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Abstract: In this work, the quantum version of 3D FFT is proposed for constructing velocity filters.
Velocity filters are desirable when we need to separate moving objects with a specific velocity range
in amplitude and direction in a rapidly changing background. These filters are useful in many
application fields, such as for monitoring regions for security reasons or inspecting processes in
experimental physics. A faster and more attractive way to implement this filtering procedure is
through 3D FFT instead of using 3D FIR filters. Additionally, 3D FFT provides the capability to
create banks of ready-made filters with various characteristics. Thus, 3D filtering is carried out in
the frequency domain by rejecting appropriate frequency bands according to the spectral content of
the trajectory of the object to be isolated. The 3D FFT procedure and the corresponding inverse one
are required in the beginning and end of the filtering process. Although 3D FFT is computationally
effective, it becomes time-consuming when we need to process large data cubes. The implementation
of velocity filters by means of the quantum version of 3D FFT is investigated in this work. All
necessary quantum circuits and quantum procedures needed are presented in detail. This proposed
quantum structure results in velocity filtering with a short execution time. For this purpose, a review
of the necessary quantum computational units is presented for the implementation of quantum 3D
FFT and representative examples of applications of velocity filtering are provided.

Keywords: quantum Fourier transform; quantum circuits; velocity filters; filter banks

1. Introduction

Fast Fourier transform (FFT) provides a means for frequency analysis and filtering,
avoiding the operation of convolution. The quantum version of Fourier transform (QFT)
provides an opportunity to quickly obtain the results derived by FFT. The use of QFT has
been investigated for various applications. Accordingly, in [1], it is proved that a quantum
version of the filtering operation can be achieved, even though the quantum convolution of
two sequences is physically impossible. There are important differences between classical
and quantum implementations for image filtering. These differences are analyzed in [1], and
it is shown that the major advantage of the quantum approach lies in the exploitation of the
efficient implementation of QFT. A common approach to image filtering is to convolve the
image with a filter function, which in the frequency domain translates into a multiplication
operation. However, there are classical processing operations that cannot be directly
applied to quantum images, such as convolution and correlation [2]. In [3], a survey is
provided with some topics on the properties of quantum gates and their assembly into
interesting quantum circuits. The role of reversibility in the theory of computation and
an early discussion of gate and circuit constructions in reversible computation are also
provided.

The application of QFT within the field of quantum computation has been extensively
presented in [4]. Shor’s algorithm, phase estimation, and computing discrete logarithms
are some classic examples of its use. These special properties of quantum algorithms have
resulted in novel solutions to problems difficult to be solved on a classical computer. QFT
has been used in several applications [5–7]. Since QFT is the core to a lot of quantum
algorithms, current research mainly focuses on its effective realization [7–13]. These studies
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discuss quantum information issues [7], approximate QFT and decoherence [8], Shor’s
algorithm [9,10], QFT for phase estimation [11], and quantum circuitry [12,13]. Quantum
edge detection is carried out in [14] based on double-chain quantum genetic algorithms.
Hybrid quantum-classical networks for image generation are proposed in [15].

A review of quantum image processing is presented in [16], revealing the possibilities
for intensive image-processing procedures due to the powerful parallel computing capa-
bilities of quantum computers. In [17], a quantum implementation of the FFT algorithm
composed of a combination of quantum gates is proposed. QFT is implemented in [18] on
a 3-qubit nuclear magnetic resonance (NMR) quantum computer to extract the periodicity
of an input state. A fast quantum image component-labeling algorithm is proposed in [19],
which is the quantum counterpart of the classical local operator technique. A quantum
color image encryption algorithm is designed in [20] based on geometric transformation
and intensity channel diffusion. A framework of quantum image filtering in the spatial
domain is proposed in [21]. A quantum image median filtering approach is proposed and
its corresponding quantum circuit is designed in [22]. The main idea of the approach is that
first, the classical image is converted into a quantum version based on the novel enhanced
quantum representation (NEQR) of digital images, and then, a unique quantum module is
designed to realize the median calculation of neighborhood pixels for each pixel point in
the image. In [23], the authors consider QFT-based color-image-filtering operations and
their applications in image smoothing, sharpening, and selective filtering using quantum
frequency domain filters. The proposed quantum filters use the principle of quantum
oracles to implement the filter function.

The 3D FFT technique is useful in numerous physical problems. Four of these problems
are listed next in order to provide the reader with a sense of the potential applicability
of QFT. First-principles methods based on density functional theory (DFT) where the
wave functions are expanded in plane waves (Fourier components) are the most widely
used approaches for electronic structure calculations in materials science [24]. The scaling
of this method depends critically on having an efficient parallel 3D FFT that minimizes
communications and calculations. First-principles methods based on DFT in the Kohn–
Sham (KS) [25] formalism are the most widely used approaches for electronic structure
calculations in materials science. The most common implementation of this approach
involves the expansion of the wave functions in plane waves (Fourier components) and the
use of pseudopotentials to replace the nucleus and core electrons. In this implementation,
parallel 3D FFT is required to transform the electronic wave functions from Fourier space to
real space in order to construct the charge density. The 3D Fourier forward modeling of 3D
density sources is capable of providing 3D gravity anomalies coinciding with the meshed
density distribution within the whole source region [26]. Forward modeling of potential
fields’ anomalies is essential for geophysical interpretation and inversion. An implicit
split-operator FFT algorithm for the numerical solution of the time-dependent Schrodinger
equation is implemented for the electronic structure of H+

2 and H2 in [27]. In this article,
an algorithm appropriate for 3D applications is implemented that is implicit and thus
overcomes the difficulty of the non-conservation of energy.

