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Abstract: Optical coherence tomography (OCT) is used to obtain retinal images and stratify them to
obtain the thickness of each intraretinal layer, which plays an important role in the clinical diagnosis
of many ophthalmic diseases. In order to overcome the difficulties of layer segmentation caused
by uneven distribution of retinal pixels, fuzzy boundaries, unclear texture, and irregular lesion
structure, a novel lightweight TransUNet deep network model was proposed for automatic semantic
segmentation of intraretinal layers in OCT images. First, ResLinear-Transformer was introduced
into TransUNet to replace Transformer in TransUNet, which can enhance the receptive field and
improve the local segmentation effect. Second, Dense Block was used as the decoder of TransUNet,
which can strengthen feature reuse through dense connections, reduce feature parameter learning,
and improve network computing efficiency. Finally, the proposed method was compared with the
state-of-the-art on the public SD-OCT dataset of diabetic macular edema (DME) patients released by
Duke University and POne dataset. The proposed method not only improves the overall semantic
segmentation accuracy of retinal layer segmentation, but also reduces the amount of computation,
achieves better effect on the intraretinal layer segmentation, and can better assist ophthalmologists in
clinical diagnosis of patients.

Keywords: OCT; intraretinal layer segmentation; semantic segmentation; TransUNet; diabetic
macular edema

1. Introduction

Due to the uneven structure of retinal tissue in the fundus, the light absorption
and scattering intensity of each tissue layer are different, resulting in the phenomenon
of alternating light and dark in retinal OCT images, which clearly reflects the detailed
structure of each retinal layer and the characteristics of various retinopathy. Accurate
measurement of intraretinal layer structure and layer thickness is the key to many studies
and auxiliary disease initial diagnosis and follow-up treatment [1], and many systemic
diseases have ocular manifestations [2]. However, manual extraction is too time-consuming
and subjective, which limits its practicability in large-scale research [3]. So, it is especially
important to automatically stratify the intraretinal layers of retinal images on fundus
OCT images.

With the development of machine learning and computer vision, the previously
proposed retinal layering methods mainly focused on the gray threshold method, active
contour method, graph theory method, and other directions. For gray threshold method,
the pixels of the intraretinal layer were mainly distinguished based on the gray value, and
through manual definition of threshold or adaptive threshold [4] method to continuously
collect multiple images positioning layer segmentation. In 2003, Koozekanani D et al. first
located the optic nerve head of the retina with an accuracy of less than 5 pixels [5]. In 2005,
Fernandez et al. used the nonlinear diffusion filtering and automatic/interactive methods
for retinal localization, discarded the traditional threshold technique, found intensity peaks
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on each sampling line, and used structural coherence matrix to replace the original data.
Active contour model is one of the methods based on boundary image segmentation. The
parameter active contour model (Snake) can improve the capture range and stability of the
traditional active contour model, and it was the most widely used model [6]. Ghorbel et al.
introduce a method for automatic segmentation of the eight-layer structure of the retina
based on a combination of active contours and Markov random fields. The graph-theoretic
search method searches for a statistically optimal global solution based on grey-scale or
gradient information [7]. In 2010, Yang et al. introduced a graph-theoretic computational
search algorithm containing both local and global gradients, using information on gradients
and minimum path search as the basis [8]. In 2017, Duan et al. proposed an improved
geodesic distance formula (GDM) based on exponential function weighting. By solving the
ordinary differential equation of geodesic distance for segmentation, the nine-layer retinal
layer segmentation was finally achieved [9].

Deep learning has slowly emerged in the recent years and has excelled in many
studies. In the task of medical image manipulation, compared with traditional feature
extraction methods, deep learning can extract richer image features. Similarly, in the field
of OCT intraretinal layer segmentation, convolutional neural networks have gradually
emerged. In 2011, Yang et al. designed a set of fully convolutional neural network, which
took the boundary probability value as the weight and combined with the graph theory
model to search the shortest path, and obtained the final boundary contour value [10]. In
2017, Stefanos et al. introduced a novel fully convolutional neural network architecture
Y-Net, which combined the expanded residual blocks together in an asymmetric U-shaped
configuration and could segment multiple layers of highly pathological eyes at once [11].
The same year, Roy et al. introduced a novel ReLayNet modeled with an encoder–decoder
configuration, and improving spatial consistency as well as ease of gradient flow during
training by combining non-pooling stages with jump connections [12]. In 2019, Ngo et al.
used a deep neural regression model to train and predict retinal boundary contours using
image intensity, gradient, and adaptive normalized intensity as learning features [13]. In
2020, Mishra et al. used the enhanced full convolutional neural network to generate a
probability map, combined the shortest path algorithm with the U-Net convolutional neural
network, and segmented 11 layers of retina [14].

