field coupling can reduce the resonant frequency by introducing additional reactance.
However, because the near-field coupling decays quickly away from the material layer,
we can ignore the near-field coupling when the reflective substrate is far away from the
metamaterial layer.
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2.3. Coherent Perfect Absorption

The traditional metal conductive film’s absorption in the microwave series is very low
because of the impedance mismatch between metal and free space. Although reducing
the film thickness can improve the matching performance and absorption effectiveness,
absorption cannot surpass the highest absorption rate of 50% with ultra-thin film. A
coherent perfect absorber (CPA) based on coherent principle provides a new idea to solve
such problems [36,37].

When several coherent waves overlap, interference occurs, which can redistribute the
energy in space. CPA is a common phenomenon caused by the interaction of interference
and scattering. It can completely absorb electromagnetic radiation by controlling the
interference of multiple incident waves. Typical coherent perfect absorption is a two-port
linear system, in which two coherent beams with equal intensity and opposite directions are
vertically incident on the absorbing material. In a two-port linear system, the absorption of
light can be dynamically adapted from 0% to 100% only by changing the relative phases of
two disturbance beams, thus realizing the transition of the metasurface from a transparent
state to an opaque state [38]. In addition to the dual-port system, the typical CPA has an FP
dielectric cavity, where all the incident energy can be captured and dissipated. Up to now,
many CPA structures have been proposed, such as grating, thin film, metal–insulator–metal
structures, etc.

In a two-port linear system, the scattering matrix can be used to theoretically analyze
the coherent perfect absorption. When the coherent light in the facing direction is perpen-
dicularly incident on the absorbing material, the relation between the incident wave and
the outgoing wave is: [

O1
O2

]
= S

[
I1
I2

]
, S =

[
r11 t12
t21 r22

]
(12)

Ii and Oi represent the amplitude of the incident wave and the amplitude of the
outgoing wave in the ith direction, respectively. S is the scattering matrix, and rii and tii are
the reflection coefficient and transmission coefficient, respectively, which are determined
by the component materials and geometric structure of CPA. The relationship between I1
and I2 is:

I2 = αI1eiϕ+ikz (13)

where α, ϕ and z are the relation amplitude, phase dissimilarity, and phase reference points
between I1 and I2, respectively. When the incoherent absorption limit (R11 = R22 = 0.5,
T12 = T21 = 0.5) is met, if z = 0, the absorption of CPA can be obtained as follows:

A = 1− |O1|2 + |O2|2

|I1|2 + |I2|2
= 1− 1 + α2 − 2αcos(ϕ)

2(1 + α2)
(14)

Therefore, it can be tuned by changing α and ϕ.

3. Research Progress of MPA
3.1. Narrow Band Absorber

Before the development of the metamaterial absorber, the traditional absorber needed
to spot a resistance plate with a thickness of at least one-quarter wavelength in front of
the metal plate to defeat the restriction of the traditional absorber working at one-quarter
wavelength. This resistor plate becomes very thick and heavy in the long wavelength
frequency range (such as microwave frequency), which means that it does not meet the
requirements of light and miniaturized devices. In 2008, Landy et al. designed the first
metamaterial absorber, successfully overcoming the above difficulties. Within a single unit
of the absorber, the electrical coupling is provided by an electric ring resonator (ERR) [14].
The element consists of two standard split ring resonators connected by an induction ring
parallel to the split line, as shown in Figure 3. Through the impedance matching principle,
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the perfect narrowband absorption is realized in the microwave band. The absorber is
favored by the industry due to its light structure and high absorption rate.
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According to Maxwell’s equations, the adjustment of the resonance frequency can
be realized by scaling the size of the metamaterial structure. In the same year, Tao et al.
designed the first THz metamaterial absorber with an absorption rate of 70%. After
continuous optimization and improvement, Tao et al. designed a kind of MPA composed
of an ERR and split wires [39]. Its structure is similar to that designed by Landy et al.,
as shown in Figure 4, and it is a typical MDM structure of MPA today. In addition, the
absorption can be up to 97% for the incident wave at 1.6 THz.
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In 2010, Ye et al. proposed an absorber with a composite structure of metallic crosses,
which is a near omnidirectional terahertz absorber with high absorption for transverse
electric wave (TE) and transverse magnetic wave (TM) [40]. By exciting the magnetic
pole in the metal–dielectric layer, the incident light is perfectly absorbed in the thin layer
structure, which is about 25 times smaller than the resonance wavelength. Next, Ye et al.
designed the absorber with an overlapping structure on this basis to achieve broadband
absorption, which is mentioned in Section 3.3 of this paper.

