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Abstract: Negative group delay may be observed in dispersive media with anomalous dispersion in
a certain frequency range. The fact that an outgoing wave packet precedes an incoming one does
not violate the causality principle but is only a consequence of a waveform reshaping. This effect
is observed in media such as photonic crystals, hyperbolic and epsilon-near-zero metamaterials,
undersized waveguides, subwavelength apertures, side-by-side prisms, and resonant circuits at
various frequencies. The current work is devoted to the design of a simple negative-group-delay
medium with tunable properties in the THz frequency range. This medium consists of a bismuth-
based frequency-selective surface on a dielectric substrate and may be tuned both statically and
dynamically. While a geometry variation defines a main form of an effective permittivity dispersion
and group delay/group velocity spectra, an external voltage allows one to adjust them with high
precision. For the configuration proposed in this work, all frequency regions with noticeable change
in group delay/group velocity lie within atmospheric transparency windows, which are to be used
in 6G communications. This medium may be applied to THz photonics for a tunable phase-shift
compensation, dispersion management in systems of THz signal modulation, and for encoding in
next-generation wireless communication systems.

Keywords: anomalous dispersion; bismuth; frequency-selective surface (FSS); negative group delay
(NGD); numerical simulation; terahertz time-domain spectroscopy (THz TDS); thin film

1. Introduction

Negative group delay (NGD) is observed for well-shaped waves (pulses) traveling
through a medium with anomalous dispersion in a certain frequency range, i.e., group
velocity may become superluminal [1–3]. In this case, an outgoing wave packet precedes an
incoming one, which does not violate the causality principle but is only a consequence of a
waveform reshaping associated with the fact that high-frequency components of a wave
move faster than low-frequency components [4]. These frequency bands with anomalous
dispersion are observed in any dispersive media and are accompanied by strong absorption
as a consequence of the principle described by Kramers–Kronig relations [5]. However,
attenuation may be prevented during wave propagation in an active medium [6,7]. Group
velocity describes only smoothly varying electromagnetic wave packet features such as po-
sition of the peak. It should be noted that the superluminal group velocity of a wave packet
transmitting through a lossy medium is not equal to superluminal energy/information
propagation [8] and may become infinite or negative within anomalous dispersion regions
and near such frequency bands.
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Group delay (τg) is related to group velocity (vg) as τg = d/vg, where d is a medium
length (thickness). It may be extracted as

τg =
d
c

[
Re(n̂(ω)) + ω

∂Re(n̂(ω))

∂ω

]
, (1)

where c is the speed of light in vacuum, n̂(ω) is a refractive index dispersion of a medium
under study, ω = 2π f is an angular frequency, and f is an ordinary radiation frequency [9].
The concept of group delay is applicable to both spatially extended and spatially negligible
media, such as optical fibers and thin filters, respectively. Superluminal group velocity
has been observed in anomalous dispersion regions of positive-index media, as well as
in photonic crystals, hyperbolic and epsilon-near-zero (ENZ) metamaterials, undersized
waveguides, subwavelength apertures, side-by-side prisms, and resonant circuits [10–17].

There are many works devoted to the study of this phenomenon from kHz to GHz and
at optical frequencies [18–21]. Due to the development of THz next-generation communica-
tions, it is of great interest to study superluminal propagation in the THz region located in
the frequency range of 0.1–10 THz, i.e., between the microwave and mid-infrared regions.
Terahertz radiation has a non-ionizing nature and selectively interacts with many dielectric
media being absorbed by conductive materials [22]. It has attracted the attention of many
researchers and industries due to a recent development of fast-acting and cost-effective
sources and receivers of such a radiation and due to its applicability in imaging (medicine,
pharmaceutics, security systems, and contactless diagnostics), next-generation communica-
tions (6G systems), and spectral analysis [23–28]. For research and development in the THz
domain, both radiophysical and optical approaches are used. At the moment, important
work is underway to create devices and materials to control THz radiation parameters, e.g.,
for 6G communication systems [29,30]. An application of NGD media in the THz domain
allows for tunable phase-shift compensation, as well as dispersion management in systems
of THz signal modulation and encoding. To date, several media have been proposed to
reach NGD at THz frequencies: periodic bandgap structures (photonic crystals), waveg-
uides close to cutoff frequency, and metamaterials [31–34]. In the field of metamaterials and
metasurfaces, a theoretical work [35] proposed a graphene-based structure that provides
a tunable group delay (up to 37 ps) in the THz frequency range; however, these results
are have not been experimentally validated, especially considering difficulties with the
fabrication of fully graphene structures. Another work [36] proposed a relatively complex
frequency-selective surface based on aligned nematic liquid crystal cells, for which an
effective permittivity dispersion was analyzed.

