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Abstract: In recent years, extensive research has shown that deep learning-based compressed image
reconstruction algorithms can achieve faster and better high-quality reconstruction for single-pixel
imaging, and that reconstruction quality can be further improved by joint optimization of sampling
and reconstruction. However, these network-based models mostly adopt end-to-end learning, and
their structures are not interpretable. In this paper, we propose SRMU-Net, a sampling and recon-
struction jointly optimized model unfolding network. A fully connected layer or a large convolutional
layer that simulates compressed reconstruction is added to the compressed reconstruction network,
which is composed of multiple cascaded iterative shrinkage thresholding algorithm (ISTA) unfolding
iteration blocks. To achieve joint optimization of sampling and reconstruction, a specially designed
network structure is proposed so that the sampling matrix can be input into ISTA unfolding iteration
blocks as a learnable parameter. We have shown that the proposed network outperforms the existing
algorithms by extensive simulations and experiments.

Keywords: single-pixel imaging; model unfolding; sampling reconstruction joint optimization;
deep learning

1. Introduction

Single-pixel imaging (SPI), like computational ghost imaging, can achieve
two-dimensional imaging using a single-pixel detector without spatial resolution, and
is expected to provide a cost-effective solution for imaging in special wavelengths such as
infrared and terahertz [1,2]. A single-pixel detector without spatial resolution is a point
detector, also known as bucket detector. Unlike linear array detectors and area array detec-
tors that contain multiple pixel units, single-pixel detectors have only one detection unit.
As point detectors count all the photons collected, the pixel position cannot be obtained. In
addition, since single-pixel detectors in the SPI system can simultaneously collect the light
intensity from multiple pixels, they can obtain a higher signal-to-noise ratio [3,4]. Therefore,
SPI has broad application prospects [5–9] in the fields of hyperspectral imaging [10–12],
biological imaging [13–15], fluorescence lifetime imaging [16,17], and terahertz imaging [2].

However, SPI is time-consuming. Achieving fast and high-quality image reconstruc-
tion at a low sampling rate has always been one of the research goals for SPI. SPI, based
on the compressed sensing (CS) theory, consists of two closely related steps: compressive
sampling and image reconstruction. Three methods have been developed for compressive
sampling and image reconstruction in the SPI system: The first method is to use a random
Gaussian matrix or a fixed orthogonal matrix for the compressive sampling, and then recon-
struct the image based on the CS theory [18,19]. In this method, the image is reconstructed
by mining the prior information of the imaging scene under the condition that the sampling
times are much lower than the number of pixels. The reconstruction algorithms include
OMP [20], TVAL3 [21], ISTA [22], BCS [23], etc. Since the number of samples is much
smaller than the number of image pixels, it is necessary to solve the uncertainty problem to
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reconstruct the image, which requires a long reconstruction time and a high computational
complexity [24–26]. The second method also uses a random Gaussian matrix or fixed
orthogonal matrix for the compressive sampling, followed by a deep learning-based recon-
struction network for the image reconstruction [27–39]. After training, the reconstruction
network with fixed weights maps low-dimensional sampled values to high-dimensional
images, which can avoid the many computations caused by traditional iterative algorithms
and thus complete the image reconstruction in a relatively short time. In 2017, Lyu et al.
proposed a new computational ghost imaging framework based on deep learning (GIDL).
The GIDL uses three hidden layers and one output layer to achieve image reconstruction
with better performance at very low sampling rates [27]. In 2018, He et al. proposed a
convolutional neural network for ghost imaging [28]. In 2019, Wang et al. proposed a one-
step end-to-end neural network that directly uses the measured bucket signals to recover
images [29]. In 2020, Li et al. proposed a deep image reconstruction network (Bsr2-Net)
for SPI. Their network contains a fully connected layer and four Res2Net blocks, which
achieves better results than the traditional algorithm TVAL3 [30]. Zhu et al. proposed a
Y-net consisting of two encoders and one decoder, which works well under both determin-
istic and indeterministic lighting [31]. In 2021, Shang et al. proposed a two-step training
TST-DL framework for computational imaging without physical priors, independent of
an accurate representation of the imaging physics [32]. In 2022, Wang et al. proposed an
end-to-end generative adversarial network (EGAN) to recover 2D image approximations
from very low sampling rates [33]. These studies demonstrate that deep learning-based
SPI enables faster, higher-quality image reconstruction. The third is to use deep learning to
simultaneously optimize compressed sampling and image reconstruction [40–47]. In 2020,
Li et al. proposed a sampling and reconstruction integrated convolutional neural network
HRSC-Net for SPI [40]. In 2021, Gao et al. proposed a generative-model-based compressive
reconstruction network optimized via sampling and transfer learning (OGTM), where the
convergence speed and imaging quality of the network are significantly improved [41]. In
2022, Wang et al. proposed a physics-enhanced deep learning method for SPI. The method
consists of three parts: encoding patterns, a differential ghost imaging (DGI) algorithm, and
a deep neural network (DNN) model. Both the DNN model and the encoding patterns are
trained and optimized [42]. These studies show that the reconstruction quality of images
can be further improved with joint optimization of sampling and reconstruction using
deep learning. However, most of the algorithms use an end-to-end learning network. The
network is comparable to a “black box” as the network structure is not interpretable and
there is a generalization issue in practical applications.