At first, most MPA can only perfectly absorb a certain polarized electromagnetic
wave, which means it is very sensitive to the polarization angle of the incident light.
This leads to its limited application in many fields, such as solar cells and biosensors.
Therefore, polarization-insensitive MPA has become the development requirement for MPA
in some fields [41]. In 2017, Astorino et al. designed a polarization-insensitive ultra-thin
narrowband absorber [42], which is composed of a top metallic ERR and a bottom ground
plane, both made of lossy gold, separated by a thick dielectric layer of benzocyclobutane, as
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shown in Figure 5. Its absorption structure has four rotational symmetries. It can be found
that the high symmetry of the absorber structure can help realize polarization insensitivity.
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In recent years, with the development of MPA in the sensing field, the requirements
for sensor multi-scene applications are gradually increasing. Flexible materials are widely
used in sensing fields, such as biological detection, pressure sensing, flexible artificial skin,
etc., due to their excellent characteristics, such as flexibility, low dielectric constant, stable
performance, and easy integration into wearable devices.

In 2020, Cheng et al. proposed a planar array Fano asymmetric split ring resonator
fabricated on flexible Polyimide (PI) substrate [43] for protein sensing. Its sensitivity was
240 GHz/RIU, which provided the idea for the combination of flexible materials and MPA.
In 2021, Wang et al. improved the structure. As shown in Figure 6 [44], the unit structure
of the absorber is gold, dielectric (polyimide), and gold, from top to bottom. The upper
surface comprises two identical split rings, which are rotated and spliced 180 degrees to
form an asymmetric split ring resonator. When there is no substance to be measured, the
highest absorption peak is 4.83 THz. By changing the refractive index of the object to be
measured, its sensitivity can reach 1018 GHz/RIU [45].

Although the metamaterial absorber with MDM structure can realize the correspon-
dence of most electromagnetic spectrums with novel performance, it also faces some
shortcomings due to the existence of metal structure, such as high ohmic loss, high thermal
conductivity, and low melting point [45]. These shortcomings limit its application scope.
Therefore, the researchers designed a metamaterial absorber with all-dielectric structure,
which put forward a new idea for the regulation of electromagnetic field. An all-dielectric
metamaterial absorber made of materials with good temperature stability can effectively
avoid Joule heating, and has potential applications in energy collection, imaging, and sens-
ing. In 2017, Liu et al. presented a terahertz all-dielectric metasurface absorber based on
hybrid dielectric waveguide resonances [46]. By adjusting the geometric structure, the reso-
nance of the electric and magnetic dipole overlapped, thus achieving perfect absorption, as
shown in Figure 7. The results show that the absorbance is 97.5% at 1.011 THz. Compared
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with metal-based methods, all-dielectric absorbers can use near-infrared materials with
high melting points and low loss, so they will be used in imaging, thermophotovoltaic, and
other sensing applications.
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In the same year, Fan et al. realized a metasurface consisting of sub-wavelength
cylindrical resonators that achieve diffraction-limited imaging at THz frequencies without
cooling [45]. The ingenuity of this design lies in the use of conversion imaging method.
As shown in Figure 8, the unit structure is cylindrical dielectric particles, and the medium
used here is silicon. As a universal converter of radiation, the all-dielectric metasurface
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absorber absorbs incident terahertz waves, converts them into heat, and then is detected
by infrared cameras. The results show that at the frequency of 603 GHz, the absorbance
of all-dielectric metasurface is as high as 96%, and the thermal response rate is as high as
2.16 × 104 K/W. This result can be extended to other spectra, which provides a new way of
measuring thermal imaging.
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reflectance R (blue), transmittance T (green), and absorbance A (red) of the dielectric absorber;
(c) numerically simulated R, T, and A [45].

3.2. Dual-Frequency and Multi-Frequency Absorbers

In the design of the MPA structure, usually, there are two ways to achieve dual-
frequency absorption, multi-frequency absorption, and even broadband absorption. In the
first method, sub-lattice units with various sizes and structures are assembled in one lattice
unit, so that different resonance effects occur in each sub-lattice unit or among sub-lattice
units. In the second method, MPA is designed as a multi-layer superposition structure,
and the structure and size of resonators in each layer are different. The principle is similar
to that of the first method. When different resonance absorption peaks are far away, we
can get dual-frequency or multi-frequency MPA; when the distance between different
resonance peaks is close, or the average absorption between resonance peaks is high, we
can get broadband MPA.