In this work, we demonstrate statically/dynamically tunable amplitude transmission
and phase-shift spectra, effective permittivity dispersion, and group delay and group
velocity spectra both numerically and experimentally on the basis of a simple medium
consisting of only two layers: a dielectric substrate and a conductive thin film. We show
that all the frequency regions with noticeable change in group delay/group velocity lie
within the atmospheric transparency windows, which are to be used in 6G communications.
We investigate cases of both continuous and structured media with optical properties
tuned both statically and dynamically in the frequency range of 0.2–1.0 THz. A solid mica
substrate is used as a dielectric layer, and a thin-film bismuth is used as a conductive layer
since its permittivity depends on the thickness, substrate material, temperature, etc. Despite
the fact that this medium provides negative group delay in the case of continuous bismuth
film (low transmittance), additional features may be introduced by making apertures in
a bismuth film with a period and size comparable to the radiation wavelength. Such a
structuring allows one to reduce losses and to reach a dual-band or a multiband NGD or
to make a medium work in ENZ mode. Finally, we investigate a possibility to adjust an
effective permittivity dispersion and group delay/group velocity spectra using an external
voltage source. As a result, the structure combines a simple manufacturing process with
the possibility of dynamic tuning using printed electrodes and operation in frequency
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bands that are well-matched with atmospheric transparency windows within the THz
frequency range.

2. Methods
2.1. Sample Preparation

The thickness of the bismuth film was chosen toachieve high conductivity and to
provide transmission at the same time [37,38]. A thin, almost transparent mica substrate
was chosen for THz waves due to its stable geometry and its ability to grow a high-quality
bismuth film with a large average crystallit size. Bi film with a thickness of 120 nm on
21 µm mica substrate was synthesized by thermal evaporation (spraying) in a vacuum of
10−5 Torr. A certain portion of a metered substance converted into a gaseous state was
deposited on a substrate located above and heated up to 120 ◦C. Subsequent annealing was
performed for 30 min at 250 ◦C. The thickness of the bismuth film was controlled using a
Linnik MII-4 interferometer with an error of 5 nm. The synthesis conditions mentioned
above are optimal and therefore allow one to obtain a high-quality thin-film bismuth [39]
with a conductivity comparable to that of bulk Bi. It should be mentioned that a classical
size effect arises in bismuth films with a thickness of less than about 200 nm, leading
to a smooth decrease in their conductivity with decreasing thickness (a quantum size
effect occurs under temperatures on the order of liquid nitrogen) [40]. A photo of the
continuous-film sample is presented in Figure 1 (inset).

Figure 1. THz TDS setup. The sample consisting of 120 nm Bi film on 21 µm mica substrate (inset) is
placed between two central lenses. The bismuth film has an area of 15 × 15 mm. The electrodes on
both sides of the sample are used for dynamic tuning.