The tracking and isolation of moving objects with a specific range of speed are
a challenging research topic in the field of automotive application [28–31]. To cope with
this issue, velocity filters have been used in the past for localizing and monitoring moving
objects in image sequences or otherwise 3D imagery [32–34]. Filter banks are used for fast
implementation of the localization and monitoring of moving vehicles. These banks are
built using 3D FFT to perform directional filtering [28–35].

In this work, the way that basic quantum circuits are combined to build up the QFT
structure is extensively presented. This structure is applied in the well-known separable
procedure in order to implement 3D QFT. This way, the 3D spectral content of the data cube
is evaluated. A quantum oracle is used for isolating the necessary frequency components in
the 3D spectral cube that correspond to the required trajectory. In fact, a variety of quantum
oracles are represented by the quantum filter used in order to realize the necessary filter
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bank. Inverse QFT (IQFT) is applied at the output of the quantum oracle to obtain the final
result with the isolated moving object (trajectory). The implementation of velocity filters
by means of the quantum version of 3D FFT results in fast filtering procedures, which are
necessary for discriminating objects’ velocities. QFT can calculate the Fourier transform
of a vector of size N with time complexity O(log2

2N) compared to the classical complexity
of O(Nlog2N) [36]. However, if one wants to measure the full output state, then the QFT
complexity becomes O(Nlog2

2N), thus losing its apparent advantage, indicating that the
advantage is fully exploited for algorithms when only a limited number of samples is
required from the output vector, as is the case in many quantum algorithms. Accordingly,
for a signal of 1024 samples, QFT requires operations of the order of 100, while classical
FFT requires operations of the order of 10,000.

The paper is organized in the following way. In Section 2, the quantum theory for
supporting QFT is presented. The velocity filtering approach is provided in Section 3. In
Section 4, the use of QFT for implementing velocity filters is analyzed. Experimental results
are presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Quantum Theory
2.1. Quantum Fourier Transform Theory

Fourier transform occurs in many different versions in all areas from signal processing
to complexity theory to data compression [37–39]. QFT is the classical discrete Fourier
transform applied to a vector of amplitudes of a quantum state, where we usually consider
vectors of length N.

Discrete Fourier transform acts on a vector (x0, x1, . . . , xN−1) ∈ CN and maps it to
a vector (y0, y1, . . . , yN−1) ∈ CN according to the formula

yk =
1√
N

∑N−1
j=0 xjω

jk
N , k = 0, 1, 2, 3, · · · , N − 1 (1)

where ω
jk
N = e

2πi
N jk and ω

j
N is the j-th root of unity.

Similarly, QFT acts on a quantum state |x〉 = ∑N−1
j=0 xj|j〉 and maps it to a quantum

state |y〉 = ∑N−1
k=0 yk|k〉 according to the formula

yk =
1√
N

∑N−1
j=0 xjω

jk
N , k = 0, 1, 2, 3, · · · , N − 1 (2)

Since ω
jk
N is a rotation, IQFT acts similarly:

xj =
1√
N

∑N−1
k=0 ykω

−jk
N , j = 0, 1, 2, 3, · · · , N − 1 (3)

In case |j〉 is a basis state, QFT can also be expressed as the map

|j〉 → 1√
N

∑N−1
k=0 ω

jk
N |k〉 (4)

Equivalently, QFT can be viewed as a unitary matrix (or quantum gate) acting on
quantum-state vectors, where the unitary matrix FN is given by

FN =
1√
N



1
1
1
1
...
1

1
ω
ω2

ω3

...
ωN−1

1
ω2

ω4

ω6

...
ω2(N−1)

1
ω3

ω6

ω9

...
ω3(N−1)

· · ·

1
ωN−1

ω2(N−1)

ω3(N−1)

...
ω(N−1)(N−1)


(5)
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where ω = ωN .
Most of the properties of QFT follow from the fact that it is a unitary transformation.

This can be checked by performing matrix multiplication and ensuring that the relation
FF+ = F+F = I holds, where F+ is the Hermitian adjoint of F. Alternately, one can check
that orthogonal vectors of norm 1 get mapped to orthogonal vectors of norm 1.

From the unitary property, it follows that the inverse of quantum Fourier transform
is the Hermitian adjoint of the Fourier matrix, so F−1 = F+. Since there is an efficient
quantum circuit implementing QFT, the circuit can be run in reverse to perform IQFT. Thus,
both transforms can be efficiently performed on a quantum computer.

QFT transforms between two bases, the Fourier basis and the computational basis (Z).
The H gate is single-qubit QFT, and it transforms between the Z-basis states |0〉 and |1〉 to
the X-basis states |+〉 and |−〉. In the same way, all multi-qubit states in the computational
basis have corresponding states in the Fourier basis. QFT is simply the transform that
transforms between these bases.

2.2. The Circuit Implementation of QFT

The circuit implementation of QFT makes use of two gates. One of them is the single-

qubit Hadamard gate H = 1√
2

(
1 1
1 −1

)
, and the other is the phase gate

Rm =

(
1 0
0 e2πi/2m

)
.

