Effect of HIFU-Induced Thermal Ablation in Numerical Breast Phantom
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Breast Phantom
2.2. Ultrasound Propagation
2.3. Heat Deposition and Diffusion
2.4. Thermal Dose and Lesion Formation
2.5. Initial Pressure Rise in PA Imaging
2.6. Reconstruction
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Nathanson, K.N.; Wooster, R.; Weber, B.L. Breast cancer genetics: What we know and what we need. Nat. Med. 2001, 7, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Gøtzsche, P.C.; Jørgensen, K.J. Screening for breast cancer with mammography. Cochrane Database Syst. Rev. 2013, 6, CD001877. [Google Scholar] [CrossRef] [PubMed]
- Hooley, R.J.; Scoutt, L.M.; Philpotts, L.E. Breast ultrasonography: State of the art. Radiology 2013, 268, 642–659. [Google Scholar] [CrossRef]
- Senkus, E.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rutgers, E.; Zackrisson, S.; Cardoso, F. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v8–v30. [Google Scholar] [CrossRef] [PubMed]
- Chiu, A.S.; Thomas, P.; Killelea, B.K.; Horowitz, N.; Chagpar, A.B.; Lannin, D.R. Regional variation in breast cancer surgery: Results from the National Cancer Database (NCDB). Am. J. Surg. 2017, 214, 907–913. [Google Scholar] [CrossRef]
- Clough, K.; Nos, C.; Fitoussi, A.; Couturaud, B.; Inguenault, C.; Sarfati, I. Partial reconstruction after conservative treatment for breast cancer: Classification of sequelae and treatment options. Ann. Chir. Plast. Esthet. 2008, 53, 88–101. [Google Scholar] [CrossRef]
- Moo, T.A.; Sanford, R.; Dang, C.; Morrow, M. Overview of breast cancer therapy. PET Clin. 2018, 13, 339–354. [Google Scholar] [CrossRef]
- Datta, N.R.; Puric, E.; Klingbiel, D.; Gomez, S.; Bodis, S. Hyperthermia and radiation therapy in locoregional recurrent breast cancers: A systematic review and meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 1073–1087. [Google Scholar] [CrossRef]
- Dooley, W.C.; Vargas, H.I.; Fenn, A.J.; Tomaselli, M.B.; Harness, J.K. Focused microwave thermotherapy for preoperative treatment of invasive breast cancer: A review of clinical studies. Ann. Surg. Oncol. 2010, 17, 1076–1093. [Google Scholar] [CrossRef]
- Zhu, L.; Altman, M.B.; Laszlo, A.; Straube, W.; Zoberi, I.; Hallahan, D.E.; Chen, H. Ultrasound hyperthermia technology for radiosensitization. Ultrasound Med. Biol. 2019, 45, 1025–1043. [Google Scholar] [CrossRef] [Green Version]
- Mauri, G.; Sconfienza, L.M.; Pescatori, L.C.; Fedeli, M.P.; Alì, M.; Di Leo, G.; Sardanelli, F. Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: A systematic review and meta-analysis. Eur. Radiol. 2017, 27, 3199–3210. [Google Scholar] [CrossRef] [PubMed]
- Huston, T.L.; Simmons, R.M. Ablative therapies for the treatment of malignant diseases of the breast. Am. J. Surg. 2005, 189, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Scipione, R.; Anzidei, M.; Bazzocchi, A.; Gagliardo, C.; Catalano, C.; Napoli, A. HIFU for bone metastases and other musculoskeletal applications. Semin. Interv. Radiol. 2018, 35, 261–267. [Google Scholar]
- Xu, Y.; Fu, Z.; Yang, L.; Huang, Z.; Chen, W.Z.; Wang, Z. Feasibility, safety, and efficacy of accurate uterine fibroid ablation using magnetic resonance imaging–guided high-intensity focused ultrasound with shot sonication. J. Ultrasound Med. 2015, 34, 2293–2303. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Bian, S.; Lv, W.; Kou, D.; Hu, H.; Guo, S.; Cao, Z. Observation of efficacy of TACE combined with HIFU on patients with middle-advanced liver cancer. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 239–246. [Google Scholar]
- Dupre, A.; Melodelima, D.; Perol, D.; Chen, Y.; Vincenot, J.; Chapelon, J.Y.; Rivoire, M. Evaluation of the feasibility, safety, and accuracy of an intraoperative high-intensity focused ultrasound device for treating liver metastases. JoVE J. Vis. Exp. 2019, 143, e57964. [Google Scholar]