Although convolutional neural networks have excellent representational capabilities,
CNN-based approaches often show limitations in modelling explicit remote relationships
due to the intrinsic local nature of the convolutional operations. Therefore, these architec-
tures generally produce weaker performance, especially for showing large errors in texture
and shape. To overcome this limitation, the existing studies suggest the establishment of
self-attention mechanisms based on CNN features. For example, Wang et al. designed a
nonlocal operator that can be inserted into multiple intermediate convolutional layers [15].
Schlemper et al. proposed an encoder-decoder based U-shaped structure and proposed an
additional attention gate module integrated into the skip connection [16]. Alternatively, the
Transformer was proposed by Vaswani et al. and aims at dealing with sequence-related
problems, and has become an alternative architecture [17]. In contrast to the prior CNN-
based methods, Transformers are not only robust in modelling the global environment,
but also exhibit excellent deliverability to downlink projects under massive pre-training.
In 2020, Dosovitskiy al. introduced the Visio Transformer, which laid a solid application
foundation for the subsequent application of many medical image segmentation model
algorithms based on Transformer [18] such as Swin Transformer [19] and TransUNet. In
2022, Chen Y et al. proposed CSU-Net, a hybrid CNN-Transformer multimodal brain tumor
segmentation network, which well combines the two characteristics for medical image
segmentation [20].

Currently, while the Transformer network has excellent capability for global capture,
image segmentation is performed in deep learning by considering the features of the image
globally, and there is a greater need to enhance the representation for local details. In
order to overcome the problems that the retinal layer pixel distribution is not uniform, the
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boundary is fuzzy and the texture is not clear, and the irregular lesion area cannot ensure
the correct hierarchical structure segmentation. Based on the advanced TransUNet network
model, this paper constructed a novel lightweight TransUNet deep semantic segmentation
network model for fundus OCT intraretinal layer segmentation. First, RL-Transformer is to
replace the Multilayer Perceptron (MLP) in Transformer with residual perceptron (ResMLP).
ResMLP [21] can effectively compensate for the slow learning speed of MLP, which may be
insufficient in learning and easy to fall into local extremum, so as to enhance the extraction
and learning ability of feature maps. Second, the Dense Block proposed in DenseNet [22]
was used to replace transposed convolutional upsampling in TranseUNet, which can not
only alleviate the issue of gradient explosions in deep encoders, but also better retains the
context information. Finally, it was trained, tested, experimentally compared, and analyzed
on the SD-OCT public dataset released by Duke University. The results were tested on the
POne dataset.

The paper’s contribution which can be briefly summarized is as follows:

(1) Through the introduction of the TransUNet model, the global and local information of
different intraretinal layers in fundus OCT images can be effectively extracted, thus
improving the accuracy of retinal OCT image stratification.

(2) By using RL-Transformer to replace the Transformer part of the original TransUNet
model, the receptive field is amplified, the learning rate of feature map is enhanced,
and the hierarchical accuracy is also improved.

(3) The Dense Block module was used to replace the transpose convolution upsampling
part of the original TransUNet model, which can not only prevent the gradient explo-
sion problem, but also better retain context information, enhance feature reuse, reduce
feature parameter learning, and improve computational efficiency.

The remainder of the paper has the following structure: Section 2 details the Tran-
sUNet approach and the refined lightweight network model; Section 3 depicts the relevant
configuration of the dataset and experiments, and presents the experimental results and the
comparative interpretation; Section 4 focuses on the analysis and conduct of the extinction
experiments. Section 5 presents the summary.

2. Materials and Methods

The proposed model is based on an improvement of the TransUNet model. In OCT
images, nerve fiber layer (NFL), ganglion cell layer to inner plexiform layer (GCL-IPL),
inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer to inner seg-
ment myeloid (ONL-ISM), inner segment ellipsoid (ISE), outer segment to retinal pigment
epithelium (OS-RPE) and background for eight-level semantic high-precision segmenta-
tion operation were analyzed. An example of the OCT images and their corresponding
annotations are shown in Figure 1.

This paper first introduces the network structure framework of TransUNet in Section 2.1.
Then, the general framework of the improved lightweight TransUNet is elaborated in
Section 2.2.

2.1. TransUNet Network Structure

The Transformer’s structure as shown in Figure 2a. A Transformer consists of layer
norm layer, multihead self-attention module (MSA), and multi-layer perceptron (MLP). The
TransUNet network structure is shown in Figure 2b, which is a U-shaped encoder-decoder
architecture. The strategy in the encoder part is to build the encoder in a mixture of CNN
and Transformer, which can take advantage of the advantages of Transformer and CNN,
respectively. Due to the self-attention structure of the Transformer network, it pays more
attention to global information, and is easy to ignore the details of the image under low
resolution, which will cause great damage to the decoder, which recovers the pixel size
and leads to rough segmentation results. CNN can just make up for this drawback of the
Transformer. CNN can extract local detail information better, so TransUNet combines the
two for image segmentation.
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For the decoder part, concatenated upsampling is used. While performing transposed
convolutional upsampling to restore the image, the corresponding concatenation of the
same layer resolution is down-sampled from the encoder’s CNN, which is used to decode
the hidden features to output the final segmentation mask. Each upsampling block consists
of conventional upsampling, 3× 3 convolution, and ReLU. In addition, the model achieved
outstanding outcomes on the datasets Synapse and ACDC [23].