Consider how QFT operates on a single-qubit state (1-qubit QFT) |ψ〉 = a|0〉+ b|1〉,
where x0 = a, x1 = b and N = 2.

y0 =
1√
2

(
a·e

2πi
2 0×0 + b·e

2πi
2 1×0

)
=

1√
2
(a + b) (6)

and
y1 =

1√
2

(
a·e

2πi
2 0×1 + b·e

2πi
2 1×1

)
=

1√
2
(a− b) (7)

so the final result is the state

UQFT |ψ〉 =
1√
2
(a + b)|0〉+ 1√

2
(a− b)|1〉 (8)

This operation is exactly the result of applying the Hadamard gate to the qubit. If we
apply the Hadamard gate to the state |ψ〉 =0 + b|1〉, we obtain a new state:

1√
2
(a + b)|0〉+ 1√

2
(a− b)|1〉 ≡ a|0〉+ b|1〉 (9)

The Hadamard gate H for n qubits is given as

H2n = H2 ⊗ H2n−1 , 2 ≤ n ∈ N (10)

where ⊗ is the Kronecker product, i.e., for n = 2, we have the Hadamard gate H4

H22 = H4 = H2 ⊗ H22−1 = H2 ⊗ H2 =
1√
2

(
1 1
1 −1

)
⊗ 1√

2

(
1 1
1 −1

)
=

1
2


1 +1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (11)

Given these two gates, a circuit implementation of n-qubit QFT is shown in Figure 1 [34,35,37].
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మഏೣషభ
మ

ା
మഏೣ

మమ ฬ 1〉൰ ⊗ ⋯ ⊗ ሺ|0〉 

𝑒
మഏೣభ

మ
ା

మഏೣమ
మమ ା

మഏೣయ
మయ ା⋯ା

మഏೣషభ
మషభ ା

మഏೣ
మ |1〉ሻ   

(14)
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Figure 1. The circuit implementation of n-qubit QFT using the Hadamard gate H and the phase
gate Rm.

The basis states that enumerate all possible states of the n qubits are

|x〉 =|x1〉 ⊗ |x2〉 ⊗ |x3〉 ⊗ · · · ⊗ |xn−1〉 ⊗ |xn〉 (12)

where |xk〉 indicates that qubit k is the state xk, with xk being either 1 or 0. The basis state
index x is the binary number encoded by xk, with x1 being the most significant bit. So, we
can write the QFT as

QFT(|x〉) = 1√
N
⊗n

k=1 (|0〉+ e2πix/2k |1〉 (13)

After rearranging the sum and the products and expanding ∑N−1
y=0 = ∑1

y1=0 ∑1
y2=0 · · ·∑1

yn=0,
the action of the QFT can be expressed by

QFT (|x1x2x3 · · · xn−1xn〉) = 1√
N

(
|0〉+ e

2πixn
2 |1〉

)
⊗
(
|0〉+ e

2πixn−1
2 + 2πixn

22 |1〉
)
⊗ · · · ⊗ (|0〉+

e
2πix1

2 +
2πix2

22 +
2πix3

23 +···+ 2πixn−1
2n−1 + 2πixn

2n |1〉)
(14)

i.e., for 3-qubit QFT

|y〉 = 1√
23

[(|0〉+ e
2πix3

2 |1〉)⊗ (|0〉+ e
2πix2

2 +
2πix3

22 |1〉)⊗ (|0〉+ e
2πix1

2 +
2πix2

22 +
2πix3

23 |1〉)] (15)

In a similar way, one can extend to N-qubit QFT if a larger amount of information is to
be processed.

3. Theory of Velocity Filtering

Studies [28,29] have carried out velocity filtering using filter banks created using
conventional FFT, and simultaneously, they are selected by means of the specific spectral
content required. In this work, all necessary spectral quantities are evaluated using QFT
for radically accelerating the mathematical calculations. A bank of velocity filters [28] is
necessary for separating multiple objects with different velocities in a sequence of frames.
In [28], the 3D FFT transformation of a large number of objects with a variety of different
velocities is applied. The proposed approach is based on experimentation and avoids
using theoretical concepts. Accordingly, in this study, an object moving each time with
a different velocity and in various directions was used in order to construct a filter bank.
Multiple moving objects can be isolated from other objects with different velocities or
from objects with the same amplitude of velocity but having different directions. The
simulated datasets that were used in order to create the spectral signatures of different
moving objects consisted of 256 frames of 256 × 256 pixels each. Accordingly, a data cube
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(shown in Figure 2) was formed of 2563 pixels. The number 256 = 28 was selected to fit the
FFT requirements for fast evaluation of the 3D spectrum.
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Figure 2. The 256 frames of 256 × 256 pixels each (data cube).

The time parameter is considered the distance from frame to frame. Based on this, the
amplitude of the radial velocity of each object is referred to as the number of pixels it comes
across from one frame to the next. A simple example of one object of size 10 × 10 pixels
that is moving with a radial velocity of 1/3 pixels per frame is shown in Figure 3. The
object is moving in the direction of 340 degrees with respect to the horizontal left-to-right
direction. Four different frames are given, i.e., the 1st, 64th, 128th, and 256th.

Photonics 2023, 10, 483  6  of  20 
 

 

 

Figure 2. The 256 frames of 256 × 256 pixels each (data cube). 

The time parameter is considered the distance from frame to frame. Based on this, 

the amplitude of the radial velocity of each object is referred to as the number of pixels it 

comes across from one frame to the next. A simple example of one object of size 10 × 10 

pixels that is moving with a radial velocity of 1/3 pixels per frame is shown in Figure 3. 

The object is moving in the direction of 340 degrees with respect to the horizontal left-to-

right direction. Four different frames are given, i.e., the 1st, 64th, 128th, and 256th. 

       
(a)  (b)  (c)  (d) 

Figure 3. An object of size 10 × 10 pixels that is moving with a radial velocity of 1/3 pixels per frame. 

The object is moving in the direction of 340 degrees with respect to the horizontal left-to-right direc-

tion. (a) Frame 1, (b) frame 64, (c) frame 128, and (d) frame 256. 