The model unfolding network, which unfolds each iteration step of the traditional
algorithm into a network, has both interpretability and good reconstruction performance. It
has been applied in compression reconstruction, super-resolution, image denoising, and so
on [48–50]. We applied ISTA to our network to make our network interpretable, unlike the
end-to-end network, which is like a black box, and to achieve better reconstruction quality.
In order to obtain a better reconstruction performance at a low sampling rate for SPI, we
added a sampling network to the deep unfolding network to achieve joint optimization of
both sampling and reconstruction. Our contributions are summarized as follows:

1. We propose a sampling and reconstruction jointly optimized model unfolding network
(SRMU-Net) for the SPI system. To achieve joint optimization of both sampling and
reconstruction, a specially designed network is proposed so that the sampling matrix
can be input into each iteration block as a learnable parameter.

2. We added a preliminary reconstruction loss term with a regularization parameter to
the loss function of SRMU-Net, which can achieve a higher imaging accuracy and
faster convergence.

3. Extensive simulation experiments demonstrate that the proposed network, SRMU-Net,
outperforms existing algorithms. By training the sampling layer to be binary, our designed
network can be directly used in the SPI system, which we have verified by experiments.
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2. Related Work and Background
2.1. ISTA

In SPI, based on CS, the imaging process can be denoted in Equation (1):

y = Φx + w, (1)

where x ∈ Rm is the object image, y ∈ Rn is the measurement values. Φ ∈ Rn∗m(n << m)
is the measurement matrix, and w represents noise.

In SPI, the number of measurements n is much smaller than the number of image
pixels m. The reconstruction x via y is the solution of the under-determined problem.
Traditional CS reconstruction algorithms combine the prior knowledge of the scene to solve
the under-determined problem. The prior knowledge includes sparsity priors, non-local
low-rank regularization, and total variation regularization.

Based on the sparse prior, using the l1 norm as the regularization term, the solution of
x can be expressed by Equation (2):

x = min
x

1
2
||Φx− y||22 + λ||x||1, (2)

If x is sparse under transformation matrix ψ. The solution is shown in Equation (3):

x = min
x

1
2
||Φx− y||22 + λ||ψx||1, (3)

This is the classic LASSO (least absolute shrinkage and selection operator) problem. Many
researchers solve Equation (3) using gradient-based methods. Among the many gradient-
based algorithms, the iterative shrinking threshold algorithm (ISTA) is a very interesting
algorithm. ISTA updates x through a shrinking soft threshold operation in each iteration. It
solves Equation (3) through two iterative steps, shown by Equations (4) and (5) [22]:

r(k) = x(k−1) − ρΦT(Φx(k−1) − y), (4)

x(k) = argmin
x

1
2
||x− r(k)||22 + λ||ψx||1, (5)

where k is the number of iterations, ρ is the iteration step size, ΦT is the transpose of the
sampling matrix, and λ is the regularization parameter. Equation (5) is a special case of
proximal mapping, which can be solved by Equation (6):

x(k) = WTso f t(Wr(k), λ), (6)

where W is a transformation matrix, so f t is a soft threshold function. ISTA usually requires
many iterations to obtain satisfactory results, and the amount of calculation is large. The
transformation matrix W and all parameters (ρ, λ) are predefined (i.e., do not change
with k), which makes it difficult to adjust.