2.2. Improved Lightweight TransUNet Network

The proposed model is shown in Figure 3. Given image I ∈ RH×W×C, the objective is
to forecast the segmentation map of corresponding size H ×W with a number of channels
C. The proposed model belongs to the “U” shape structure, and consists of an encoder–
decoder. The encoder is a combination structure of CNN and Transformer, and the decoder
is a cascade decoder composed of 2× upsampling operator and Dense Block.

Encoder: In this paper, a modified Transformer, namely RL-Transformer, was mixed
with CNN as the encoder of the model, in which CNN, first of all as the feature extractor,
produced a map of features for the input. Patch embedding was applied to serialize
the feature maps obtained by CNN in one dimension. This change helps to increase the
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receptive field and enhances the coding performance of the model. Moreover, the mixture
of RL-Transformer and CNN is more suitable than the mixture of Transformer and CNN,
and CNN can better extract local detail information, and the effect is more obvious. The
specific experiments are shown in the ablation experiment.
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Decoder: Due to the checkerboard effect when using the traditional transposed convo-
lution for upsampling operation, and the huge amount of calculation is easy to cause re-
source waste, this paper used the Dense Block in the decoder part to replace the transposed
convolution upsampling of the original TransUNet, and at the same time, concatenated
with the CNN downsampling from the encoder corresponding to the same layer resolution.
A new cascaded upsampling module was constructed. Dense Block can not only prevent
the gradient explosion problem, but also better retain the context information, strengthen
the feature reuse, and establish a lightweight TransUNet deep network model, which
can greatly reduce the computational load. The specific experiments are shown in the
ablation laboratory.

2.2.1. RL-Transformer

Trainable linear projections were used to map the vectorized patch xp to the latent
D-dimensional embedding space, the output of this projection is called Patch Embedding.
Input the original image into CNN for feature extraction. After linear projection, the Patch
Embedding serializes the extracted feature image to obtain a sequence with length P(patch
size) × P, and adds position coding to it. When encoding the patch spatial information,
specific location embeddings are added to the patch embeddings to retain the location
information, as shown below:

z0 =
[

x1
pE; x2

pE; · · · ; xN
p E
]
+ Epos (1)

where E ∈ R(P2·C)×D represents the patch embedding projection, and Epos ∈ RN×D repre-
sents the embedding position.
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In this paper, the MLP in Transformer was changed into ResMLP, that is, the new
Transformer (RL-Transformer) [24], and it was used in the proposed network. The structure
diagram of RL-Transformer is shown in Figure 4a, which consists of Layer Norm layer,
Multihead Self-Attention module (MSA), and ResMLP. The structure of the mentioned
ResMLP is shown in Figure 4b.
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The RL-Transformer encoder consists of the l-layer multi-head self-attention mecha-
nism (MSA) and ResMLP as shown in Equations (4) and (5). Therefore, the output of layer
l can be written as:

z′l = MSA(LN(zl−1)) + zl−1 (2)

zl = ResMLP
(

LN
(
z′l
))

+ z′l (3)

where LN(·) represents the Layer Norm, and zl represents the encoded image representation.
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ResMLP is composed of two GELU [25] layers, three linear layers, and three Dropout,
alternating before the second GELU layer to the residual links of the input of the source,
ResMLP is represented by the following equation:

z′′l = LN
(
z′l
)

(4)

y = z′′l + L
(
αGELU

(
L
(
z′′l
)))

(5)

where GELU denotes the non-linear layer of GELU, L denotes the linear layer, and α denotes
the associated weight parameter, namely, the weight parameter. Finally, the sequence states
of the RL-Transformer encoder output are used as image features.

MLP is actually a fully connected neural network, which has the ability of parallel
processing and good fault tolerance, but its learning speed is slow, time-consuming, and
the learning may not be sufficient. ResMLP can improve these problems.

2.2.2. Dense Block

The Dense Blocks are derived from the DenseNet network, which contains better
dense connections than the simple ResNet model [26]. The framework diagram of the
Dense Block model is shown in Figure 5, which is a Dense Block with five layers, including
four combination functions BN(Batch Norm)-ReLU-Conv and the Transition Layer. Where
the input to H1 is X0 (the input), the input to H2 is X0, X1 (X1 is H1’s output), and so on.
It consists of two main parts, the dense block and the transition layer. The Dense Block
mainly defines the connection relationship between input and output, and the transition
block is mainly used to control the number of channels.
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The main idea of Dense Block is feature reuse, and Transition Layers are added to
control the number of channels when the number of channels increases. In a Dense Block,
the number of feature maps produced by each layer is usually determined by the input
and the hyperparameter k, which is called the growth rate. The growth rate k determines
the number of feature maps output by each combination function to be k, that is, assuming
that the number of channels of feature maps in the input layer is k0, then the number of
channels input in the L layer is k0 + k (L − 1). The Dense Block combination function is
BN+ReLU+Conv (3 × 3) Layer. The Dense Block is followed by a transition layer, which
consists of a BN layer, a 1 × 1 convolutional layer, and a 2 × 2 average pooling layer.