The datasets used for experimentation covered a wide range of velocities with regard 

to  the amplitude and direction. Specifically, six different  radial velocities  (amplitudes) 

were selected,  i.e., 1/2 (fast), 1/3, 1/4, 1/8, 1/16, and 1/32 (slow) pixels per frame. For all 

these velocities, 24 different directions were chosen, with the first one at 0 degrees (hori-

zontal direction from  left to right) and counterclockwise every 15 degrees, as shown  in 

Figure 4. Accordingly, a total of 6 × 24 = 144 different data cubes (velocities) were imple-

mented. 

 

Figure 4. We chose 24 different directions  in  the experimental procedure, with  the first one at 0 

degrees (horizontal direction from left to right) and counterclockwise every 15 degrees. 

   

Frame 1 

Frame 2 

Frame 3 

Frame 256 

⁝ 

Figure 3. An object of size 10 × 10 pixels that is moving with a radial velocity of 1/3 pixels per
frame. The object is moving in the direction of 340 degrees with respect to the horizontal left-to-right
direction. (a) Frame 1, (b) frame 64, (c) frame 128, and (d) frame 256.

The datasets used for experimentation covered a wide range of velocities with regard
to the amplitude and direction. Specifically, six different radial velocities (amplitudes) were
selected, i.e., 1/2 (fast), 1/3, 1/4, 1/8, 1/16, and 1/32 (slow) pixels per frame. For all these
velocities, 24 different directions were chosen, with the first one at 0 degrees (horizontal
direction from left to right) and counterclockwise every 15 degrees, as shown in Figure 4.
Accordingly, a total of 6 × 24 = 144 different data cubes (velocities) were implemented.
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Figure 4. We chose 24 different directions in the experimental procedure, with the first one at
0 degrees (horizontal direction from left to right) and counterclockwise every 15 degrees.



Photonics 2023, 10, 483 7 of 19

Since the spectrum is a complex quantity, its amplitude and phase were evaluated
separately. Parallel trajectories in the data cube that correspond to objects having the same
velocity possess the same spectral amplitude information and differ in the phase informa-
tion. Accordingly, regardless of the initial position of an object, its velocity corresponds
to a specific amplitude of the spectral content. Thus, only the amplitude information is of
interest and was recorded.

Studying the amplitude of the spectral content of a data cube, one can easily observe
that from the total of 2563–224–16 million harmonics, only a small percentage has significant
value. Thus, for each direction of the moving object with a specific velocity, a file that
contained the positions of the most important harmonics (about 4000) was created, as those
spectral components that are larger than the 12% (pixel value 30 with maximum 255) of the
biggest spectral component are considered important harmonics.

However, later, when it is necessary to process complicated signals, the 20 largest
harmonics among the 4000 will be recalled and their use in the final filter will be examined
again. This is needed when in the signal to be processed, the vehicle to be recorded is not
among the strongest objects.

To isolate an object moving with a specific velocity (velocity filtering) among other
objects in a data cube, we need to perform the following steps:

1. Find the spectral content of the specific cube 3D FFT.
2. Eliminate from the spectral amplitude all harmonics except those corresponding to

the specific velocity.
3. Evaluate the inverse 3D FFT to recover the data cube containing only the object

with the specific velocity.

4. Implementation of Velocity Filtering Using QFT
4.1. Three-Dimensional Discreet Fourier Transform

The 3D discreet Fourier transform technique is a separable procedure. This comes
from the fact that its expression

p(k1, k2, k3) = ∑N−1
n1=0 ∑N−1

n2=0 ∑N−1
n3=0 q(n1, n2, n3) Wk1n1

N Wk2n2
N Wk3n3

N 0 ≤ k1, k2, k3 ≤ N − 1 (16)

can be written as follows:

p(k1, k2, k3) = ∑N−1
n1=0 Wk1n1

N ∑N−1
n2=0 Wk2n2

N ∑N−1
n3=0 q(n1, n2, n3) Wk3n3

N 0 ≤ k1, k2, k3 ≤ N − 1 (17)

The first summation on the right of this equation means that we must perform N2 N-point
discreet Fourier transforms along the n3 direction. Since each N-point FFT (for N being
a power of 2) requires N log2 N operations, for the implementation of the first summation
of Equation (17), N3 log2 N operations are needed. The derived intermediate result is an
N3 complex cube to be again processed along the n2 direction. Thus, another set of N3 log2
N complex operations is required. The second derived intermediate result is again an N3

complex cube to be finally processed along the n1 direction. Thus, a total of 3N3 log2 N of
complex operations are required. Following another way, we must perform N-point FFT
along all horizontal lines, all horizontal columns, and all vertical columns regardless of the
order in which they will be performed.

An example of 3D FFT is shown in Figure 5 for N = 4. From this figure and Equation
(17), it is evident that the order of implementation of the 1D transforms, i.e., the order of
the summations in Equation (17), does not matter. In image cubes (frame sequences), one
of the dimensions is usually time.
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Figure 5. A 3D image cube of 4 × 4 × 4 pixels. Since 3D FFT is a separable procedure, it can be
performed in 3 phases (red, green, blue). In each phase, 42 = 16 1D FFTs are performed in directions
(a) n3 (green), (b) n2 (blue), and (c) n1 (red). In each phase, the result from the previous phase is used
as input. The obtained result of the 3D FFT procedure is not related to the order in which the 3 above
phases are applied.