2.2. Measurements, Numerical Simulation, and Material Parameter Extraction

The conventional method of THz time-domain spectroscopy was applied to investigate
the optical properties of the sample in the 0.2–1.0 THz frequency range using experimental
equipment from Tydex, LLC [41] (see Figure 1). Using a setup (TERA K8, Menlo Systems,
Germany) operating in a transmission mode (dynamic range of 65 dB), waveforms of THz
pulses that passed through the air, the mica substrate, and the bismuth–mica structure were
measured. The instrumental measurement error is estimated to be no more than 5%, includ-
ing errors in substrate and thin film thickness measurements. To ensure high-frequency
resolution of 3.62 GHz, the length of waveforms was set to 276 ps. No filtering was applied
in order to save all spectral features of the medium under study. Then, waveforms were
converted into complex amplitude spectra, providing information about both amplitude
and the phase spectra of the THz wave. Rationing the spectrum of complex amplitudes to
a reference spectrum (THz signal passed through the air) yields the transmission spectrum
of the structure and the corresponding phase delay. These data are used to calculate dis-
persions of a complex refractive index (n̂( f )) and a complex permittivity (ε̂( f ) = n̂2( f )),
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whether it is a dielectric substrate (homogeneous medium) or a substrate-film effective
medium (heterogeneous) [42,43]:

n′( f ) =
c[φmedium( f )− φair( f )]

2π f d
+ nair, (2a)

T( f ) =
4n′( f )nair

[n′( f ) + nair]2
, (2b)

n′′( f ) =
c ln

[
T( f )/

∣∣Êmedium( f )/Êair( f )
∣∣]

2π f d
, (2c)

n̂( f ) = n′( f )− in′′( f ), (2d)

where Êmedium( f ) and Êair( f ) are complex amplitudes (Ê =
∣∣Ê∣∣eiφ) of a wave passed

through a medium and the air, respectively correspondingly; φmedium( f ) and φair( f ) are
corresponding phases; nair = 1 is the air refractive index; T( f ) is a power transmission
coefficient; and i represents the imaginary unit. However, this equation may result in an
error for an absorbing medium, since it does not take into account the mutual influence of
real and imaginary parts of n̂( f ) on each other. To obtain an exact value of n̂( f ), the iterative
method that takes into account a complex power transmission coefficient is applied [43,44].
Briefly, an initial value of a complex refractive index (extracted by Equation (2)) is used to
calculate a complex transfer function

Ĥmodel( f ) =
4n̂( f )nair

[n̂( f ) + nair]
2 · exp

(
−i[n̂( f )− nair]

2π f d
c

)
· F̂P( f ), (3)

where the first term is a complex power transmission coefficient, and the last term is
responsible for multiple reflections inside the sample (Fabry–Pérot effect):

F̂P( f ) =

(
1−

[
n̂( f )− nair
n̂( f ) + nair

]2

exp
[
−2in̂( f )

2π f d
c

])−1

. (4)

This transfer function is compared with that measured in an experiment or obtained as
a result of simulation (Ĥmeasured( f ) = Êmedium( f )/Êair( f )), and a corresponding correction
is applied to values of real and imaginary partsof a complex refractive index:

ERm( f ) =
∣∣Ĥmeasured( f )

∣∣− ∣∣Ĥmodel( f )
∣∣, (5a)

ERp( f ) = ∠Ĥmeasured( f )−∠Ĥmodel( f ), (5b)

Re[n̂new( f )] = Re[n̂old( f )]− s · ERp( f ), (6a)

Im[n̂new( f )] = Im[n̂old( f )]− s · ERm( f ), (6b)

where ERm( f ) and ERp( f ) are magnitude and phase errors, respectively;
∣∣Ĥmeasured( f )

∣∣ and∣∣Ĥmodel( f )
∣∣ are measured and modeled magnitude dispersions, respectively; ∠Ĥmeasured( f )

and ∠Ĥmodel( f ) are corresponding phase angle dispersions; n̂new( f ) n̂old( f ) are complex
refractive index values on current and previous iterations, respectively; and s is a correction
factor typically set to 0.01 to ensure algorithm convergence. The procedure is repeated until
the difference between measured and calculated (or simulated) transfer functions is less than
a specified error. This function can be used to extract a complex permittivity dispersion of
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both a substrate and a substrate-film effective medium. Only after this stage is the roughness
of the resulting dispersion smoothed using high-order polynomials.