The Transition Layer is mainly used to connect each Dense Block and play the function
of compressing the model. Assuming that the number of channels of the feature map
obtained by the previous layer is of size m, then θ m features can be generated after the
Transition layer, where θ represents the compression coefficient between 0 and 1.
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2.2.3. Steps of the Algorithm

The algorithmic flow of the novel network is shown as Algorithm 1.

Algorithm 1 The proposed algorithm for fundus OCT intraretinal layer segmentation.

1. Input OCT images
2. Data augmentation of OCT images
3. Input the augmented OCT dataset into the proposed model
4. While η is not converging
5. For a = 0, 1, . . . , n
6. Sample {Xi }m, {Yi }m → Pdata (H, W, 3) a batch from the dataset
7. Pdata (H, W)→ Pdata (H, W, C)
8. CNN (Pdata)
9. Hidden Feature (Pdata)
10. Linear Projection (Pdata)
11. RL-Transformer (Pdata)
12. Conv (Pdata)
13. Dense Block (Pdata)
14. Gη (dice)←∇w Lossdice (P data)
15. η← η + ξGη

(dice)

16. end for
17. end while
18. Output the intraretinal layer segmentation results.

Where n is the number of iterations, m is the batch size, and η is the model parameter.

3. Experiments and Results
3.1. Dataset

In order to evaluate the good performance of the proposed method, this paper uses
two public datasets for experimental verification.

Dataset 1 is a publicly available SD-OCT [27] dataset of patients with diabetic macular
edema (DME) at Duke University, which is composed of about 110 SD-OCT B-scan images,
each with a B-scan image size of 496 × 768. These images were taken from 10 patients
with DME, and 11 of each patient’s B-scans were centered on the central concavity, with
5 scans collected on each of the two sides of the central recess (central recess slice and
transverse scans collected at ±2, ±5, ±10, ±15, and ±20 from the central recess slice).
These 110 B-scans were annotated by two clinical ophthalmologists for the retinal layer and
the fluid region, respectively. In this experiment, the annotations of expert 1 and expert 2,
respectively, were used as the golden annotation for training the network, and the proposed
method was compared and evaluated in discussion with the main existing methods.

Dataset 2 is the POne dataset [28], which consists of 100 SD-OCT B-scan images, each
of size 496 × 610, collected from 10 healthy adult subjects. The POne dataset was calibrated
by two ophthalmic experts for eight layers, and the segmentation results of expert 1 were
used as the golden annotation for evaluation and comparison.

3.2. Experimental Environment and Configuration

In the experiments, using Pytorch version 1.10.1 (Sunnyvale, CA, USA) as the deep
learning framework, Nvidia version of RTX3090 with 24 GB of video memory (Santa Clara,
CA, USA), Anaconda (Austin, TX, USA) used version 4.10.1 and version 11.1 Cuda (Menlo
Park, CA, USA). The weights pre-trained on ImageNet were used to initialize the model
parameters, with the input patch size P and resolution set to 16 and 224 × 224, respectively
(unless otherwise stated). The optimizer was the SGD optimizer with momentum 0.9,
learning rate 0.01, and weight decay of 1 × 10−4, used to optimize the backpropagation
of the model. The batch size was set to 24 by default and the epoch was set to 150. In the
contrast experiment, the OCT dataset was then trained and tested using the pre-trained
weights provided by the original model. The augmentation of data set was mainly aimed
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at Dataset 1, the horizontal flip, mirror flip, Gaussian noise (noise standard deviation of
0.12), and salt and pepper noise (noise amount of 0.025) were applied to augment the OCT
dataset of the images to 20 times, and 60% were randomly selected for training dataset,
20% for test dataset, and 20% for validation dataset. No data from the Dataset 2 have been
used for training.

3.3. Evaluation Metrics

The average Dice similarity coefficient (DSC) and the average Hausdorff distance
(HD) were used to evaluate the performance of intraretinal layer hierarchical segmentation.
Including sensitivity (SE), specificity (SP), Jacquard similarity (JAC), and precision (PR)
well-known metrics were used to further demonstrate the advantages of the proposed
model. Among them, higher values of DSC, SE, SP, JAC, and PR, and lower values of HD
indicate better segmentation. The formulae and brief descriptions of each metric follow:
TP denotes the count of correct predictions of positive symptoms; TN denotes the count
of correct predictions of negative symptoms; FP denotes the count of negative symptoms
wrongly predicted by the model; FN denotes the count of positive symptoms wrongly
predicted by the model.

For the speed detection of the model, the calculation amount (Flops), parametric
volume (Params), and inference time (FPS) of the neural network were selected to evaluate
the speed of the model. Flops is used to calculate the time complexity, which is used to
measure the complexity of the algorithm. Params is used to calculate the space complexity,
which is used to measure the size of the model. FPS stands for frames per second, which is
how many images the network can process per second.

Hausdorff distance (HD) is a measure describing the degree of similarity between
two sets of points, and it is a form of definition of the distance between two sets of points:
suppose there are two sets A = {a1, . . . , ap}, B = {b1, . . . , bq}, then the Hausdorff distance
between the two point sets is defined as:

H(A, B) = max(h(A, B), h(B, A)) (6)

Among them:

h(A, B) = max
a∈A

{
min
b∈B
‖a− b‖

}
(7)

h(B, A) = max
b∈B

{
min
a∈A
‖b− a‖

}
(8)

Specificity (SP) represents the percentage of true negatives (TN) in model identification.
It is calculated as follows.