4.2. Quantum 3D Fast Fourier Transform

A quantum cube can be represented using a quantum register Q constructed so that it
encodes all required information, i.e., the position of a pixel in the frame (x, y), the serial
number of the frame (time t), and the intensity or color (c) of the pixel [24]. We assumed
that we have 2k frames with 2n × 2n pixels each and that the color of each pixel requires m
bits for its color representation. In this case, a register |P > having 2n qubits is adequate
for holding all position information, another register |T> having k qubits will represent
the time information, and a register |C > with m qubits will represent 2m different colors
or grayscale levels. The register |P > is separated into two sub-registers of n qubits each
containing the row and column information in the form |y > |x >. The quantum register Q
containing all the information about the quantum frame cube can be expressed as

Q = |C >m ⊗|P >2n ⊗|T >k| = ∑2k−1
t=0 ∑22n−1

i=0 ∑2m−1
j=0 aijt|j > |i > |t > (18)

In Equation (18), the coefficients aijt for a specific t (frame of the cube) sum up to 1:

∑2m−1
j=0

∣∣aijt
∣∣2 = 1 for all i with 0 ≤ i < 22n and all t with 0 ≤ t < 2k

and are used to express the color of a pixel with position i by means of a superposition
of all possible colors. For a given pixel i, the coefficients aij take the value of 1 if the color
of the pixel is j and 0 otherwise. This is illustrated in Figure 6 with a simple example of
a 2 × 2 × 2 frame cube with eight colors (0–7). The corresponding coefficients aijt for the
specific examples in Figure 6 are as follows:

pct pct pct pct pct pct pct pct
a000 = 1, a010 = 0, a020 = 0, a030 = 0, a040 = 0, a050 = 0, a060 = 0, a070 = 0
a100 = 0, a110 = 0, a120 = 1, a130 = 0, a140 = 0, a150 = 0, a160 = 0, a170 = 0
a200 = 0, a210 = 0, a220 = 0, a230 = 0, a240 = 1, a250 = 0, a260 = 0, a270 = 0
a300 = 0, a310 = 0, a320 = 0, a330 = 0, a340 = 0, a350 = 0, a360 = 1, a370 = 0
a001 = 0, a011 = 0, a021 = 0, a031 = 0, a041 = 0, a051 = 0, a061 = 0, a071 = 1
a101 = 0, a111 = 0, a121 = 0, a131 = 0, a141 = 1, a151 = 0, a161 = 0, a171 = 0
a201 = 0, a211 = 0, a221 = 0, a231 = 0, a241 = 0, a251 = 1, a261 = 0, a271 = 0
a301 = 0, a311 = 0, a321 = 0, a331 = 0, a341 = 0, a351 = 0, a361 = 1, a371 = 0

P = Position c = Color t = Time

In case we assume the time register |T> as being the third dimension in our pixel
cube representation without distinction between time and space (such data are available
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in various cases, such as computed tomography), and furthermore, k equals n, then
Equation (18) becomes

Q = |C >m ⊗|P >3n= ∑23n−1
i=0 ∑2m−1

j=0 aij|j > |i > (19)Photonics 2023, 10, 483 9 of 21 
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Figure 6. Example of a 2 × 2 × 2 quantum cube sequence of frames with eight different colors.
Three qubits are used to represent color information and the 3-pixel position information (in space
and time).

In Equation (19), the coefficients aij sum up to 1:

∑2m−1
j=0

∣∣aij
∣∣2 = 1 ∀i with 0 ≤ i < 23n (20)

and are used to express the color of a pixel with position i by means of a superposition of
all possible colors. For a given pixel i, the coefficients aij take the value of 1 if the color of
the pixel is j and 0 otherwise:

a00 = 1, a01 = 0, a02 = 0, a03 = 0, a04 = 0, a05 = 0, a06 = 0, a07 = 0
a10 = 0, a11 = 0, a12 = 1, a13 = 0, a14 = 0, a15 = 0, a16 = 0, a17 = 0
a20 = 0, a21 = 0, a22 = 1, a23 = 0, a24 = 1, a25 = 0, a26 = 0, a27 = 0
a30 = 0, a31 = 0, a32 = 0, a33 = 0, a34 = 0, a35 = 0, a36 = 1, a37 = 0
a40 = 0, a41 = 0, a42 = 0, a43 = 0, a44 = 0, a45 = 0, a46 = 0, a47 = 1
a50 = 0, a51 = 0, a52 = 0, a53 = 0, a54 = 1, a55 = 0, a56 = 0, a57 = 0
a60 = 0, a61 = 0, a62 = 0, a63 = 0, a64 = 0, a65 = 1, a66 = 0, a67 = 0
a70 = 0, a71 = 0, a72 = 0, a73 = 0, a74 = 0, a75 = 0, a76 = 1, a77 = 0

This is illustrated in Figure 7 with a simple example of a 2 × 2 × 2 frame cube with eight
colors (0–7).

The quantum register Q, expressed using Equation (18), was experimentally imple-
mented by the circuit in Figure 8. It is in fact the quantum circuit that implements 3D
velocity filtering.