2.2. ISTA-Net and ISTA-Net+

In recent years, deep learning has made a series of breakthroughs in computer vision
tasks such as image classification, super-resolution, object detection, and restoration [29].
Solving the inverse problem with deep neural networks has been extensively studied.
Among them, reconstruction of compressed sampling images has become a recent research
hotspot. One category is a purely data-driven approach, which employs end-to-end learn-
ing to map sampled values directly to target images without using any prior knowledge
of the signal. R.G. Baraniuk et al. reconstructed compressed measurement images with
stacked denoising autoencoders (SDA) [51]. ReconNet, proposed by Kuldeep et al., uses
six convolutional layers to reconstruct a compressive image [52]. Based on ReconNet, Yao
Hantao et al. proposed a block structure composed of three convolution and residual
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structures, and the DR2-Net from cascading four of such blocks. This network further
improves the reconstruction result [53]. Inspired by the generative adversarial network
(GAN), Bora et al. proposed using a pre-trained DCGAN for compressive reconstruction
(CS-GM) [54]. These studies show that deep learning-based compressive reconstruction is
faster and has a higher reconstruction accuracy than traditional model-driven algorithms.
However, due to the purely data-driven approach, the network is treated as an end-to-end
black box and its structure is not interpretable. The other category is a hybrid model-driven
and data-driven approach that unfolds interpretable traditional reconstruction algorithms
into a multi-layer neural network. The alternating direction method of multipliers (ADMM)
is used to solve the decomposable convex optimization problem. By decomposing the
objective function of the original problem into several solvable sub-problems, and then
solving each sub-problem in parallel, the global solution of the original problem is obtained
by coordinating the solution of the sub-problem. Yang et al. use two different solving
methods to obtain two network structures, Basic-ADMM-Net and Generic-ADMM-Net, by
model unfolding, which effectively improved the reconstruction speed and accuracy of the
network [55]. Zhang et al. unfolded the ISTA into multi-layer neural networks, proposing
ISTA-NET and ISTA-Net+ [56]. The specific method is as follows:

Two linear convolution operators separated by ReLU operators are used to replace the
sparse transformation of ISTA, Equation (3) is transformed into Equation (7):

x = min
x

1
2
||Φx− y||22 + λ|| f (x)||1, (7)

where f (·) is the sparse transformation space learned by the network. Equations (4)–(6)
of the iterative steps are updated to Equations (8)–(10), ISTA is unfolding into the deep
neural network, and the network is used to learn the iteration network parameters in each
iteration block.

r(k) = x(k−1) − ρ(k−1)ΦT(Φx(k−1) − y), (8)

x(k) = argmin
x

1
2
||x− r(k)||22 + λ|| f (x)||1, (9)

x(k) = F(so f t( f (r(k)), λ)), (10)

where F(·) is the inverse process of f (·).
Based on ISTA-Net, ISTA-Net+ performs convolution on r(k) of Equation (8) to extract

the image features, and introduces a residual structure. ISTA-Net and ISTA-Net+ combine
the advantages of traditional iterative algorithms and deep networks, and use a large
amount of training data to optimize the step size, forward and reverse transformation
matrices, and shrinkage thresholds. This improves the traditional iterative algorithm
performance and endows the network with clear interpretability.

Although ISTA-Net and ISTA-Net+ achieve good compression-reconstruction perfor-
mance, they use the hand-made sampling matrix for sampling and the least square method
to realize the preliminary reconstruction. This limits some of their performance. We believe
that there are two aspects that can be further improved, specifically for SPI. First, sampling
and reconstruction can be jointly optimized. Unlike ISTA-Net and ISTA-Net+, which use
the random Gaussian matrix for measurement, we abstracted the sampling process into
a sampling sub-network of fully connected layers or large convolutional layers, which
are cascaded with the reconstruction network for joint optimization to obtain the global
optimal solution. Second, multiple loss terms are designed to make the network converge
faster and achieve better performance.

3. Proposed Network
3.1. Network Architecture

Figure 1 shows the network structure diagram of SRMU-Net. The whole network
consists of three subnetworks: a sampling subnetwork, a preliminary reconstruction sub-
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network, and a deep reconstruction subnetwork. The sampling subnetwork and the
preliminary reconstruction subnetwork are closely related, and constitute the structure
of an encoder-decoder network. The sampling subnetwork was employed to simulate
the compressive sampling of SPI. We designed two sampling methods: fully connected
layer sampling and large convolutional layer sampling, which are described in detail in
Section 3.2. The preliminary reconstruction subnetwork was used for low-quality image
reconstruction. To reconstruct high-quality images, inspired by ISTA-net and ISTA-net+,
we cascaded multiple ISTA iteration blocks into a deep reconstruction subnetwork. How-
ever, in contrast to ISTA-net and ISTA-net+, in order to achieve joint optimization of both
sampling and reconstruction, we input the weight matrix of the sampling subnetwork as
the measurement matrix Φ and measurement value y into each iteration block together.
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Figure 1. The network structure diagram of SRMU-Net, which consists of three subnetworks.