- Guo, X.; Zhu, H.; Zhou, K.; Jin, C.; Yang, Y.; Zhang, J.; Yang, W.; Ran, L.; Dimitrov, D.D. Effects of high-intensity focused ultrasound treatment on peripancreatic arterial and venous blood vessels in pancreatic cancer. Oncol. Lett. 2020, 19, 3839–3850. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.V.; Oh, J.; Kang, H.W. Blood coagulation using High Intensity Focused Ultrasound (HIFU). Photonic Ther. Diagn. X SPIE 2014, 8926, 179–184. [Google Scholar]
- Kim, Y.s.; Rhim, H.; Choi, M.J.; Lim, H.K.; Choi, D. High-intensity focused ultrasound therapy: An overview for radiologists. Korean J. Radiol. 2008, 9, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Alkhorayef, M.; Mahmoud, M.Z.; Alzimami, K.S.; Sulieman, A.; Fagiri, M.A. High-intensity focused ultrasound (HIFU) in localized prostate cancer treatment. Pol. J. Radiol. 2015, 80, 131. [Google Scholar]
- Merckel, L.G.; Knuttel, F.M.; Deckers, R.; van Dalen, T.; Schubert, G.; Peters, N.H.; Weits, T.; van Diest, P.J.; Mali, W.P.T.M.; Vaessen, P.H.; et al. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation. Eur. Radiol. 2016, 26, 4037–4046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heck, L.; Herzen, J. Recent advances in X-ray imaging of breast tissue: From two-to three-dimensional imaging. Phys. Medica 2020, 79, 69–79. [Google Scholar] [CrossRef]
- Kuhl, C.K.; Schrading, S.; Leutner, C.C.; Morakkabati-Spitz, N.; Wardelmann, E.; Fimmers, R.; Kuhn, W.; Schild, H.H. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J. Clin. Oncol. 2005, 23, 8469–8476. [Google Scholar] [CrossRef]
- Shin, E.J.; Kang, B.; Chang, J.H. Real-time HIFU treatment monitoring using pulse inversion ultrasonic imaging. Appl. Sci. 2018, 8, 2219. [Google Scholar] [CrossRef] [Green Version]
- Nyayapathi, N.; Xia, J. Photoacoustic imaging of breast cancer: A mini review of system design and image features. J. Biomed. Opt. 2019, 24, 121911. [Google Scholar] [CrossRef]
- Manohar, S.; Dantuma, M. Current and future trends in photoacoustic breast imaging. Photoacoustics 2019, 16, 100134. [Google Scholar] [CrossRef] [PubMed]
- Suheshkumar Singh, M.; Paul, S.; Thomas, A. Fundamentals of photoacoustic imaging: A theoretical tutorial. In LED-Based Photoacoustic Imaging; Springer: Singapore, 2020; pp. 3–21. [Google Scholar]
- Yao, J.; Wang, L.V. Photoacoustic tomography: Fundamentals, advances and prospects. Contrast Media Mol. Imaging 2011, 6, 332–345. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhao, L.; Wei, Y.; Li, J.; Qi, Z.; Su, N.; Zhao, C.; Zhang, R.; Tang, T.; Liu, S.; et al. Functional photoacoustic/ultrasound imaging for the assessment of breast intraductal lesions: Preliminary clinical findings. Biomed. Opt. Express 2021, 12, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Treeby, B.E.; Cox, B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leino, A.A.; Pulkkinen, A.; Tarvainen, T. ValoMC: A Monte Carlo software and MATLAB toolbox for simulating light transport in biological tissue. OSA Contin. 2019, 2, 957. [Google Scholar] [CrossRef]
- Matlab, S. Matlab; The MathWorks: Natick, MA, USA, 2012. [Google Scholar]
- Available online: https://anastasio.bioengineering.illinois.edu/downloadable-content/oa-breast-database/ (accessed on 6 January 2023).
- Lou, Y.; Zhou, W.; Matthews, T.P.; Appleton, C.M.; Anastasio, M.A. Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging. J. Biomed. Opt. 2017, 22, 041015. [Google Scholar] [CrossRef] [PubMed]
- Hasgall, P.; Neufeld, E.; Gosselin, M.; Kingenböck, A.; Kuster, N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues. 2012. Available online: https://itis.swiss/virtual-population/tissue-properties/database/ (accessed on 6 January 2023).
- Feynman, R. Lectures in Physics. 1969, Volume 1. Chapter 47. Available online: https://www.feynmanlectures.caltech.edu/ (accessed on 2 January 2023).