SP =
TN

TN + FP
(9)

Sensitivity (SE) represents the percentage of true positives (TP) in model identification,
also known as recall. Its calculation formula is as follows.

SE =
TP

TP + FN
(10)

The Jaccard similarity (JAC) is used to compare the similarities and differences between
finite sets of samples. It is calculated as follows.

JAC =

∣∣∣Rgt ∩ Rpred

∣∣∣∣∣∣Rgt ∪ Rpred

∣∣∣ = TP
TP + FP + FN

(11)
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Precision (PR) represents the proportion of samples predicted to be positive among
those predicted to be positive. It is calculated as follows.

PR =
TP

TP + FP
(12)

The Dice similarity coefficient (DSC) represents how similar the predicted value is to
the true value. It is calculated as follows.

DSC =
2TP

2TP + FP + FN
(13)

False positive rate (FPR): the proportion of samples in which the true result is negative.
It is calculated as follows.

FPR =
FP

FP + TN
(14)

Paired t-tests are often used to test whether two related samples are from a normal
population with the same mean. The essence is to test the difference between the mean and
zero of the difference of two relevant samples. SPSS software is used to perform paired
t-test on the data. If p value is less than 0.05, it is proved that there is a significant difference.

3.4. Experimental Results

The proposed model has been experimentally compared with four current effective
methods, including U-Net, ReLayNet, Swin-Unet, and TransUNet on the SD-OCT dataset.
The experimental comparison results are shown in Table 1.

Table 1. Quantitative comparison of Dice coefficient and consistency index of segmentation results of
each method layer on the Duke dataset.

Golden
Annotation Method NFL GCL-IPL INL OPL ONL-ISM ISE OS-RPE Mean

Expert 1

Expert 2 0.849 0.884 0.792 0.732 0.935 0.852 0.822 0.838
U-Net 0.809 0.882 0.773 0.717 0.921 0.852 0.821 0.825

ReLayNet 0.836 0.892 0.78 0.739 0.929 0.867 0.852 0.842
Swin-Unet 0.858 0.901 0.84 0.804 0.912 0.894 0.821 0.861
TransUNet 0.884 0.922 0.84 0.825 0.94 0.894 0.864 0.881

The proposed method 0.907 0.939 0.868 0.853 0.957 0.914 0.889 0.904
Significance P 0.003 0.027 0.034 0.042 0.034 0.048 0.037 0.032

Expert 2

Expert 1 0.862 0.875 0.801 0.743 0.942 0.845 0.813 0.84
U-Net 0.793 0.872 0.785 0.722 0.921 0.883 0.801 0.825

ReLayNet 0.841 0.887 0.766 0.792 0.913 0.867 0.863 0.847
Swin-Unet 0.858 0.901 0.844 0.814 0.902 0.889 0.834 0.863
TransUNet 0.845 0.915 0.854 0.835 0.922 0.877 0.853 0.872

The proposed method 0.901 0.925 0.876 0.854 0.955 0.932 0.876 0.903
Significance P 0.006 0.035 0.027 0.034 0.047 0.031 0.029 0.029

First, taking expert 1 as the golden annotation, from the average of the overall Dice
coefficient, the overall Dice coefficient of the proposed algorithm is 0.904, which is better
than the four methods of U-Net, ReLayNet, Swin-Unet, and TransUNet 0.079, 0.062, 0.043,
and 0.023, respectively. At the same time, it is also superior to the above four methods
in the Dice coefficient score of each layer. In particular, there is a large improvement in
Dice coefficient scores in the INL and OPL layers. Therefore, from the perspective of Dice
coefficient, the hierarchical results of the proposed algorithm are better than those of other
methods, and the segmentation accuracy of each layer is improved.

Second, taking expert 2 as the golden annotation, from the average of the overall
Dice coefficient, the overall Dice coefficient of the proposed algorithm is 0.903, which is
better than 0.078, 0.056, 0.04, and 0.031 of U-Net, ReLayNet, Swin-Unet, and TransUNet,
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respectively. At the same time, it is also superior to the above four methods in the Dice
coefficient score of each layer. Therefore, from the perspective of Dice coefficient, the
hierarchical results of the proposed algorithm are better than those of the other methods,
and the segmentation accuracy of each layer is improved.

Since the data in Table 1 are all mean values, the standard variances of all values are
calculated and the error bar is drawn, as shown in Figure 6.

Photonics 2023, 1, x 11 of 19 
 

 

by paired t-test to obtain significant p-values. The improvement at seven levels has signif-
icant p < 0.05, indicating that the proposed model has a significant improvement com-
pared with the four existing methods. 

(a) (b) 

Figure 6. Error bar curves of different methods: (a) Expert 1 as the golden annotation; (b) Expert 2 
as the golden annotation. 