3.2. Sampling and Preliminary Reconstruction Subnetwork

The jointly optimized sampling and compressed reconstruction network mainly adopts
a fully connected layer to simulate the compressed sampling. The fully connected layer
weights after removing the bias and activation function replace the random Gaussian matrix
as the measurement matrix. The number of the fully connected layer weights increases
exponentially with the dimensionality of the reconstructed image. Compared with the fully
connected layer, a large convolutional layer has the advantages of parameter sharing and
sparse connection, which can greatly reduce the number of sampling layer weights. We
compare the two sampling methods in Section 4.1.

3.2.1. Fully Connected Layer Sampling and Preliminary Reconstruction

As shown in Figure 2, two fully connected layers form a sampling subnetwork and a
preliminary reconstruction subnetwork, respectively. Original image input with a dimen-
sion of 32 × 32 is reshaped to a vector with a dimension of m = 1024, x ∈ R1∗m. The weight
matrix Wt ∈ Rm∗n of the first fully connected layer can be thought of as a measurement
matrix Φ, where n is related to the measurement rate. Therefore, the output value of the
first fully connected layer can be considered as the measurement value y ∈ R1∗n, where n
is the number of samples. The second fully connected layer maps the measurement value y
to the preliminary reconstructed image x(0) ∈ R1∗m.
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3.2.2. Large Convolutional Layer Sampling and Preliminary Reconstruction

Figure 3 shows the structure diagram of a large convolutional layer sampling and
preliminary reconstruction network. The dimension of the input image x is 128 × 128 × 1.
The first convolutional layer of the network is the sampling layer, which consists of M
convolution kernels, each with a size of 32 × 32 and a stride of 32. The sampling matrix
can be expressed as Φ ∈ R32∗32∗M, where M is related to the measurement rate. The
measurement value after sampling, which can be expressed as y ∈ R4∗4∗M. y is refactored
a two-dimensional matrix with a size of 4

√
M × 4

√
M × 1 by sub-pixel interpolation.

The second convolutional layer of the network is the preliminary reconstruction layer,
which consists of 1024 convolution kernels, each with a size of

√
M×

√
M and a stride of√

M, and outputs the preliminary reconstruction result with a size of 4 × 4 × 1024. The
preliminary reconstructed image x(0) ∈ R128∗128∗1 is obtained by sub-pixel interpolation.
The first convolutional layer of the network is applied to the object for measurement.
The measurement rate (MR) in terms of the number of convolution kernels M is given by
MR = (16 ∗M)/(128 ∗ 128). When the measurement rate is 25%, the number of parameters
of the fully connected layer is 67108864, while that of the proposed large convolutional
layer sampling method is 262144.
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3.3. Deep Reconstruction Subnetwork

As shown in Figure 1, our deep reconstruction subnetwork is composed of five cas-
caded iteration blocks. According to Section 3.2, the output of the fully connected layer
sampling and preliminary reconstruction is a one-dimensional vector, while the output of
the large convolutional layer sampling and preliminary reconstruction is a two-dimensional
matrix. Therefore, two different iteration block unfolding strategies are employed. For
the fully connected layer sampling, the deep reconstruction subnetwork adopts a similar
structure to the iteration block of ISTA-Net+. For the large convolutional layer sampling,
we propose a new deep reconstruction network that extends to two-dimensional matrices.

