Automatic Inhomogeneous Background Correction for Spatial Target Detection Image Based on Partition Processing
Abstract
:1. Introduction
2. Equipment and Methods
2.1. Experimental Equipment
2.2. Determination of Region Split Size
2.3. Region Background Extraction
2.4. Full Image Background Estimation
3. Results and Discussion
3.1. Evaluation Indicators
3.2. Experiment on Simulated Images
3.3. Experiment on Captured Images
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Y.; Zhao, J.-Y. Space object detecting ability improvement method based on optimal principle. Optoelectron. Lett. 2019, 15, 459–462. [Google Scholar] [CrossRef]
- Steindorfer, M.A.; Kirchner, G.; Koidl, F.; Wang, P.; Jilete, B.; Flohrer, T. Daylight space debris laser ranging. Nat. Commun. 2020, 11, 3735. [Google Scholar] [CrossRef] [PubMed]
- Beck, P.; Robson, L.; Gallaway, M.; Jones, H.R.; Campbell, D. Efficient follow-up of exoplanet transits using small telescopes. Publ. Astron. Soc. Pac. 2019, 131, 084402. [Google Scholar] [CrossRef] [Green Version]
- Yibin, R.; Yu, Z.; Xuejian, N. Application of large shipborne theodolite in space target measurement. In Proceedings of the 17th International Conference on Optical Communications and Networks (ICOCN2018), Zhuhai, China, 16–19 November 2018; SPIE: Bellingham, WA, USA, 2019; p. 110482J. [Google Scholar]
- Sun, R.-Y.; Zhan, J.-W.; Zhao, C.-Y.; Zhang, X.-X. Algorithms and applications for detecting faint space debris in GEO. Acta Astronaut. 2015, 110, 9–17. [Google Scholar] [CrossRef]
- Luo, H.; Zheng, J.-H.; Wang, W.; Cao, J.-J.; Zhu, J.; Chen, G.-P.; Zhang, Y.-S.; Liu, C.-S.; Mao, Y.-D. FocusGEO II. A telescope with imaging mode based on image overlay for debris at Geosynchronous Earth Orbit. Adv. Space Res. 2022, 69, 2618–2628. [Google Scholar] [CrossRef]
- Paolo, C.; Guido, A.; Matteo, A.; Carmelo, A.; Andrea, B.; Andrea, B.; Maria, B.; Andrea, B.; Marco, B.; Lorenzo, B.; et al. MAORY: The adaptive optics module for the Extremely Large Telescope (ELT). In Adaptive Optics Systems VII; SPIE: Bellingham, WA, USA, 2020; p. 114480Y. [Google Scholar]
- Ryan, D.; Mark, C.; Yutaka, H. On the feasibility of using a laser guide star adaptive optics system in the daytime. J. Astron. Telesc. Instrum. Syst. 2019, 5, 019002. [Google Scholar] [CrossRef]
- Dong, L.; Wang, B. Research on the new detection method of suppressing the skylight background based on the shearing interference and the phase modulation. Opt. Express 2020, 28, 12518–12528. [Google Scholar] [CrossRef] [PubMed]
- Sanders, T.; Hedges, R.; Schulz, T.; Abijaoude, M.; Peters, J.; Steinbock, M.; Arreola, A.; Holmes, T. Real Time Deconvolution of Adaptive Optics Ground Based Telescope Imagery. J. Astronaut. Sci. 2022, 69, 175–191. [Google Scholar] [CrossRef]
- Torben, E.A.; Mette, O.-P.; Anita, E. Image-based wavefront sensing for astronomy using neural networks. J. Astron. Telesc. Instrum. Syst. 2020, 6, 034002. [Google Scholar] [CrossRef]
- Hickman, S.; Weddell, S.; Clare, R. Image Correction with Curvature and Geometric Wavefront Sensors in Simulation and On-sky. In Proceedings of the 2019 International Conference on Image and Vision Computing New Zealand (IVCNZ), Dunedin, New Zealand, 2–4 December 2019; pp. 1–6. [Google Scholar]
- Yu, W. Practical anti-vignetting methods for digital cameras. IEEE Trans. Consum. Electron. 2004, 50, 975–983. [Google Scholar]
- Tek, F.B.; Dempster, A.G.; Kale, I. Computer vision for microscopy diagnosis of malaria. Malar. J. 2009, 8, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, X.; Wang, X.; Dou, A.; Ding, X. Vignetting Correction of Post-Earthquake UAV Images. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5704–5707. [Google Scholar]