Furthermore, the proposed model was compared with the above four models in 
terms of Hausdorff distance (HD), sensitivity (SE), specificity (SP), Jaccard similarity 
(JAC), and precision (PR). As shown in Table 2, the HD distance of the proposed method 
was 2.43 mm, which was 0.23 mm lower than the quantization index of the best 
TransUNet model among the models. The specificity of the proposed method was 0.9979, 
the sensitivity (recall) was 0.911, the Jaccard similarity was 0.828, and the precision was 
0.897, which were 0.0002, 0.018, 0.037, and 0.025 higher than the quantitative index of the 
best TransUNet model in the comparison model, respectively. The proposed model is bet-
ter than the TransUNet, which has the best results among all four previous models. Thus, 
the proposed model in this paper obtains the optimal results for segmentation in all six of 
these quantitative metrics, indicating the high precision, low error, and robustness of this 
paper for intraretinal stratification of OCT images. 

Table 2. Quantitative comparison of evaluation indicators of various methods. 

Method HD (↓) SP (↑) SE (↑) JAC (↑) PR (↑) 
U-Net 7.31 0.9950 0.841 0.711 0.813 

ReLayNet 5.62 0.9958 0.845 0.735 0.843 
Swin-Unet 2.75 0.9966 0.886 0.761 0.838 
TransUNet 2.66 0.9977 0.893 0.791 0.872 

The proposed method 2.43 0.9979 0.911 0.828 0.897 
Note: ↑ indicates that a larger value is better, and ↓ indicates that a smaller value is better. 

In order to further evaluate the predictive ability of the features, labels, and tests of 
different layers, for the seven-layer classification, each layer is regarded as an imbalanced 
binary classification problem, evaluated and visualized by the “Receiver Operating Char-
acteristic” curve. The abscissa of the ROC curve is the false positive rate, and the calcula-
tion formula is (14). The ordinate of the ROC curve is the true positive rate, and the calcu-
lation formula is the same as the recall, that is, Formula (10). The ROC curves for U-Net, 
ReLayNet, Swin-Unet, TransUNet, and the proposed method were compared for the 
seven-layer segmentation of the retina, as illustrated in Figure 7, with the region below 
the ROC curve (AUC) as a metric for evaluating the model. 

As shown in Figure 7, Figure 7a–g show the ROC curves of the results of this paper’s 
method (red line) and four other methods for segmenting the intraretinal layers of fundus 

Figure 6. Error bar curves of different methods: (a) Expert 1 as the golden annotation; (b) Expert 2 as
the golden annotation.

It can be seen from Figure 6 that the standard deviation of the proposed method is
the smallest, that is, the distance between the upper and lower errors is the shortest, which
indicates that the segmentation results of the proposed method are more stable and have
small fluctuations.

TransUNet achieved the second-best performance in seven categories among the
compared methods, so the proposed method and TransUNet were statistically analyzed by
paired t-test to obtain significant p-values. The improvement at seven levels has significant
p < 0.05, indicating that the proposed model has a significant improvement compared with
the four existing methods.

Furthermore, the proposed model was compared with the above four models in terms
of Hausdorff distance (HD), sensitivity (SE), specificity (SP), Jaccard similarity (JAC), and
precision (PR). As shown in Table 2, the HD distance of the proposed method was 2.43 mm,
which was 0.23 mm lower than the quantization index of the best TransUNet model among
the models. The specificity of the proposed method was 0.9979, the sensitivity (recall) was
0.911, the Jaccard similarity was 0.828, and the precision was 0.897, which were 0.0002,
0.018, 0.037, and 0.025 higher than the quantitative index of the best TransUNet model in
the comparison model, respectively. The proposed model is better than the TransUNet,
which has the best results among all four previous models. Thus, the proposed model
in this paper obtains the optimal results for segmentation in all six of these quantitative
metrics, indicating the high precision, low error, and robustness of this paper for intraretinal
stratification of OCT images.

In order to further evaluate the predictive ability of the features, labels, and tests
of different layers, for the seven-layer classification, each layer is regarded as an imbal-
anced binary classification problem, evaluated and visualized by the “Receiver Operating
Characteristic” curve. The abscissa of the ROC curve is the false positive rate, and the
calculation formula is (14). The ordinate of the ROC curve is the true positive rate, and
the calculation formula is the same as the recall, that is, Formula (10). The ROC curves for
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U-Net, ReLayNet, Swin-Unet, TransUNet, and the proposed method were compared for
the seven-layer segmentation of the retina, as illustrated in Figure 7, with the region below
the ROC curve (AUC) as a metric for evaluating the model.

Table 2. Quantitative comparison of evaluation indicators of various methods.

Method HD (↓) SP (↑) SE (↑) JAC (↑) PR (↑)
U-Net 7.31 0.9950 0.841 0.711 0.813

ReLayNet 5.62 0.9958 0.845 0.735 0.843
Swin-Unet 2.75 0.9966 0.886 0.761 0.838
TransUNet 2.66 0.9977 0.893 0.791 0.872

The proposed method 2.43 0.9979 0.911 0.828 0.897
Note: ↑ indicates that a larger value is better, and ↓ indicates that a smaller value is better.