3.3.1. The Iteration Block Based on Fully Connected Layer Sampling

Figure 4 shows the iteration block based on fully connected layer sampling. From the
upper network result x(k−1) ∈ R1∗m , r(k−1) ∈ R1∗m can be obtained following Equation (11).
Unlike ISTA-net+, which uses a random Gaussian matrix as the measurement matrix Φ, we
use the learnable weight matrix of the sampling sub-network as the measurement matrix Φ.

r(k) = x(k−1) − ρ(k−1)ΦT(Φx(k−1) − y), (11)
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r(k) is reshaped to 32 × 32 × 1. Iteration blocks extract the feature maps of r(k) by
the first convolutional layer with 32 filters (size 3 × 3) and the process is denoted by g(·).
The feature maps are mapped to the transform domain through transform operation. The
transform operation denoted by f (·), consists of two linear convolution operators separated
bya ReLU operator. A so f t function is used on the sparsely transformed data. F(·) denotes
the process going from the transform domain back to the feature maps via two linear
convolution operators separated by a ReLU operator. Each linear convolution consists of
32 convolution kernels, each with a size of 3 × 3. h(k−1) ∈ R32∗32∗1 is obtained by the last
convolutional layer with 1 filter (size 3 × 3), this process is denoted by G(·). h(k) is reshaped
to 1 × m. A residual structure is used to combine r(k) and h(k) to get x(k). This process is
defined by Equations (12) and (13):

x(k) = r(k) + h(k), (12)

x(k) = r(k) + G(F(so f t( f (g(r(k))), θ(k)))), (13)

where f (·) and F(·) are a pair of positive and inverse transformations, so the network needs
to constrain f · F = I. Inspired by the residual, we consider that r(k) is the low-frequency
part of the reconstructed image and h(k) is the high-frequency part of the image that r(k)

cannot capture. The parameters in the nonlinear mapping and gradient descent can be
learned through the end-to-end training of the network, and the learnable parameter set
is
{

Φ, ρ(k), θ(k), g(k), G(k), f (k), F(k)
}

.

3.3.2. The Iteration Block Based on Large Convolutional Layer Sampling

Figure 5 shows the iteration block based on large convolutional layer sampling. The
dimension of the input is 128 × 128 × 1. As convolution is used for sampling, the measure-
ment value is not in a one-dimensional vector. Therefore, r(k) cannot be calculated directly
with Equation (11). In Equation (11), Φx(k−1) can be thought of as a sampling operation,
ΦT(x(k−1) − y) can be considered as an inverse sampling operation. For the measurement
matrix of the large convolution sampling to be input into the iterative block as a learnable
parameter, we especially designed the network structure denoted as D(·). Convolution and
deconvolution are used to replace the sampling operation and inverse sampling operation
in Equation (11). x(k−1) ∈ R128∗128∗1 is convolved with Φ, then subtracts the measurement
value y. The value after subtraction is deconvolved with Φ. The deconvolution operation
fills the matrix that is being convolved, then uses a 32 × 32 ×M convolutional filter and a
stride of 1 to restore the matrix dimension to 128 × 128 × 1. The result after deconvolution
is multiplied by −ρ(k−1) and then added to x(k−1) to get r(k) ∈ R128∗128∗1. We can transform
Equation (11) into Equation (14):

r(k) = D(x(k−1)) = x(k−1) − ρ(k−1)Φ∗̃(Φ ∗ x(k−1) − y), (14)
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where ∗̃ represents a deconvolution operation, and ∗ represents a convolution operation.
r(k) is obtained by Equation (14). Except for the different data dimensions, the subsequent
operations of the iteration block are consistent with Section 3.3.1. This process can be
represented by Equations (12) and (13).
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3.4. Loss Function

For SRMU-Net to better learn the related parameters, we designed a loss function that
adapts to this network. Given a training dataset {(xi, xi)}

Nb
i=1, the loss function is shown

in Equation (15). It consists of three items: the final reconstruction loss δd, the sparse
transformation loss δc, and the preliminary reconstruction loss δs. δd is the mean square
error of the final reconstruction result x(K)i and xi. To ensure the constraint conditions
f (k) · F(k) = I is statisfied, δc is the mean square error of F(k)( f (k)(xi)) and xi. To obtain
better reconstruction results and evaluate the sampling subnetwork, δs is the mean square
error of the preliminary reconstruction results x(0)i and xi.

δ = δd + αδc + βδs (15)

where:


δd = 1

NNb
∑N

i=1 ||x
(K)
i − xi||22

δc =
1

NNb
∑N

i=1 ∑K
k=1 ||F(k)( f (k)(xi))− xi||22

δs =
1

NNb
∑N

i=1 ||x
(0)
i − xi||22

, K, Nb, N is the number of iteration

block, the total number of image block in the dataset, and the size of each image block,
respectively. α and β are regularization parameters, in our experiments, α is set to 0.01, and
we a numerical discussion on β is provided in Section 4.2.