As shown in Figure 8, at the output of the proposed quantum velocity filtering circuit,
we find the input image cube. Additionally, exploiting the quantum interference phe-
nomenon, we can use an additional qubit initially in state |0> to reinterpret the quantum
image cube as a superposition of two image cubes. For example, for a high-pass or a low-
pass 3D filter, the output image is the sum of the image cube containing high frequencies
and the image cube containing the corresponding low frequencies. The additional qubit
can be used to make the distinction between the two image cubes.
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Figure 7. This is an example of a 2 × 2 × 2 quantum cube with eight different colors. Three qubits
are used to represent color information and 3-pixel position information. Such data are available in
various cases, such as in computed tomography.
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Next, we analyzed this process and described the state of the quantum velocity filtering
circuit at each step of the computation, as marked in Figure 8. With respect to Equation (18),
the register |P> having 2n qubits and holding all position information is represented in
the following Equation (21), with two registers of n qubits each corresponding to x and y
positions, respectively. The input state |I0 > is represented by the input image cube and
an additional qubit in state |0 > :

|I0 > = |Q > ⊗ |0 > =
1
2n ∑2n−1

t=0 ∑2n−1
y=0 ∑2n−1

x=0 ∑2m−1
j=0 atyxj|j > |t > |y > |x > |0 >

(21)
where |Q > holds the quantum image cube using the representation described previously.
Applying 3D QFT on the image cube produces state |I1 > :

|I1 > = (Im ⊗QFT23n)|Q > ⊗ I|0 >

=
1
2n

2n−1

∑
t=0

2n−1

∑
y=0

2n−1

∑
x=0

2m−1

∑
j=0

atyxj|j >QFT23n(|t > |y > |x > )|0 >

=
1
2n

2n−1

∑
t=0

2n−1

∑
y=0

2n−1

∑
x=0

2m−1

∑
j=0

atyxj|j > (QFT2n |t > )(QFT2n |y > )(QFT2n |x > )|0 >
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= 1
2n

2n−1
∑

t=0

2n−1
∑

y=0

2n−1
∑

x=0

2m−1
∑

j=0
atyxj|j >

2n−1
∑

l=0
e

2πitl
2n |l >

2n−1
∑

k=0
e

2πiyk
2n |k

>
2n−1

∑
p=0

e
2πixp

2n |p > |0 >

=
1
2n

2n−1

∑
t=0

2n−1

∑
y=0

2n−1

∑
x=0

2m−1

∑
j=0

2n−1

∑
l,k,p=0

atyxje
2πitl

2n e
2πiyk

2n e
2πixp

2n |j > |l > |k > |p > |0 > (22)

where I and Im denote the identity operator on 1 and m qubits, respectively.
The next step performed by the quantum circuit is the equivalent of the classical

filtering step. The state of the register holding the image cube does not in fact change to
a state representing the filtered image cube, but rather, it undergoes an interference process
with the additional qubit initially in state |0 > . This is achieved using a quantum oracle
built using the filter function H(l, k, p).

The quantum state |I1 > is a superposition of two states, a state representing the 3D
frequencies that remain in the image cube and a state representing the 3D frequencies
removed. Applying the oracle operator UH to this superposition, one can use the additional
qubit to make the distinction between the two states. The oracle UH acts only on the
position qubits and leaves the color qubits unaffected. Different choices of the filter H(l, k,
p) result in different selections of 3D velocity filters. So, the resulting |I2 > can be the input
to IQFT.

The last computational step in the quantum circuit in Figure 8 represents the IQFT
that reverts from the frequency to the spatial representation of the image cube. The final
state of the circuit contains the superposition of two quantum image cubes: the image
cube containing the frequencies passed by the 3D filter and the image cube containing the
frequencies suppressed by the 3D filter. The distinction between these two image cubes can
be made using the additional qubit |I3 > . In fact, it can be interpreted as [1]

|I3 >=|Qunused velocities > |0 > + |Qused velocities > |1 > (23)

For extracting necessary information from the quantum-transformed image, a further
processing step must be performed [1].

4.3. QFT Performance Versus FFT Performance

The computational performance of QFT is discussed in this subsection with regard
to its superiority when compared to the computational performance of FFT. The required
number of quantum gates is calculated, and a simple demonstration of their simplicity is
presented with regard to the first simple necessary quantum gates. Note that the matrix
in Equation (5) also implements classical FFT and performs the multiplication of the QFT
matrix by the N × 1 column vector that contains the classical dataset. This multiplication
would require N2 operations. Therefore, we would expect classical discreet Fourier trans-
form to require O(N2) = O(22n) operations, which is exponential in n. The classical FFT
algorithm can compute discreet Fourier transform in O(N log N) or O(n2n) operations,
which is faster but still exponential in n.

However, QFT uses operation gates for its implementation. According to Figure 1, the
number of operation gates used can be evaluated as follows:

1st row: 1 H gate + (n − 1)R gates = n gates
2nd row: 1 H gate + (n − 2)R gates = n − 1 gates
.
.
.
(n − 1)th row: 1 H gate + 1 R gate = 2 gates
n-th row: 1 H gate = 1 gate
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Adding the gate count from each row gives n + (n − 1) + (n − 2) +··· + 1, or O(n2),
gates, which is polynomial in n. Therefore, QFT is exponentially faster than discreet Fourier
transform or FFT.

Furthermore, classical FFT (corresponding to 2 qubits, N = 4) in matrix form is

→
y = U

→
x (24)

where U is

U =
1
2


1 1 1 1
1 i i2 i3

1 i2 1 i2

1 i3 i2 i

 (25)

and we replace exp(2πi/4) = i. Equation (25) can be written as the product of two sparse
matrices U = U1U2, where

U1 =
1√
2


1 0 1 0
0 1 0 1
1 0 i2 0
0 1 0 i2

 (26)

and

U2 =
1√
2


1 1 0 0
0 0 1 i
1 i2 0 0
0 0 1 i3

 (27)

QFT is generated by matrix U and can be written as the product of four sparse matrices
(the swap gate, the Hadamard gates (2 gates), and the controlled phase gate) as follows:

Swap gate

S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (28)

Hadamard gate for the lower qubit

H0 =
1√
2


1 1 0 0
1 −1 0 1
0 0 1 1
0 0 1 −1

 (29)

Hadamard gate for the upper qubit

H1 =
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 (30)

Controlled phase gate

R1 =
1√
2


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 i

 (31)

As shown, the sparse matrices of QFT are simpler than the classical matrices of FFT
without dynamics. So, the calculations in QFT are simpler and faster. Similarly, in classical
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FFT (3 qubits, n = 8), we have three sparse matrices, and in QFT, we have seven simpler
sparse matrices, so the calculations are also faster.