In 2009, Wen et al. designed a dual-frequency THz metamaterial absorber. Its ERR unit
consists of two symmetrical single resonant metamaterials, one embedded in the other [47].
The results show that MPA has two obvious strong absorption peaks near 0.45 THz and
0.92 THz, both of which are related to the LC resonance of metamaterials, as shown in
Figure 9. Compared with single-frequency absorbers, such a design has a wider application
range and a broader development prospect. In 2011, Ma et al. also designed a terahertz
dual-band metamaterial absorber with metal nested square ring arrays [48]. Its structure
is simpler than the former. Two obvious absorption peaks are found at 2.7 THz and
5.2 THz, which are in good agreement with the simulation results, as shown in Figure 10.
In addition, the design is highly symmetrical, so it is insensitive to polarization.
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In 2015, Shan et al. proposed an ultra-thin flexible dual-band terahertz wave absorber
based on metamaterials [49]. The metamaterial structure has two periodic split ring
resonators with asymmetric gaps. The results show that the absorber has two resonance
absorption peaks at 0.41 THz and 0.75 THz, respectively, and the absorption rates are 92.2%
and 97.4%, respectively, as shown in Figure 11. Because the structure is symmetrical, the
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absorber also has polarization insensitivity. The middle dielectric layer of the absorber
is made of polyimide, a flexible material with a thickness of 25 µm, which makes the
absorber highly flexible and gives it a non-planar application potential, for instance, for
microbolometers and stealth aircraft.
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In 2022, Yun et al. designed a dual narrow-band perfect metamaterial absorber suitable
for the optical communication band [50], as shown in Figure 12, in which the silicon
nanodisc array was placed on a thin gold film separated by a dielectric layer. The results
showed that perfect absorption peaks appeared at 1310 nm and 1550 nm, respectively.
The absorber had a wide application prospect in the fields of optical communication,
frequency-selective optical detection, and inter-satellite laser communication.
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In 2019, Wang et al. designed two all-dielectric terahertz plasmonic metamaterial
absorbers (PMA) [51]. The cell structures of both PMAs are composed of square arrays of all-
dielectric rings and cylindrical disks, and the same heavily doped silicon is used. However,
their geometric parameters are different. As shown in Figure 13a, the gap between the two
rings is narrow. At this time, PMA can achieve dual-frequency absorption, and there are
two different absorption peaks at 0.96 THz and 1.92 THz, with absorption rates of 99.7%
and 99.9%, respectively. By changing the inner radius of the ring and the radius of the
cylinder, multiple resonance modes can be overlapped, and the Q value can be reduced,
so that broadband operation can be obtained, as shown in Figure 13b. Because the quality
factor Q of dual-band resonance is larger than that of broadband resonance, it has better
sensing performance.
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With the development of MPA, perfect multi-band absorption has become a reality.
In 2012, Shen et al. designed a terahertz three-band MPA consisting of a square metal
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piece and two concentric metal square rings with different sizes, as shown in Figure 14 [52].
The results show that there are three different absorption peaks at 0.5 THz, 1.03 THz, and
1.71 THz, and the absorption rates are 96.4%, 96.3%, and 96.7%, respectively. It is simple
in structure, easy to fabricate, insensitive to polarization, and has high absorption. In
2016, Wang et al. designed a five-band MPA. The resonant structure of the absorber is two
split rings [53], as shown in Figure 15. The working mechanism of five-band near-perfect
absorption is due to the joint action of LC, dipole, and surface resonance. The device can be
used in the fields of biosensing, material detection, and thermal imaging.
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3.3. Broadband Absorber

In many practical applications, such as solar energy collection and photoelectric
detectors, researchers hope to obtain absorbers with high average absorption. However,
the absorption peaks of multi-frequency absorbers are often discrete, and the average
absorption is not high enough. Thus, the perfect absorber with continuous broadband has
become the inevitable goal and an important focus for development.