4. Results and Discussion

In this section, we describe the processing of the image training data and the training-
related parameters. We used the same 91 images in [51] to construct the training set.
For the fully connected layer sampling, Nb = 22,227, N = 1024, and the pixel blocks size
is 32 × 32. For the large convolutional layer sampling, Nb = 7789, N = 16,384, and the
pixel blocks size was 128 × 128. We trained the model at four different measurement
rates: {1.5%, 5%, 10%, 25%}. Our network was implemented with TensorFlow. The training
settings were as follows: learning rate = 0.0001, number of epochs = 1000, batch size = 32,
and optimized by an Adam optimizer. The loss function in Section 3.4 was used to optimize
the network. For testing, we sampled eight images of size 256 × 256 from the set11 [55]
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dataset. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were used to
quantitatively evaluate the reconstruction results.

4.1. Comparison of Different Sampling Methods

We compared the two sampling methods designed in this paper (i.e., SRMU-Net
based on fully connected layer sampling in Section 3.2.1, and SRMU-Net based on large
convolutional layer sampling in Section 3.2.2) with the random Gaussian matrix sampling
method (ISTA-Net+). For testing, the large image was cropped into the small image
required by the network, and the reconstruction was performed using block compressed
sensing. The reconstructed small images were spliced back, and then PSNR was used to
measure the effect of the reconstructed image. For a fair comparison, Equation (15) was
used as the loss function and β was temporarily set to 0.

The comparisons in Table 1 show that the two proposed sampling methods are superior
to random Gaussian matrix sampling, which indicates that the measurement matrix of
network optimization is superior to the random Gaussian matrix. As mentioned in the
introduction, joint optimization of sampling and reconstruction can further improve image
quality. Compared with fully connected layer sampling, large convolutional layer sampling
achieves better results at MR = 1.5%, 5%, 10%, and 25%. The lower the sampling rate, the
greater the gap. As large convolutional layer sampling has the advantages of parameter
sharing and sparse connections, it has better information extraction performance at low
MR. The subsequent simulation experiments used SRMU-Net based on large convolutional
layer sampling.

Table 1. Test set performance comparison in terms of the average PSNR (dB) under different MR
with different sampling methods. The best performance is marked in bold.

Sampling Methods MR = 25% MR = 10% MR = 5% MR = 1.5%

Fully connected layer sampling 33.09 28.41 25.85 21.87
Large convolutional layer Sampling 33.20 28.98 26.14 23.18
Random Gaussian matrix sampling 31.82 26.59 23.09 19.31

4.2. Discussion on Different β Values of Loss Function

From Section 3.4, our loss function consists of three parts: the final reconstruction loss
δd, the sparse transformation loss δc with a regularization parameter α, and the preliminary
reconstruction loss δs with a regularization parameter β. This section discusses the value
of regularization parameter β. For testing, image processing is the same as in Section 4.1.
Keeping other network parameters the same, we compared the network’s performance
when the measurement rate was 1.5%, 5%, 10%, 25% and the β value was 0, 0.01, 0.1, 1. We
also explored the network convergence with a measurement rate of 25% for β values of 0,
0.01, 0.1, 1.

In Table 2, the PSNR of the reconstruction results with different β values at MR = 1.5%,
5%, 10% and 25% are compared. The results prove that adding a loss term for the sampling
and reconstruction subnetwork is effective. Network performance of β = 0.01, 0.1, and
1 was better than that β = 0 at MR = 5% and 10%. Different β values resulted in similar
performance at MR = 1.5%. At MR = 25% and 10%, the reconstruction with β = 1 was poor.
For the different β values, Figure 6a shows the overall convergence process at MR = 25%,
and Figure 6b shows the convergence process from 0 to 40 epochs at MR = 25%. According
to Table 2, the best reconstruction result was achieved for β = 0.01 at MR = 25%, while the
loss of the network converged rapidly in the early stage of training and finally stabilized
at a low value. This indicates that adding a preliminary reconstruction error term with a
regularization parameter to the loss function can achieve better reconstruction performance
and faster convergence. When β = 0.01, the network reconstruction results were best at
MR = 25% and 10%, and slightly worse at MR = 5% and 1.5%. Therefore, we set the β of
the loss function to 0.01.
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Table 2. Test set performance comparison in terms of the average PSNR (dB) with different β values
under different MR. The best performances are marked in bold.