As shown in Figure 7, Figure 7a–g show the ROC curves of the results of this paper’s
method (red line) and four other methods for segmenting the intraretinal layers of fundus
OCT images in each layer, respectively. For different layers, the AUC values of different
methods are shown in Table 3.

Table 3. Comparison of AUC values of different methods in different layers.

Method NFL GCL-IPL INL OPL ONL-ISM ISE OS-RPE

U-Net 0.915 0.919 0.921 0.914 0.937 0.921 0.917
ReLayNet 0.967 0.925 0.939 0.922 0.953 0.942 0.932
Swin-Unet 0.940 0.939 0.930 0.942 0.967 0.951 0.937
TransUNet 0.987 0.980 0.978 0.965 0.985 0.974 0.964

The proposed method 0.993 0.988 0.982 0.972 0.991 0.980 0.969

Table 3 describes the comparison results of the proposed method with U-Net, Re-
LayNet, Swin-Unet, and TransUNet in terms of AUC values. The AUC value of the
proposed method in each layer is in the last row, which is higher than the four comparison
methods on each layer.

Figure 8 shows (a) the original image, (b) and (c) the labeled image of expert 1 and
expert 2 respectively, (d) U-Net prediction results, (e) ReLayNet prediction results, (f) Swin-
Unet prediction results, (g) TransUNet prediction results, and (h) the proposed method
prediction results. As can be seen from the figure, the prediction results of U-Net network
will be very fuzzy at the boundary, and the sense of boundary between layers is not so
clear. The ReLayNet network does not have clear upper and lower boundaries when
processing the OS-RPE layer. There are errors in the prediction results of the Swin-Unet
network in the NFL layer, indicated by a white arrow in the figure. The prediction results of
TransUNet network are relatively fuzzy at the boundary between the head and tail layers.
The segmentation results of the proposed method are closer to the labeled image.
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layer; (f) ISE layer; (g) OS-RPE layer.
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Figure 8. Qualitative comparison of OCT image segmentation: (a) The original OCT image;
(b) annotation with Expert 1; (c) annotation with Expert 2; (d) U-Net prediction; (e) ReLayNet
prediction; (f) Swin-Unet prediction; (g) TransUNet prediction; (h) the proposed method prediction.

4. Discussion

To prove the generalization capability of the model, ablation experiments were per-
formed to verify the significant performance of the RL-Transformer and Dense Block
introduced in this paper. As shown in Table 4, the TransUNet is denoted as baseline 1, the
TransUNet with RL-Transformer is denoted as baseline 2, and the TransUNet with Dense
Block is denoted as baseline 3. The proposed method is TransUNet with RL-Transformer
and Dense Block.

Table 4. Characteristics of the baseline.

Method RL-Transformer Dense Block

Baseline 1 No No
Baseline 2 Yes No
Baseline 3 No Yes

The proposed method Yes Yes

The quantitative results of the ablation experiment are shown in Table 5. Comparing
the results of baseline 1 and baseline 2, it can be seen that the Dice coefficient scores of
each layer of baseline 2 are significantly better than the experimental results of baseline 1,
indicating that RL-Transformer has a better effect on the intraretinal layer segmentation for
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OCT image. Comparing the results of baseline 1 and baseline 3, it can be found that the
Dice coefficient scores of each layer of baseline 3 are better than those of baseline 1, which
indicates that Dense Block can improve the layering segmentation effect of OCT images.
Comparing the results of this paper’s method with those of Baseline 3, it can be seen that
this paper’s method is better for each layer of the Dice coefficient score, indicating that
the overall improvement of RL-Transformer and Dense Block has a better performance in
improving the layering segmentation effect of OCT images. In summary, RL-Transformer
and Dense Block have shown good performance in improving the segmentation of the
intraretinal layer in fundus OCT images.

Table 5. Quantitative comparison between Baseline 1-3 and the proposed method using Dice coeffi-
cient scores.

Method NFL GCL-IPL INL OPL ONL-ISM ISE OS-RPE Mean Significance P

Baseline 1 88.41 92.21 84.06 82.55 94.03 89.04 86.43 88.10 -
Baseline 2 88.99 93.58 86.41 85.39 95.29 89.75 87.38 89.54 0.036
Baseline 3 89.26 92.27 84.51 84.19 94.29 90.75 89.68 89.27 0.027

The proposed method 90.72 93.93 86.8 85.38 95.72 91.47 88.88 90.41 0.029

At the same time, taking baseline 1 as the standard, the paired t-test is conducted on
baseline 2, baseline 3, and the proposed method to determine whether there is a significant
difference between the two methods. The results show that all p-values are smaller than
0.05, showing a significant enhancement of the method in this paper.