As mentioned above, one of the methods to realize broadband absorption is by as-
sembling sub-lattice units with various sizes in one lattice unit. In 2012, Huang et al.
designed a terahertz broadband absorber with three different sizes of “I”-shaped metal
structures [54]. As shown in Figure 16, the realization of broadband absorption depends on
the superposition of two similar formats. The highest absorbance measured at 0.905 and
0.956 THz is 99.9%, and the minimum absorbance between these two frequencies is still as
high as 93%. The absorber can absorb TE or TM polarized terahertz radiation according to
the incident direction.
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whole unit cell; and (b) top view of the metamaterial absorber with dimensions. (c) Numerical
simulation results of absorption spectra at normal incidence for three different configurations of the
I-shaped resonators.

In 2021, Yun et al. designed an ultra-wideband absorber based on multiple resonances [55].
The absorber is composed of amorphous silicon and metallic titanium, and its whole
structure comprises grating, as shown in Figure 17. When the visible light is incident in the
X polarization direction, the ultra-wideband absorption is realized in the wavelength range
of 382 nm to 1100 nm, and three near-perfect absorption bands are obtained. To realize the
polarization insensitivity of the absorber and keep excellent absorption performance, Yun
et al. improved the above structure to make the unit periodic structure centrosymmetric.
The modified absorber can achieve absorption in the range of 0~90◦ polarization angle.
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As mentioned in the previous section, to realize broadband absorption, the absorber is
designed as a multi-layer superposition structure and the structure and size of resonators
in each layer are different. In 2010, Ye et al. proposed an absorber that could expand
the absorption bandwidth by simply stacking several structural layers with different
geometric sizes [40], as shown in Figure 18. Three close resonances are observed at 4.55 THz,
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4.96 THz, and 5.37 THz. The bandwidth of this strong absorption can be effectively
enhanced due to the hybridization of magnetic polarization elements in different layers.
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In 2022, Li et al. designed an ultra-wideband absorber with stacked round hole
discs [56], as shown in Figure 19. Ultra-wideband absorption can be realized in the whole
spectrum (0.25 µm–4 µm). Due to the plasma resonance, the absorber’s absorption rate
is more than 90% in the ultra-wide spectral range of 3450 nm, the average absorption
rate is 97.5%, and the average absorption rate in the visible light range is more than 99%.
Therefore, the absorber shows good performance in the field of solar energy collection
and conversion.
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In addition to the broadband absorber based on metal structure, the designed all-
dielectric metasurface absorber can also achieve broadband absorption. In 2022, Huang
et al. introduced a thin-film silicon metasurface absorber with periodic elliptical holes [57],
as shown in Figure 20. The absorption performance theory of the absorber is consistent
with the experimental results. The absorption of ≥90% starts at 1.1 THz and keeps close
to unity until 1.6 THz under normal incidence, and the corresponding bandwidth is
500 GHz. The absorber provides a new idea for modulators, switches, and detectors in the
terahertz band.
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Figure 20. (a) Schematic of the broadband THz silicon membrane metasurface absorber (SMMA);
(b) simulated reflection (blue), transmission (green), and absorption (red) of SMMA [57].

3.4. Tunable Absorber

Many metamaterial absorbers have been widely studied. However, there are typical
defects in the working wavelength and absorption efficiency of metamaterial absorbers,
which are determined by the original structure. Once the absorber structure is determined,
the optical response will be fixed, and it is difficult to tune flexibly. This defect seriously
limits its application as an optical switch or modulator. Therefore, by flexibly adding
photosensitive materials, temperature-sensitive materials, liquid crystal materials, or phase-
change materials, the absorber can be tuned, effectively broadening the application field.
Several tunable absorbers based on different materials will be introduced below.

3.4.1. Tunable Absorber Based on Photosensitive Silicon

A photosensitive semiconductor has an excellent photoelectric conversion effect. When
the energy of the pump light source increases, the carrier density in the photosensitive semi-
conductor will increase synchronously, thus optical control can be realized. Photosensitive
silicon is a typical representative. In 2015, Xu et al. showed a metamaterial absorber that can
be tuned at terahertz frequency by integrating photosensitive silicon into a metamaterial
unit [58], as shown in Figure 21. By changing the pump beam, the conductivity of silicon
changes, and thus its optical response can be modified.

In 2019, Zhao et al. demonstrated tunable ultra-wideband terahertz wave absorption
by using a single-layer H-type all-silicon array [59], as shown in Figure 22. The absorption
is optically tunable. When the pump flux increases from 0 to 4000 J/cm2, the absorption
frequency shifts, which in turn changes the absorption width and intensity. The dynamic
response of light excitation depends on the penetration depth of pump light in silicon.