Accordingly, for the N-qubit registers in QFT, a significant reduction is achieved in
the required operations since all matrices involved in its evaluation are sparse. In the
implementation of the example of Section 5.2, the execution time of conventional FFT was
200.63 s, while QFT implementation was carried out in 16.2 s.

5. Experimental Results
5.1. Moving Objects

In this subsection, the movement of some simple objects in a 3D scene is presented
and their 3D spectrum is evaluated using the 3D QFT described by Equation (22). The data
cube is considered to consist of 256 × 256 pixels and a total of 256 frames.

In Figure 9a, a small squared object in 3D space is shown. This thin (in the time
axis—5 frames are occupied) object gives a horizontal spectrum with harmonics in a broad
region as it is shown from various aspects of the spectrum (Figure 9b–d). Such an object,
which would appear suddenly in the image cube for a small number of frames and then
disappear, does not in fact exist. This means that the blue still object in Figure 9a is just
a simulation to demonstrate its simple spectral content, and it exists only for five frames.
Each direction in the spectral cube corresponds (inverse dimensions) to one of the three
dimensions of the data cube, with a large extent of the one in Figure 9c, which is toward
the vertical axis of the data cube (time). The three objects in Figure 9b–d in fact present the
spectral content of the data cube in Figure 9a from different aspects.
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(a) (b) 
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Figure 9. (a) A squared still object in the time domain (vertical axis). The object is present in the 

scene for just 5 frames. This kind of object seldom exists. (b–d) The object’s 3D spectrum from vari-
Figure 9. (a) A squared still object in the time domain (vertical axis). The object is present in the
scene for just 5 frames. This kind of object seldom exists. (b–d) The object’s 3D spectrum from
various aspects. (c) The spectral direction (corresponding to ωt), which presents a large extent and
corresponds to a small extent of the original data cube toward the vertical axis (t). (b,d) The extent of
the spectrum toward the directions of the spatial frequencies from a different aspect (height) in the
third axis ωt.

The object shown in Figure 10 cannot also exist in practice, since while unmovable, it
appears in some of the frames and then disappears. However, its spectrum given in red
becomes thinner compared to the previous one in Figure 9 and contains a smaller amount
of spectral energy out of the horizontal spectral plane 129. In practice, a still object in space
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should exist from 0 to 255 in the vertical axis. In this case, the spectrum is flat-lying only
in the horizontal spectral plane 129 and corresponds only to frequencies irrelevant to the
movement. So, the absence of movement corresponds to the spectral energy distributed in
the horizontal plane 129 of 3D FFT.

Photonics 2023, 10, 483 15 of 21 
 

 

ous aspects. (c) The spectral direction (corresponding to ωt), which presents a large extent and cor-

responds to a small extent of the original data cube toward the vertical axis (t). (b,d) The extent of 

the spectrum toward the directions of the spatial frequencies from a different aspect (height) in the 

third axis ωt. 

The object shown in Figure 10 cannot also exist in practice, since while unmovable, it 

appears in some of the frames and then disappears. However, its spectrum given in red 

becomes thinner compared to the previous one in Figure 9 and contains a smaller amount 

of spectral energy out of the horizontal spectral plane 129. In practice, a still object in space 

should exist from 0 to 255 in the vertical axis. In this case, the spectrum is flat-lying only 

in the horizontal spectral plane 129 and corresponds only to frequencies irrelevant to the 

movement. So, the absence of movement corresponds to the spectral energy distributed 

in the horizontal plane 129 of 3D FFT. 

  
(a) (b) 

Figure 10. (a) A squared still object in the time domain (vertical axis). The object is present in the 

scene for 160 frames. (b) Its 3D spectrum is distributed mainly in plane 129 of the spectral cube. 

In Figure 11, a moving object appears in the data cube in blue. The corresponding 

spectrum, in red, is flat and lies in a linear plane being vertical to the blue trajectory line. 

In this spectrum, some of the DC components exist in the horizontal spectral plane 129. 

This is a problem when we try to get rid of the (still) background. In Figure 12, a similar 

case is examined, where the object is moving in a different direction and its spectrum (red) 

is again oriented perpendicular to the blue trajectory. 

Finally, in Figure 13, both moving objects exist in the data cube, and their (red) spec-

trum consists of the combination of the spectra in Figures 11 and 12. Evidently, when one 

of the two objects must be rejected (filtered), the common frequency components need 

special care. 

  
(a) (b) 

Figure 11. The evaluation of the spectra of a moving object. (a) The trajectory of the moving object 

in the data cube (blue) and (b) the 3D spectrum of this trajectory is flat (red). The direction of the 

trajectory can be considered as being perpendicular to the plane of its spectrum. 

  

Figure 10. (a) A squared still object in the time domain (vertical axis). The object is present in the
scene for 160 frames. (b) Its 3D spectrum is distributed mainly in plane 129 of the spectral cube.