- Litvinov, A.; Schechner, Y.Y. Addressing radiometric nonidealities: A unified framework. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 52–59. [Google Scholar]
- Kaiqiong, S.; Yaqin, L.; Shan, Z.; Jun, W. Hybrid active contour model for inhomogeneous image segmentation with background estimation. J. Electron. Imaging 2018, 27, 023018. [Google Scholar] [CrossRef]
- Vopalensky, M.; Czech Academy of Sciences (CAS); Kumpova, I.; Vavrik, D. Suppression of residual gradients in the flat-field corrected images. E-J. Nondestruct. Test. 2019, 25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yang, Q.Y.; Chen, T. Vignetting correction for a single star-sky observation image. Appl. Opt. 2019, 58, 4337–4344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.; Su, J.; Cheng, X.; Zhang, Z.J.T.A.J. Astrometric observations of a near-Earth object using the image fusion technique. Astron. J. 2021, 162, 250. [Google Scholar] [CrossRef]
- Mohamed, E.H.; Michael, C.R.; Durdu, O.G. Reconstruction of images degraded by aerosol scattering and measurement noise. Opt. Eng. 2015, 54, 033101. [Google Scholar] [CrossRef]
- Sonnenschein, C.M.; Horrigan, F.A. Signal-to-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from the Atmosphere. Appl. Opt. 1971, 10, 1600–1604. [Google Scholar] [CrossRef] [PubMed]
- Pain, B.; Cunningham, T.; Hancock, B.; Wrigley, C.; Sun, C. Excess noise and dark current mechanisms in CMOS imagers. In Proceedings of the IEEE Workshop on CCD’s and Advanced Image Sensors, Karuizawa, Nagano, Japan, 9–11 June 2005. [Google Scholar]
- Nguyen, T.-K.; Kim, C.-H.; Ihm, G.-J.; Yang, M.-S.; Lee, S. CMOS low-noise amplifier design optimization techniques. IEEE Trans. Microw. Theory Tech. 2004, 52, 1433–1442. [Google Scholar] [CrossRef]
- Nayar, S.K.; Nakagawa, Y. Shape from focus. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 824–831. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.B.; Weiss, R. Can we calibrate a camera using an image of a flat, textureless Lambertian surface? In Proceedings of the Computer Vision—ECCV 2000: 6th European Conference on Computer Vision, Dublin, Ireland, 26 June–1 July 2000; pp. 640–653. [Google Scholar]
Split Area Size | MSE | SSIM |
---|---|---|
10 px × 10 px | 33.62 | 0.9437 |
20 px × 20 px | 23.02 | 0.9813 |
30 px × 30 px | 8.65 | 0.9827 |
40 px × 40 px | 9.55 | 0.9805 |
Ours | 7.46 | 0.9837 |
Image-Size | CPU | Average Running Time | Method |
---|---|---|---|
2 kpx × 2 kpx | [email protected] GHz | 9.29 s | Zhang |
2 kpx × 2 kpx | [email protected] GHz | 1.25 s | Ours |
4 kpx × 4 kpx | [email protected] GHz | 2.36 s | Ours |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Chen, T.; Lu, C.; Wu, Z.; Liu, C.; Shao, M.; Cao, J. Automatic Inhomogeneous Background Correction for Spatial Target Detection Image Based on Partition Processing. Photonics 2023, 10, 433. https://doi.org/10.3390/photonics10040433
Jiang C, Chen T, Lu C, Wu Z, Liu C, Shao M, Cao J. Automatic Inhomogeneous Background Correction for Spatial Target Detection Image Based on Partition Processing. Photonics. 2023; 10(4):433. https://doi.org/10.3390/photonics10040433
Chicago/Turabian StyleJiang, Chun, Tao Chen, Changzheng Lu, Zhiyong Wu, Changhua Liu, Meng Shao, and Jingtai Cao. 2023. "Automatic Inhomogeneous Background Correction for Spatial Target Detection Image Based on Partition Processing" Photonics 10, no. 4: 433. https://doi.org/10.3390/photonics10040433
APA StyleJiang, C., Chen, T., Lu, C., Wu, Z., Liu, C., Shao, M., & Cao, J. (2023). Automatic Inhomogeneous Background Correction for Spatial Target Detection Image Based on Partition Processing. Photonics, 10(4), 433. https://doi.org/10.3390/photonics10040433