Since a thin bismuth film is placed on a substrate and its permittivity dispersion
cannot be measured directly, Tinkham’s method for thin films is applied to extract a Bi film
in-plane complex conductivity dispersion [45]:

σ̂Bi( f ) = [(n̂mica( f ) + 1)Êmica( f )/ÊBi+mica( f )n̂mica( f )− 1]/Z0, (7)

where Êmica( f ) and ÊBi+mica( f ) are complex amplitudes of a THz wave transmitted through
the mica substrate and the bismuth–mica structure, respectively, and Z0 is the free space
impedance. This conductivity dispersion is then converted into an in-plane permittivity
dispersion [46,47]:

ε̂Bi( f ) = 1 + iσ̂Bi( f )/(2π f dBiε0), (8)

where dBi is the thickness of the bismuth film, and ε0 is the absolute dielectric constant of
the vacuum.

Complex permittivity dispersions of a mica and a bismuth film are used in numerical
simulation of a heterogeneous layered structure as described further. The result of this
simulation, namely a scattering matrix containing scattering parameters, also provides
information on the amplitude and phase components of a THz pulse transmitted through
the structure in a frequency range of interest. While amplitude information is obtained
directly, a corresponding free-space phase shift is subtracted from a phase component to
obtain the phase delay of the medium under study. This simulation is carried out using the
frequency domain solver of CST Microwave Studio [48]. The periodic boundary conditions
are applied in two directions in the xy plane (sample plane), and linearly polarized THz
radiation propagates in the z direction. Results of numerical simulation are converted into
a complex effective permittivity dispersion by the same method described above.

3. Results and Discussion

Optical properties of the mica substrate (with a thickness of 21 µm) and the Bi film
(with an area of 15 × 15 mm and a thickness of 120 nm) on this substrate were measured
using THz TDS in the 0.2–1.0 THz frequency range. Amplitude and phase spectra (Figure 2)
were used to extract complex permittivity dispersions of 120 nm Bi film and mica (Figure 3).
Figure 2 shows that that Bi-on-mica medium transmits a very small part of radiation in
comparison with mica substrate in the entire frequency range under study. The phase delay
is positive for mica (normal dispersion) and negative for Bi-on-mica medium (broadband
anomalous dispersion) in the frequency range of 0.2–1.0 THz.

Complex permittivity dispersions of 120 nm Bi film and mica were used to calculate
an effective permittivity dispersion (ε̂e f f ( f )) of the heterogeneous bismuth–mica structure
by numerical simulation in CST Microwave Studio and using the transfer matrix method,
obtaining the same results as those reported in [47]. In the case of normal (to the sample
plane) incidence of THz radiation, the dispersion relation for this layered structure yields a
similar solution for both TE and TM modes:

k0 =
2π f

c
, (9a)

k̂z,Bi = k0
√

ε̂Bi, (9b)

k̂z,mica = k0
√

ε̂mica, (9c)

η̂Bi = 2π f ε0 ε̂Bi/k̂z,Bi, (9d)

η̂mica = 2π f ε0 ε̂mica/k̂z,mica, (9e)
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k̂z =
cos(k̂z,BidBi)cos(k̂z,micadmica)

dBi + dmica
− 1

2(dBi + dmica)

(
η̂Bi

η̂mica
+

η̂mica
η̂Bi

)
·

·sin(k̂z,BidBi)sin(k̂z,micadmica),
(9f)

ε̂e f f = k̂2
z/k2

0, (9g)

where dmica is the thickness of the mica substrate, ε̂mica is its permittivity calculated according
to Equations (2)–(6), k0 is a free-space wave number, and k̂z is a Bloch wave number with
real and imaginary parts responsible for propagating and evanescent waves, respectively.
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Figure 2. Amplitude transmission (a) and phase delay (b) spectra of a THz wave transmitted through
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The effective permittivity dispersion (ε̂e f f ( f )) was also calculated on the basis of
complex amplitude spectra measured for the effective bismuth–mica medium using THz
TDS. The results are depicted in Figure 4. There is almost exact coincidence between
simulated and experimental dispersions.
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Figure 4. Complex effective permittivity dispersion (ε̂e f f ( f )) of the bismuth–mica structure extracted
from THz TDS (direct measurement) and numerical simulation or calculation based on the transfer
matrix method (simulation).