β Value MR = 25% MR = 10% MR = 5% MR = 1.5%

β = 0 33.20 28.98 26.14 23.15
β = 0.01 33.89 29.21 26.49 23.12
β = 0.1 33.66 29.10 26.67 23.05
β = 1 32.83 28.74 26.50 23.17
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4.3. Comparison with Existing Algorithms

In this section, we design a series of comparative experiments to evaluate SRMU-Net.
We also compare our network with an optimization-based traditional reconstruction algo-
rithm, TVAL3, and two popular network-based deep compressive sensing reconstruction
algorithms, ISTA-Net+ and DR2-Net. TVAL3 is a reconstruction algorithm based on total
variational regularization [21]. The algorithm only needs the sampling matrix and the
corresponding measurement values to restore the original image. DR2-Net uses a sampling
matrix for sampling, then a full connected layer for preliminary reconstruction, and finally,
four blocks for the deep reconstruction required to restore the image [53]. Each block is
composed of three convolution layers and a residual structure. These three algorithms use
the random Gaussian matrix for sampling. To ensure fairness of comparison, we used the
same 91 images, optimizer, learning rate, epoch, and batch size when training ISTA-Net+
and DR2-Net. For testing, image processing is the same as in Section 4.1. We used PSNR
and SSIM to evaluate reconstruction performance on the test set.

Table 3 and Figure 7 show the reconstruction results of different algorithms at different
MRs on the test set. The results show that the network-based deep reconstruction algorithm
is better than the optimization-based traditional reconstruction algorithm. At all MRs, the
proposed SRMU-Net achieves the best performance. The lower the measurement rate,
the more obvious the advantages. For example: at MR = 1.5%, SRMU-Net is 3.2dB better
than DR2-Net. At MR = 25%, SRMU-Net is 2.05dB better than ISTA-Net+. Experiments
show that SRMU-Net outperforms other reconstruction algorithms. Figure 7 shows the
reconstruction results of SRMU-Net and ISTA-Net+ at all MRs. Since the “Monarch” is sized
256 × 256, it is divided into 4 subimages sized 128 × 128 for SRMU-Net, and 64 subimages
sized 32 × 32 for ISTA-Net+. The proposed SRMU-Net is able to reconstruct more details
and sharper edges.
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Table 3. Comparison of different algorithms’ test set performances under different MRs in terms of
PSNR (dB) and SSIM. The best performance is marked in bold.

Image Name Methods
MR = 25% MR = 10% MR = 5% MR = 1.5%

PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM

Barbara

TVAL3 24.07 0.72 21.76 0.55 20.45 0.46 16.80 0.32
DR2-Net 25.30 0.80 22.81 0.63 21.72 0.54 19.72 0.44

ISTA-Net+ 27.27 0.86 23.08 0.67 21.44 0.56 19.60 0.42
SRMU-Net 29.25 0.90 24.35 0.72 23.74 0.66 22.47 0.54

Boats

TVAL3 28.59 0.83 24.09 0.66 21.09 0.53 17.83 0.40
DR2-Net 30.52 0.87 26.24 0.75 23.17 0.62 20.04 0.48

ISTA-Net+ 32.55 0.91 26.79 0.78 23.05 0.63 19.40 0.45
SRMU-Net 35.06 0.95 29.69 0.87 26.67 0.77 23.14 0.60

Cameraman

TVAL3 25.83 0.82 21.67 0.67 19.55 0.57 16.37 0.46
DR2-Net 25.71 0.82 22.56 0.72 20.72 0.63 18.18 0.53

ISTA-Net+ 27.33 0.86 22.93 0.72 20.34 0.63 17.62 0.50
SRMU-Net 29.51 0.90 25.64 0.82 23.57 0.75 21.28 0.65

Foreman

TVAL3 34.82 0.91 29.26 0.81 24.76 0.69 20.03 0.56
DR2-Net 35.36 0.92 31.70 0.87 28.41 0.81 23.93 0.70

ISTA-Net+ 38.18 0.95 33.10 0.89 29.16 0.83 23.61 0.69
SRMU-Net 39.43 0.97 35.59 0.93 32.59 0.89 28.23 0.81

House

TVAL3 31.75 0.86 26.37 0.75 23.16 0.64 19.41 0.54
DR2-Net 33.26 0.87 29.07 0.80 25.75 0.73 22.21 0.63

ISTA-Net+ 35.34 0.90 30.02 0.82 26.09 0.75 20.84 0.60
SRMU-Net 36.85 0.92 32.64 0.87 29.80 0.82 24.88 0.71