In 2020, Wang et al. proposed a single narrow-band THz absorber based on cylindri-
cally shaped periodical p-type doped silicon [60], as shown in Figure 23. The absorber
is made of a square polyimide substrate and a cylindrical P-doped silicon array. At
0.57 THz, the absorption rate is close to 99.75%, and the absorption characteristics are good.
In addition, by changing the pump luminous flux from 0 to 3000 µJ/cm2, its absorption
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rate can be flexibly adjusted from above 99% to below 35%. The above two designs provide
new ideas for dynamic functional terahertz devices.
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3.4.2. Tunable Absorber Based on Graphene

Graphene is a two-dimensional material. The conductivity of graphene can be con-
trolled by changing the Fermi energy level (EF). EF can be adjusted in a certain range by
chemical doping or electrostatic gating [61].

In 2018, Yun et al. demonstrated a dual-band independent tunable absorber composed
of stacked graphene nanodiscs, graphene layers with nanohole structure, and metal reflec-
tive layers separated by insulator layers [62]. The two absorption peaks A and B in the
spectrum are respectively contributed by graphene nanodiscs and graphene layers with
nanoholes. The resonance wavelengths corresponding to the two absorption peaks are
λA = 11.92 µm and λB = 14.55 µm. Moreover, the TE and TM polarization keep the absorp-
tion above 90% in a wide range of incident angles, so the proposed structure is a wide-angle
polarization-independent absorber. By changing the Fermi level of graphene nanodiscs
and graphene layers with nanoholes, the two absorption peaks of the structure can be
tuned independently, as shown in Figure 24. Because of the corresponding wave band and
absorption characteristics of the absorber, it can be used in applications related to chemical
sensors, detectors, and multi-band infrared absorbers.
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In 2019, Yun et al. designed a tunable infrared tri-band perfect absorber based on
bilayer graphene, which can adjust the absorption peak by changing the Fermi energy level
or the geometrical parameters of the graphene layer [63]. It can be seen from Figure 25
that the intermediate absorption peak depends on the upper graphene layer. With the
increase in EF in the upper graphene, the intermediate absorption peak experiences a
blue shift. Meanwhile, the left and right absorption peaks depend on the lower layer
of L-graphene. When the EF of the lower graphene increases, both the long-wave and
short-wave absorption peaks shift blue. This means that there is no coupling effect between
the upper and lower layers of graphene during the change of EF. Therefore, the absorber
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can independently tune the absorption spectrum in a wide spectral range. The absorber
can be used in the field of photoelectric detectors, thermal emitters, and photovoltaics.
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In 2021, Yun et al. proposed a polarization-insensitive broadband metamaterial ab-
sorber based on local surface plasma (LSP) and propagating surface plasma (PSP) [64],
as shown in Figure 26. The proposed absorber is designed by the combination of a
gold mirror, dielectric layer, and graphene nanostructures. Under the normal irradia-
tion of polarized wave, the absorber has a high absorption, which can be up to 99% from
1.23 to 1.68 THz. The absorption can be nearly tuned from 1% to 99% by adjusting the EF of
the graphene. Given the high modulation depth of the absorber, it can be used in thermal
emission devices, photovoltaic devices, intelligent absorbers, and active optical switches.
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3.4.3. Tunable Absorber Based on Other Materials

At present, phase change materials are also used in the field of tunable absorbers.
When the external environment changes, the phase change material can change from one
phase to another. VO2 is a typical phase change material that changes with temperature,
and the change is reversible. With 341 K as the phase transition point, VO2 changes from
the insulation state to the semiconductor state and then to the metal state when the ambient
temperature rises gradually. In 2022, Yun et al. proposed a tunable CPA based on VO2
metamaterial in the terahertz frequency range [65], as shown in Figure 27. The CPA realizes
intelligent reconfigurable switching modulation from ultra-wideband absorption mode to
dual-band absorption mode through VO2 thermal control. When the absorber temperature
is controlled at T = 328 K, the conductivity of VO2 can reach 11,850 S/m and then realize
the ultra-wideband absorber mode. In this mode, CPA shows an absorption efficiency of
more than 90% in the ultra-wideband from 0.1 THz to 10.8 THz. When the conductivity of
VO2 reaches 2 × 105 S/m (T = 340 K), CPA switches to dual frequency absorption mode.
As described in Section 2.2, the absorption of CPA can be controlled by the phase difference
of the incident light. By modulating the phase of the incident light, the absorber can
adjust the absorption efficiency to achieve intelligent control from full absorption to high
transmittance transmission. In a word, this achievement ingeniously combines a variety of
control modes, which can be used to enhance stealth equipment, all-optical switches, and
coherent photodetectors.
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Figure 27. (a) The structure of a tunable coherent perfect absorber based on VO2 metamaterial and
(b) the absorption curve changing with VO2 conductivity [65].