- Holm, S.; Näsholm, S.P. A causal and fractional all-frequency wave equation for lossy media. J. Acoust. Soc. Am. 2011, 130, 2195–2202. [Google Scholar] [CrossRef] [Green Version]
- ter Haar, G.; Coussios, C. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperth. 2007, 23, 89–104. [Google Scholar] [CrossRef]
- Daschner, R.; Hewener, H.; Bost, W.; Weber, S.; Tretbar, S.; Fournelle, M. Ultrasound Thermometry for HIFU-Therapy. Curr. Dir. Biomed. Eng. 2021, 7, 554–557. [Google Scholar] [CrossRef]
- van Rhoon, G.C. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring? Int. J. Hyperth. 2016, 32, 50–62. [Google Scholar] [CrossRef]
- Wu, F.; Wang, Z.B.; Cao, Y.D.; Chen, W.; Bai, J.; Zou, J.; Zhu, H. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer. Br. J. Cancer 2003, 89, 2227–2233. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Zou, X.; Ding, Y.; Zhao, X.; Qian, S. The influence of dynamic tissue properties on HIFU hyperthermia: A numerical simulation study. Appl. Sci. 2018, 8, 1933. [Google Scholar] [CrossRef] [Green Version]
- Okita, K.; Narumi, R.; Azuma, T.; Furusawa, H.; Shidooka, J.; Takagi, S.; Matsumoto, Y. Effects of breast structure on high-intensity focused ultrasound focal error. J. Ther. Ultrasound 2018, 6, 4. [Google Scholar] [CrossRef]
- Alhamami, M.; Kolios, M.C.; Tavakkoli, J. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue. Med. Phys. 2014, 41, 053502. [Google Scholar] [CrossRef]
- Dasgupta, S.; Wansapura, J.; Hariharan, P.; Pratt, R.; Witte, D.; Myers, M.R.; Banerjee, R.K. HIFU lesion volume as a function of sonication time, as determined by MRI, histology, and computations. J. Biomech. Eng. 2010, 132, 081005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Yoon, S. Prediction of the size of a thermal lesion in soft tissue during HIFU treatment. J. Korean Phys. Soc.y 2005, 47, 640–645. [Google Scholar]
- Doan, V.H.M.; Nguyen, V.T.; Choi, J.; Park, S.; Oh, J. Fuzzy Logic Control-Based HIFU System Integrated with Photoacoustic Imaging Module for Ex Vivo Artificial Tumor Treatment. Appl. Sci. 2020, 10, 7888. [Google Scholar] [CrossRef]
- Yang, K.; Li, Q.; Liu, H.L.; Chen, C.K.; Huang, C.W.; Chen, J.R.; Tsai, Y.W.; Zhou, Z.; Tsui, P.H. Frequency-domain CBE imaging for ultrasound localization of the HIFU focal spot: A feasibility study. Sci. Rep. 2020, 10, 5468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, X.; Qian, S.; Tan, Q.; Dong, H. Formation of thermal lesions in tissue and its optimal control during HIFU scanning therapy. Symmetry 2020, 12, 1386. [Google Scholar] [CrossRef]
- Peek, M.C.; Wu, F. High-intensity focused ultrasound in the treatment of breast tumours. Ecancermedicalscience 2018, 12, 794. [Google Scholar] [CrossRef] [Green Version]
- Raymond, J.L.; Cleveland, R.O.; Roy, R.A. HIFU-induced changes in optical scattering and absorption of tissue over nine orders of thermal dose. Phys. Med. Biol. 2018, 63, 245001. [Google Scholar] [CrossRef]
Characteristics | Skin | Vessel | Fat | Gland | Water |
---|---|---|---|---|---|
Attenuation coefficient [dB/(MHzy·cm)] | 1.84 | 0.61 | 0.34 | 0.75 | 0.002 |
Power factor [y] | 1.69 | 1.3 | 0.73 | 1.5 | 2 |
Sound speed [m/s] | 1650 | 1584 | 1470 | 1515 | 1482 |
Mass density [kg/m] | 1150 | 1099 | 937 | 1040 | 1000 |
Characteristics | Skin | Vessel | Fat | Gland | Water |
---|---|---|---|---|---|
Thermal conductivity [W/(m·K)] | 0.37 | 0.46 | 0.21 | 0.33 | 0.6 |
Specific heat [J/(kg·K)] | 3391 | 3306 | 2348 | 2960 | 4178 |
Characteristics | Skin | Vessel | Fat | Gland | Water |
---|---|---|---|---|---|
Scattering coefficient [cm] | 500 | 179 | 159 | 133 | 0 |
Absorption coefficient [cm] | 0.08 | 9 | 0.05 | 0.04 | 0 |
Scattering anisotropy | 0.99 | 0.975 | 0.95 | 0.95 | 0.99 |
Refractive index | 1.4 | 1.38 | 1.4 | 1.4 | 1.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, S.K.; Paul, S.; Singh, M.S. Effect of HIFU-Induced Thermal Ablation in Numerical Breast Phantom. Photonics 2023, 10, 425. https://doi.org/10.3390/photonics10040425
Yadav SK, Paul S, Singh MS. Effect of HIFU-Induced Thermal Ablation in Numerical Breast Phantom. Photonics. 2023; 10(4):425. https://doi.org/10.3390/photonics10040425
Chicago/Turabian StyleYadav, Sumit Kumar, Souradip Paul, and Mayanglambam Suheshkumar Singh. 2023. "Effect of HIFU-Induced Thermal Ablation in Numerical Breast Phantom" Photonics 10, no. 4: 425. https://doi.org/10.3390/photonics10040425
APA StyleYadav, S. K., Paul, S., & Singh, M. S. (2023). Effect of HIFU-Induced Thermal Ablation in Numerical Breast Phantom. Photonics, 10(4), 425. https://doi.org/10.3390/photonics10040425