Monarch

TVAL3 27.39 0.86 20.93 0.65 18.02 0.52 14.96 0.37
DR2-Net 28.55 0.90 23.36 0.78 20.33 0.64 16.76 0.46

ISTA-Net+ 31.67 0.94 24.86 0.81 19.99 0.65 15.80 0.43
SRMU-Net 33.93 0.97 28.33 0.91 24.37 0.82 19.57 0.61

Parrot

TVAL3 26.87 0.86 23.26 0.75 21.07 0.65 14.43 0.44
DR2-Net 28.71 0.89 24.66 0.82 22.47 0.75 19.97 0.64

ISTA-Net+ 29.29 0.92 25.37 0.84 22.05 0.76 19.36 0.63
SRMU-Net 32.70 0.95 28.57 0.90 25.63 0.84 23.18 0.75

Peppers

TVAL3 29.47 0.85 22.95 0.68 19.68 0.54 15.13 0.38
DR2-Net 29.73 0.86 25.09 0.76 21.98 0.64 18.52 0.51

ISTA-Net+ 32.94 0.91 26.55 0.80 22.62 0.69 18.22 0.49
SRMU-Net 34.22 0.94 28.91 0.89 25.59 0.83 22.21 0.69

Mean

TVAL3 28.60 0.84 23.79 0.69 20.97 0.58 16.87 0.43
DR2-Net 29.64 0.87 25.69 0.77 23.07 0.68 19.92 0.55

ISTA-Net+ 31.82 0.91 26.59 0.79 23.09 0.69 19.31 0.53
SRMU-Net 33.89 0.94 29.21 0.86 26.49 0.80 23.12 0.67
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4.4. Imaging Results of SRMU-Net on SPI System

We built an SPI system in the early stage [57]. To use the network to verify the
performance of this system, the first layer of the network needs to be trained with binary
weights. It is loaded onto the digital micromirror array to achieve efficient compressed
sampling. Meanwhile, the hyperparameters of the network and the training data set
remain unchanged. The binarization method and the corresponding training method are
introduced in our previous paper [56]. From the previous three sections, it is clear that
SRMU-Net based on large convolutional sampling achieves better reconstruction results.
Therefore, this section compares it with the mainstream reconstruction algorithm TVAL3.
To ensure fairness of comparison, we used a binary random Gaussian measurement matrix
for testing TVAL3. We imaged the object “turntable” at four MRs in the SPI system and
reconstructed the image using different algorithms. The reconstructed image dimension
was 128 × 128. An image with a size of 128 × 128 is divided into 16 subimages sized
32 × 32 when using TVAL3. Figure 8 shows the imaging results of SRMU-Net and TVAL3
at different MRs. SRMU-Net achieves higher PSNR than TVAL3. Compared with the
results of TVAL3, the images reconstructed with SRMU-Net show more image details. This
is consistent with the previous numerical simulation results.
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Figure 8. Single-pixel imaging results using the traditional method and the proposed method. (a) The
reconstruction algorithm is TVAL3. (b) The reconstruction algorithm is SRMU-Net.

To verify the performance of SRMU-Net, different objects are selected for imaging
in this paper. As shown in Figure 9, we imaged the Chinese Word for “light” and the
pattern of “airplane”. We found that SRMU-Net could not reconstruct clear images at
MR = 1.5%, while it could reconstruct clear images in other cases. This proves that the
network proposed in this paper can be used to reconstruct different objects, and has broad
prospects in specialist fields such as medical diagnosis, astronomical observation, spectral
measurement, etc.
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5. Conclusions

This paper proposes a sampling and reconstruction jointly optimized model unfolding
network (SRMU-Net) for the SPI system. Two types of layers, a fully connected layer and a
large convolutional layer, which simulate compressive sampling, are added to ISTA un-
folding iteration blocks. To achieve joint optimization of both sampling and reconstruction,
the weight matrix of the sampling layer is input into each iteration block as a learnable
parameter. The results from the simulation experiments show that large convolutional
layer sampling can not only reduce the number of weights but also obtain better recon-
struction quality. This advantage becomes more obvious when the measurement rate is
low. Adding a preliminary reconstruction loss term to the loss function of the network
leads to faster convergence and better reconstruction. Extensive experiments demonstrate
that the proposed network SRMU-Net outperforms existing algorithms. The lower the
measurement rate, the more obvious the advantage. By training the sampling layer to be
binary, SRMU-Net can be applied to the SPI system.
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