In addition to VO2, the active material strontium titanate (STO) can also be temperature-
regulated, to realize the frequency tunable characteristic. In 2019, Huang et al. designed a
thermally tunable metamaterial absorber based on THz strontium titanate [66], as shown in
Figure 28. The elliptical pattern on the top of the absorber and the reflective layer are both
made of gold material, and the dielectric layer is filled with STO active material. When
the temperature dropped from 400 K to 200 K, the center frequency showed a uniform
redshift, the tuning range reached 0.77 THz, and the peak absorption remained above 99%.
In addition, the absorption bandwidth remains stable, only partially reduced. The structure
is simple and ultra-thin, which makes manufacturing easy. In addition, the structure can
be extended to other frequencies and has application prospects in imaging, detection, and
tunable sensors.

Liquid crystal is a material with variable properties. The voltage-dependent birefrin-
gence of nematic liquid crystals has been developed and utilized. By combining liquid
crystal with metamaterial, an electronically tunable metamaterial absorber at terahertz
frequency can be realized. It provides a new idea for the development of a tunable meta-
material absorber. In 2013, Shrekenhamer and others proposed a liquid crystal tunable
metamaterial absorber [67]. The absorber is MDM structure, and the liquid crystal 4′-n-
pentyl-4-cyanodiphenyl (5CB) is deposited on the metamaterial array, as shown in Figure 29.
When a potential is applied between ERR and the ground plane, LC will be oriented along
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the electric field line. By changing the applied bias voltage, the absorber achieves 30%
amplitude tuning absorption.
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Figure 28. (a) The proposed tunable terahertz absorber with a classical sandwiched structure consisted
of a metallic top layer and ground plane, spaced by STO material film; (b) absorption spectra of
the absorber with different temperatures of 200 K, 250 K, 300 K, 350 K, and 400 K under normal
incidence [66].
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Figure 29. (a) Rendering of a single unit cell of the liquid crystal metamaterial absorber; (b) fre-
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(c) the absorption value at 2.62 THz as a function of bias voltage (Vbias) for various modulation
frequencies [67].
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In 2021, Zhang et al. proposed a tunable transparent metamaterial absorber with
high optical transparency and broadband microwave absorption performance [68]. The
absorber consists of three layers. The resonant layer and the reflective layer are made of
indium tin oxide (ITO) films, and the dielectric layer is made of distilled water combined
with polymethyl methacrylate, as shown in Figure 30. The absorber can achieve ultra-
wideband absorption in 5.8~16.2 GHz, and the absorption rate is greater than 90%. The
absorption bandwidth and absorption intensity of the absorber can be adjusted by changing
the thickness of the water substrate. Increasing the thickness of the water substrate can
improve the absorption capacity of high frequency waves and increase the absorption
bandwidth. This achievement can be applied to aviation, medical treatment, research
facilities and other fields. However, the structure of the absorber is complex, and the
requirements for the manufacturing process are high.
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4. Conclusions

As MPA develops, it also faces higher development requirements, such as simpler
structure, richer functions, and more accurate tuning. In conclusion, metamaterials can
overcome the defects of traditional materials. The MPA can be designed in a personalized
fashion, and its structure is smaller and lighter, so it is convenient to realize more novel
electromagnetic functions, and it has broad application prospects in the field of absorbing
materials. It can be seen from this paper that compared with traditional absorbers, MPAs
can meet the absorption requirements from narrowband to broadband. Combined with
photosensitive silicon, graphene, VO2, and other phase change materials, it can realize
optical control, electrical control, and temperature control, and is widely used in sensing,
optical switch, communication, stealth equipment, photoelectric detection, and other fields.
In theory, MPA can meet the development requirements of miniaturization and integration.
However, one of the implementation methods of MPAs is to stack several resonant layers,
and its production process inevitably involves multi-layer thin film deposition, which
is too complex, so MPAs still face technical challenges in the practical integration of
metasurface devices.

In the future, with the maturity of science and technology, MPA will also develop
rapidly, and the relevant theory and manufacturing process will also continue to progress.
It is expected that MPA will have better performance and be widely used.
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