Investigation into Electromagnetic Compatibility Conducted Susceptibility of a Laser Ranging System
Abstract
:1. Introduction
2. Operation Principle of the Laser Ranging Module
3. Experiment
4. Results
4.1. Effects of Electromagnetic Interference on Laser Ranging System
4.2. Characteristics of Laser Ranging System under Different Electromagnetic Interference Signals
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, D.; Xie, S.; Dai, F.; Liu, Y.; Jia, Y. The Theory and Methods of Quantification Design on System-Level Electromagnetic Compatibility, 1st ed.; National Defense Industry Press: Beijing, China, 2015; pp. 71–83. [Google Scholar]
- Su, D.; Xie, S.; Chen, A.; Shang, X.; Zhu, K.; Xu, H. Basic Emission Waveform Theory: A Novel Interpretation and Source Identification Method for Electromagnetic Emission of Complex Systems. IEEE Trans. Electromagn. Compat. 2018, 60, 1330–1339. [Google Scholar] [CrossRef]
- Wu, Q.; Su, D. Electromagnetic Compatibility Principles, Modeling and Design, 1st ed.; The Posts and Telecommunications Press: Beijing, China, 2022; pp. 4–17. [Google Scholar]
- Lee, J.; Kim, Y.-J.; Lee, K.; Lee, S.; Kim, S.-W. Time-of-flight measurement with femtosecond light pulses. Nat. Photonics 2010, 4, 716–720. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Zhong, K.; Zhou, X.; Huo, J.; Yu, C.; Lu, C.; Lau, A.P.T. Digital Signal Processing for Short-Reach Optical Communications: A Review of Current Technologies and Future Trends. J. Light. Technol. 2018, 36, 377–400. [Google Scholar] [CrossRef]
- Poulton, C.V.; Byrd, M.J.; Russo, P.; Timurdogan, E.; Khandaker, M.; Vermeulen, D.; Watts, M.R. Long-Range LiDAR and Free-Space Data Communication with High-Performance Optical Phased Arrays. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 7700108. [Google Scholar] [CrossRef]
- Halterman, R.; Bruch, M. In Velodyne HDL-64E LIDAR for Unmanned Surface Vehicle Obstacle Detection. In Proceedings of the Conference on Unmanned Systems Technology XII, Orlando, FL, USA, 12–14 April 2010. [Google Scholar]
- Abdo, J.; Hamblin, S.; Chen, G. Effective Range Assessment of Lidar Imaging Systems for Autonomous Vehicles under Adverse Weather Conditions with Stationary Vehicles. ASCE-ASME J. Risk Uncert. Eng. Syst. Part B Mech. Eng. 2021, 8, 031103. [Google Scholar] [CrossRef]
- Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications. IEEE Internet Things J. 2018, 5, 829–846. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, P.; Xu, Z.; Min, H.; Yu, H. Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications. IEEE Sens. J. 2020, 20, 4901–4913. [Google Scholar] [CrossRef] [Green Version]
- Ren, K.; Wang, Q.; Wang, C.; Qin, Z.; Lin, X. The Security of Autonomous Driving: Threats, Defenses, and Future Directions. Proc. IEEE 2020, 108, 357–372. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Applications of Lasers for Tactical Military Operations. IEEE Access 2017, 5, 20736–20753. [Google Scholar] [CrossRef]
- Sabatini, R.; Gardi, A.; Ramasamy, S.; Richardson, M.A. In A Laser Obstacle Warning and Avoidance system for Manned and Unmanned Aircraft. In Proceedings of the 2014 IEEE Metrology for Aerospace (Metro Aero Space), Benevento, Italy, 29–30 May 2014; pp. 616–621. [Google Scholar]