In order to impart a frequency-dependent response, periodical cross-like apertures
were made in the bismuth film in accordance with one of the standard configurations of
frequency-selective surfaces with a polarization-independent electromagnetic response [49].
The scheme of this FSS is depicted in Figure 5a. At fixed film and substrate thicknesses, its
electromagnetic response is defined by three geometrical parameters, namely unit cell side
length (G) and the length (L) and width (K) of a cross-like slot.

Figure 5. (a) Schematic view of the FSS. The configuration is defined by the square unit cell size (G) and
by the length (L) and width (K) of a slot in the bismuth film. (b) Photo of the laser engraving process.

Numerical simulation of the bismuth-based FSS was performed at G = 280 µm,
L = 250 µm, and K = 80 µm to obtain at least two resonances within the frequency range
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under study. Effective amplitude transmission (Figure 6a) and phase delay (Figure 6b) spec-
tra were extracted to calculate the FSS effective permittivity (Figure 7a,b). The experimental
samples (see Figure 5b) were structured using the laser engraving technique with a spot di-
ameter of 30 µm, which was taken into account in both numerical and experimental studies.
The experimental curves are presented in these figures, along with simulated curves.
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Figure 6. Amplitude transmission (a) and phase delay (b) spectra of a THz wave passed through the
bismuth-based FSS at G = 280 µm, L = 250 µm, and K = 80 µm.
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Figure 7. Real (a) and imaginary (b) parts of the complex effective permittivity dispersion of the
bismuth-based FSS at G = 280 µm, L = 250 µm, and K = 80 µm.

There are two frequency bands with negative phase shift and two bands with positive
phase shift associated with corresponding values of an effective permittivity and posi-
tive/negative group delay. At G = 280 µm, L = 250 µm, and K = 80 µm, there are three
frequency points (at 0.32, 0.68, and 0.83 THz) corresponding to zero effective permittivity.

Excepting the case of continuous Bi film on a mica substrate presented in Figure 4,
the experimental and modeling results slightly differ from each other. Laser radiation
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possibly affects bismuth film permittivity on borders of cross-like slots. The effect may be
associated with solid-state regrowth during laser annealing, as discussed in detail in [50].
In addition, the permittivity tensor of anisotropic Bi film [51] may be changed due to the
implemented geometrical discontinuity, but in numerical simulation, only the in-plane
Bi film permittivity component was used, since it was measured in the experiment. The
resulting difference may relate to the component of the dielectric permittivity tensor, which
is perpendicular to the sample plane, which was not taken into account in the simulation.

A comparison of THz waveforms measured by THz TDS for the cases of solid Bi film
and Bi-based FSS with G = 280 µm, L = 250 µm, and K = 80 µm is presented in Figure 8.
The group delay of a wave in mica is positive. In the case of continuous Bi film on a mica
substrate, the group delay is negative in relation to both substrate and air signals, which
corresponds to superluminal group velocity (the real part of the effective permittivity is
negative in the whole frequency range under study, in accordance with Figure 4). In the
case of Bi-based FSS on mica, the amplitude transmission is higher, but the group delay is
negative in relation to the substrate signal only. In this case, the response of the medium is
more complex and should be analyzed on the basis of the effective permittivity dispersion
presented in Figure 7a.

Static tuning is achieved by geometric variation. The influence of G, L, and K on
amplitude and phase spectra, effective permittivity dispersion, and group delay and group
velocity spectra was studied further. In all the investigated cases, a value of the parameter
under study was shifted towards both larger and smaller values by 20 µm, while the other
two parameters remained fixed.