As shown in Figure 9, the visualization result plot of the ablation experiment is
illustrated. Figure 9a shows an original retinal OCT image with diabetic macular disease. It
can be seen that the foveal area of the macular is obviously raised, and there are multiple
cystic lesions with different sizes and irregular structures. Subfigure (c) shows the predicted
layer segmentation result of baseline 1, and it can be seen that there are errors at the
segmentation of INL and OPL layers, indicated by a white arrow in the figure. Subfigure
(d) shows the predicted layer segmentation result of baseline 2, which is greatly improved
compared with baseline 1, but there are still shortcomings in the left boundary and lesion
area of the first layer. Subfigure (e) is the predicted layer segmentation result of baseline 3,
and subfigure (f) is the predicted layer segmentation result of the proposed method. It can
be seen that the boundary of the segmentation result is smooth and continuous, and it also
has a good segmentation effect on the macular foveal lesion area.
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The compared results of this paper’s method with the U-Net, ReLayNet, Swin-Unet,
and TransUNet algorithms in terms of Params and Flops values and detection speed are
shown in Table 6.

Table 6. Speed comparison of different algorithms.

Method Params(↓) Flops(↓) FPS(↑)
U-Net 37.65 57.26 35

ReLayNet 40.21 63.55 41
Swin-Unet 33.17 36.57 33
TransUNet 100.27 36.97 32

The proposed method 24.23 31.59 45
Note: ↑ indicates that a larger value is better, and ↓ indicates that a smaller value is better.

In Table 6, it can be seen that the proposed method is the lowest in both Params and
Flops values, and the calculation amount is also the lowest when the number of parameters
is reduced, indicating that replacing the original upsampling with Dense Block can reduce
the calculation amount of the model and improve the calculation speed of the model. At
the same time, the FPS value is also the highest, it shows that the method in this paper is
better than other methods with regard to speed. The visualization results are shown in
Figure 9.

Figure 10 shows (a) the results of comparing the number of parameters between this
paper’s model and the comparison model, and (b) the results of comparing the computa-
tional volume between this paper’s model and the comparison model. The y-axis represents
the DSC value (the higher the better), and the x-axis represents the Params (M) and Flops
(G) (the lower the better), respectively. It is seen that the method proposed in this paper has
the lowest Params and Flops values, while the DSC values are also higher than the other
models, indicating that the method in this paper is faster and more accurate than the other
methods in segmenting the intraretinal OCT images.
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We also investigate the performance of the proposed method on the POne dataset. As
mentioned above, the dataset contains 100 B-scans from 10 healthy adult subjects. The data
set is used to verify and compare on U-Net, ReLayNet, TansUNet, and the method proposed
in this paper, which further shows the generalization ability of the model proposed in
this paper.

The results are shown in Table 7. The comparison results of the proposed method with
the dice overlap scores of the stratified results on dataset two of Expert 2, UNet, ReLayNet,
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and TransUNet are described. First, from the average of the overall dice overlap score,
namely the last row of Table 7, the overall dice overlap score of the proposed algorithm is
0.922, which is better than 0.073, 0.075, 0.051, and 0.014 scores of expert 2 and the other three
methods, respectively. Second, the dice overlap score in each layer is also slightly better
than the other methods. Therefore, from the perspective of dice coefficient, the stratification
results of the proposed algorithm are better than other methods.

Table 7. Quantitative comparison of Dice coefficients of the stratified results of each method on the
POne dataset.

Method NFL GCL-IPL INL OPL ONL-ISM ISE OS-RPE Mean

Expert 2 0.852 0.913 0.798 0.812 0.947 0.791 0.831 0.849
U-Net 0.823 0.905 0.833 0.804 0.926 0.802 0.834 0.847

ReLayNet 0.867 0.912 0.840 0.821 0.935 0.842 0.877 0.871
TransUNet 0.913 0.940 0.853 0.857 0.961 0.913 0.920 0.908

The proposed method 0.921 0.946 0.872 0.883 0.973 0.927 0.930 0.922

As shown in Figure 11, (a) shows 1 original retinal OCT image on POne dataset,
(b) and (c) represents the hierarchical results manually annotated by expert 1 and expert
2, respectively, and the annotations of each layer are also relatively complete and smooth;
(d) is the predicted hierarchical result of U-Net method; (e) is the predicted hierarchical
result of ReLayNet method; (f) is the predicted stratification result of TransUNet. It can
be seen from (d), (e), and (f) that all three segmentation methods, U-Net, ReLayNet, and
TransUNet, have broken in the first layer at the fovea of the retina, which is inconsistent
with the annotation of expert 1. However, in (g) the proposed method obtains accurate and
continuous and complete segmentation results in each layer, without fault phenomenon,
and obtains better results.
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5. Conclusions

In this paper, a novel lightweight TransUNet deep semantic segmentation network
model was constructed for the intraretinal layer segmentation for fundus OCT image.
The OCT dataset was augmented to improve the generalization of the model, and the
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Transformer was improved to an RL-Transformer to enhance the perceptual field and
improve the coding ability of the model. Furthermore, changing the decoding layer to
Dense Block could not only prevent the gradient explosion problem, but also better retain
the context information, enhance the feature reuse, reduce the learning parameters, and
reduce the computational burden. The SD-OCT and POne datasets are used to validate the
model, and SD-OCT is a public dataset of Duke University. In recent years, Transformer
is used in a variety of different medical image segmentation fields, and the application
of Transformer in the field of retinal layer segmentation has also achieved good results.
Subsequent work and research will focus on the research and implementation of fluid
segmentation in choroidal and retinal diseases [29] and the lightweight of models [30].
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