- Lednev, V.N.; Grishin, M.Y.; Sdvizhenskii, P.A.; Kurbanov, R.K.; Litvinov, M.A.; Gudkov, S.V.; Pershin, S.M. Fluorescence Mapping of Agricultural Fields Utilizing Drone-Based LIDAR. Photonics 2022, 9, 963. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4340–4354. [Google Scholar] [CrossRef]
- Yao, J. Microwave Photonics. J. Light. Technol. 2009, 27, 314–335. [Google Scholar] [CrossRef]
- Jin, K.; Zhou, W. Wireless Laser Power Transmission: A Review of Recent Progress. IEEE Trans. Power Electron. 2019, 34, 3842–3859. [Google Scholar] [CrossRef]
- Lin, H.S.; Han, H.W.; Ma, L.H.; Ding, Z.C.; Jin, D.D.; Zhang, X.H. Range Intensity Profiles of Multi-Slice Integration for Pulsed Laser Range-Gated Imaging System. Photonics 2022, 9, 505. [Google Scholar] [CrossRef]
- Liu, S.; Zhan, H.; Peng, K.; Sun, S.; Li, Y.; Ni, L.; Wang, X.; Jiang, J.; Yu, J.; Zhu, R.; et al. Yb-Doped Aluminophosphosilicate Triple-Clad Laser Fiber with High Efficiency and Excellent Laser Stability. IEEE Photonics J. 2019, 11, 1501010. [Google Scholar] [CrossRef]
- Wang, K.; Gu, H.; Yang, Y.; Wang, K.; Wang, Y. Impact of Application Characteristics on Laser Energy Fluctuation in Integrated Photonic Switching Systems. IEEE Photonics J. 2023, 15, 6600312. [Google Scholar] [CrossRef]
- Pang, Y.; Xu, Y.; Zhao, X.; Qin, Z.; Liu, Z. Stabilized Narrow-Linewidth Brillouin Random Fiber Laser with a Double-Coupler Fiber Ring Resonator. J. Light. Technol. 2022, 40, 2988–2995. [Google Scholar] [CrossRef]
- Song, E.; Zhu, G.; Wang, H.; Dong, J.; Qian, Y.; Aleksei, K.; Zhu, X. Minimizing Thermal Load and Stabilizing Mode in Yb:YAG Thin Disk Laser by 1030 nm Multi-Pass Pumping. IEEE Photonics Technol. Lett. 2020, 32, 1011–1014. [Google Scholar] [CrossRef]
- Wan, Y.; Yang, B.; Xi, X.; Zhang, H.; Wang, P.; Wang, X.; Xu, X. Comparison and Optimization on Transverse Mode Instability of Fiber Laser Amplifier Pumped by Wavelength-Stabilized and Non-Wavelength-Stabilized 976 nm Laser Diode. IEEE Photonics J. 2022, 14, 1503905. [Google Scholar] [CrossRef]
- Ying, K.; Chen, D.; Pi, H.; Wang, Z.; Li, X.; Sun, Y.; Wei, F.; Yang, F.; Cheng, N.; Ye, Q.; et al. Ultra-Stable Fiber Laser Based on Intracavity Dual Mode Self-Reference Mechanism. J. Light. Technol. 2022, 40, 3923–3929. [Google Scholar] [CrossRef]
- Cui, Y.; Ye, X.; Shi, J.; Huang, W.; Zhou, Z.; Wang, M.; Chen, Z.; Wang, Z. Stable and Efficient Coupling of High-Power Continuous-Wave Laser with Uncooled Anti-Resonant Hollow-Core Fibers with End Caps. IEEE Photonics J. 2022, 14, 7909806. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, P.; Shi, C.; Yang, B.; Xi, X.; Zhang, H.; Wang, X. Experimental Study on Transverse Mode Instability Characteristics of Few-Mode Fiber Laser Amplifier under Different Bending Conditions. IEEE Photonics J. 2022, 14, 1539106. [Google Scholar] [CrossRef]
- Soares, B.; Robalinho, P.; Guerreiro, A.; Frazao, O. Resilience to Passive Attacks of a Secure Key Distribution System Based on an Ultra-Long Fiber Laser Using a Bi-Directional EDFA. Photonics 2022, 9, 825. [Google Scholar] [CrossRef]