In Figure 11, a moving object appears in the data cube in blue. The corresponding
spectrum, in red, is flat and lies in a linear plane being vertical to the blue trajectory line. In
this spectrum, some of the DC components exist in the horizontal spectral plane 129. This
is a problem when we try to get rid of the (still) background. In Figure 12, a similar case
is examined, where the object is moving in a different direction and its spectrum (red) is
again oriented perpendicular to the blue trajectory.
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Figure 11. The evaluation of the spectra of a moving object. (a) The trajectory of the moving object
in the data cube (blue) and (b) the 3D spectrum of this trajectory is flat (red). The direction of the
trajectory can be considered as being perpendicular to the plane of its spectrum.
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Figure 12. A different case of the 3D spectrum of a moving object. (a) A moving object (blue) in
a different direction than that in Figure 11. (b) Its flat spectrum in red. Again, the trajectory of the
object is perpendicular to the plane of its spectrum.

Finally, in Figure 13, both moving objects exist in the data cube, and their (red)
spectrum consists of the combination of the spectra in Figures 11 and 12. Evidently, when
one of the two objects must be rejected (filtered), the common frequency components need
special care.
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According to the described capabilities of the network in Figure 8, we need to evaluate
the 3D spectrum of a specific trajectory and then devise the circuit UH(l, k, p) so that only
specific frequencies are selected according to the 3D filter bank with various versions of
UH(l, k, p) that have been built. This is in fact the procedure described in Section 3.

The selection of the filter UH(l, k, p) is initially made for a specific filtering transfer
function according to the trajectory that is necessary to be isolated. The block diagram in
Figure 8 contains a unique filtering capability and, of course, its complement. To isolate
a different trajectory, another block diagram should be activated.

5.2. QFT Velocity Filtering Example

A bank of filters UH(l, k, p) was devised in an analogous manner to that in [28]. This
filter bank was used to isolate cars moving with a specific velocity on a bridge. In Figure 14,
two frames of a video from the bridge are shown, the 360th and the 380th. The white car
moving from left to right at the bottom of the scene was isolated. All the frames were
converted from color to grayscale using the MATLAB rgb2gray utility. Simultaneously, the
length of the scenes was restricted to 512 pixels, and 512 frames were used so that a data
cube of 512 × 512 × 512 was processed. Frames 360 and 380 in grayscale and restricted
in length to 512 pixels are shown in Figure 15. After the appropriate selection of the filter
UH(l, k, p), inverse 3D QFT was applied, and the obtained result is shown in Figure 16.
The obtained 360th and 380th frames contained only the white car that was moving at the
bottom of the scene from left to right. This was possible since the spectrum of the trajectory
of this car was recorded in one of the filters in the filter bank and was appropriately loaded
in the block UH(l, k, p).

In Figure 17, the selection of the filter UH(l, k, p) used in this experiment is demonstrated,
providing three frames containing the specific car isolated from Figure 16 (Figure 17a–c),
along with a sketch in the 3D data cube of the trajectory of this car (Figure 17d) and its
corresponding spectral content UH(l, k, p) (Figure 17e).

As stated in the Introduction section, the isolation of the trajectory of a moving
object within a specific range of speeds provides the capability of exactly evaluating the
spectral content of the specific trajectory. The quantum oracle used incorporates this
spectral content in a special way. Specifically, the |l>, |k>, and |p> registers in Figure 8
contain the whole spectrum of the image cube, but only the spectral content of the specific
trajectory is left to pass through UH (filtering). Accordingly, the quantum oracle UH
reorganizes the contents of the |l>, |k>, and |p> registers so that only the spectrum of
the trajectory of the specific moving object remains in the data cube. The output of UH
is shown in Figure 17e. Furthermore, based on the quantum interference phenomenon,
we can use an additional qubit initially in state |0> to reinterpret the quantum image
cube as a superposition of two image cubes, namely the spectral content of the trajectory
(Figure 17e) and its complement.
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Figure 14. The video of the bridge. Scenes 360 (upper) and 380 (lower). The velocity of the white car
at the bottom of the two scenes was recorded, and this car was isolated using the 3D QFT algorithm.
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Experimentally, we ran quantum simulations on a conventional computer running
MATLAB. All procedures were based on the approach the authors in [36] specified. Com-
parisons with conventional approaches proved that the execution time for QFT is smaller
in the order of 100 when a quantum circuit is used. This significant reduction is achieved
since all matrices involved in its evaluation are sparse. In the implementation of the
simulation experiment, the execution time of conventional FFT was 200.63 s, while QFT
implementation was carried out in 16.2 s.

6. Conclusions

The quantum version of 3D FFT was presented analytically in this work, emphasizing
the detailed explanation of its application to a specific example of a data cube coming from
an ordinary video. The form of the development of 3D QFT has an important tutorial
character. Simultaneously, it constitutes an important technical utility for isolating objects
that are moving at speeds within certain limits. This utility can be used for numerous
applications.

A filter bank was built having a series of quantum filter functions UH(l, k, p) that differ
in their filtering capabilities with regard to the velocity of the object as well as its direction.
The filter function is selected based on the properties of the object that is to be isolated.

The performance of the quantum circuit in Figure 8 is effective since the object with
the specific velocity (white car at the bottom of the scene moving from left to right in
Figures 14–16) is totally isolated as the spectral signature of its trajectory (Figure 17e) is
embodied as the operational content of the quantum oracle UH. Simultaneously, other cars
with the same velocity are also isolated and brought to the foreground in the final scene.

Specific quantum velocity filtering techniques were not found in the literature for
comparisons to be carried out. However, our approach was based on [28] only with regard
to the organization of the filter bank. Its superiority in performing fast calculations for
isolating objects with a specific velocity is clear.
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