- Fors, K.; Linder, S.; Nilsson, J.; Sterner, U. Effects of Platform EMI in Synchronized Cooperative Broadcast Systems. IEEE Trans. Electromagn. Compat. 2021, 63, 1856–1864. [Google Scholar] [CrossRef]
- Omollo, N.; Van der Ven, J.K.; Vogt-Ardatjew, R.; Leferink, F. Ieee, Determining the Electromagnetic Environment on Board Ships for Risk-based Approach EMC Analysis. In Proceedings of the 2020 IEEE International Symposium on Electromagnetic Compatibility and Signal & Power Integrity Virtual Symposium (IEEE EMC+SIPI), Reno, NV, USA, 28 July–28 August 2020; pp. 666–670. [Google Scholar]
- Migliaccio, M.; Gil, J.J.; Sorrentino, A.; Nunziata, F.; Ferrara, G. The Polarization Purity of the Electromagnetic Field in a Reverberating Chamber. IEEE Trans. Electromagn. Compat. 2016, 58, 694–700. [Google Scholar] [CrossRef]
- Yin, B.; Chen, C.; Zuo, L.; Li, B.; Yuan, L.; He, Y. An Evaluation Method of Electromagnetic Interference Based on a Fast S-Transform and Time–Frequency Space Model. IEEE Trans. Electromagn. Compat. 2022, 64, 396–404. [Google Scholar] [CrossRef]
- Aiello, O.; Crovetti, P. Characterization of the Susceptibility to EMI of a BMS IC for Electric Vehicles by Direct Power and Bulk Current Injection. IEEE Lett. Electromagn. Compat. Pract. Appl. 2021, 3, 101–107. [Google Scholar] [CrossRef]
- He, K.; Yu, D.; Guo, B.; Chai, M.; Zhou, C.; Zhang, D. An Equivalent Dynamic Test System for Immunity Characterization of the UAV Positioning Module Using Bulk Current Injection Method. IEEE Lett. Electromagn. Compat. Pract. Appl. 2020, 2, 161–164. [Google Scholar] [CrossRef]
- GJB 151B-2013; Electromagnetic Emission and Susceptibility Requirements and Measurements for Military and Subsystems. Electronic Information Foundation Department of the General Equipment Department of the Chinese People’s Liberation Army: Beijing, China, 2013.
- MIL-STD-461G; Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment. Department of Defense Interface Standard: Arlington, VA, USA, 2015.
Interference Signals | Feature 1 | Feature 2 | Feature 3 |
---|---|---|---|
single-frequency signal | |||
pulse AM signal | modulation depths | pulse period | duty cycles |
triangular wave AM signal | modulation depths | Triangular wave periods | rising edge time |
pulse frequency modulation signal | frequency offsets | pulse period | duty cycles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.; Li, B.; Li, W.; Liao, Y.; Su, D. Investigation into Electromagnetic Compatibility Conducted Susceptibility of a Laser Ranging System. Photonics 2023, 10, 397. https://doi.org/10.3390/photonics10040397
Huang P, Li B, Li W, Liao Y, Su D. Investigation into Electromagnetic Compatibility Conducted Susceptibility of a Laser Ranging System. Photonics. 2023; 10(4):397. https://doi.org/10.3390/photonics10040397
Chicago/Turabian StyleHuang, Peng, Bing Li, Weimin Li, Yi Liao, and Donglin Su. 2023. "Investigation into Electromagnetic Compatibility Conducted Susceptibility of a Laser Ranging System" Photonics 10, no. 4: 397. https://doi.org/10.3390/photonics10040397
APA StyleHuang, P., Li, B., Li, W., Liao, Y., & Su, D. (2023). Investigation into Electromagnetic Compatibility Conducted Susceptibility of a Laser Ranging System. Photonics, 10(4), 397. https://doi.org/10.3390/photonics10040397