With rising square unit cell size (G), the Q factor should increase, and amplitude
transmission should decrease in the entire frequency range, enabling a higher difference
between extreme values of the real part of the effective permittivity dispersion (stretching
in both directions along the vertical axis), but also leading to an increase in its imaginary
part in the entire frequency range under study. The numerical simulation and experimental
results are presented in Figures 9 and 10. According to the experimental results, with G
rising from 260 µm to 300 µm, the ENZ point at 0.27 THz moves to 0.34 THz, the second
point at 0.70 THz shifts to 0.67 THz, and the third point at 0.83 THz shifts to 0.86 THz.
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Figure 8. THz waveforms for radiation transmitted through the air, the mica substrate, and the
substrate-film medium in the cases of solid Bi film (a) and Bi-based FSS (b). Vertical lines indicate
peak positions of wave packets.
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Figure 9. Amplitude transmission (a) and phase delay (b) spectra of a THz wave passed through the
bismuth-based FSS at different values of the square unit cell size (G).
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Figure 10. Real (a) and imaginary (b) parts of the complex effective permittivity dispersion of the
bismuth-based FSS at different values of the square unit cell size (G).
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When the group delay (τg) is higher than that in free space, a wave passes through a
medium with subluminal group velocity (vg), and its amplitude fades weakly. When τg is
less than that in free space, a wave propagates with superluminal vg exceeding c. If τg < 0,
the group velocity (vg) becomes negative, i.e., negative with respect to the phase velocity.
In both latter cases, the transmission coefficient falls significantly.

The spectra of group delay and group velocity are presented in Figure 11, along
with horizontal lines denoting free-space group delay ((dBi + dmica)/c) and the speed of
light (in the latter case, velocity is normalized as vg/c). With increasing G, the frequency
regions with negative group delay expand, while those with positive group delay narrow.
Variation of the structural unit cell size (G) affects group delay in the entire frequency range
under study. However, the main effect observed in this case with rising G is the rapidly
increasing superluminal vg near 0.20–0.26 THz (the main jump is between G = 280 µm and
G = 300 µm) and its shift near 0.8–0.84 THz.

These frequencies lie within atmospheric transparency windows proposed for use in
6G wireless communication systems [52], which are about 0.2–0.3 THz, 0.4 THz, 0.6 THz,
0.65 THz, 0.8–0.9 THz, etc. [53]. For example, current efforts in the field of 6G commu-
nications are focused but not limited on frequencies such as 0.14 THz, 0.22 THz, and
0.34 THz [52].

Variation of the cross-like aperture side length (L) should affect the frequency position
of the first resonant peak: with rising L, it should shift towards the low-frequency region
(both amplitude and phase spectra). Both real and imaginary parts of the effective permit-
tivity dispersion should also stretch into the low-frequency region, which will lead to a
strong change in their values near some fixed frequencies. In addition, the transmission
amplitude at the second resonant peak should slightly increase, since rising slot length
produces an increase in the cross-sectional area at a constant value of K. The results are
presented in Figures 12 and 13.
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Figure 11. Frequency-dependent group delay (a) and group velocity (b) normalized to c at different
values of the square unit cell size (G).
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Figure 12. Amplitude transmission (a) and phase delay (b) spectra of a THz wave passed through
the bismuth-based FSS at different values of the cross-like slot side length (L).
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Figure 13. Real (a) and imaginary (b) parts of the complex effective permittivity dispersion of the
bismuth-based FSS at different values of the cross-like slot side length (L).
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By varying value of the aperture length (L), it is possible to obtain more broadband
ENZ response near 0.8 THz. With rising L, the low-frequency region with NGD tends to
narrow, while the region with positive group delay expands, stretching noticeably into
the low-frequency range. According to experimental results, with L rising from 230 µm to
270 µm, the ENZ point at 0.38 THz moves to 0.26 THz, the second point at 0.70 THz shifts
to 0.68 THz, and the third point at 0.87 THz does not shift.

The frequency spectra of group delay and group velocity with a variable value of L
are presented in Figure 14. With rising L, the group delay spectrum expands mainly to
lower frequencies and changes its value depending on the specific frequency. For example,
the group velocity is negative when L = 230 µm, superluminal for L = 250 µm, and
subluminal for L = 270 µm at 0.24 THz. At the same time, with L rising from L = 230 µm
to L = 270 µm, the operation mode changes from subluminal to near-luminal at 0.87 THz,
and a noticeable shift is observed near 0.6 THz. All these frequencies also lie within
transparency windows of the atmosphere.

Next, the influence of the cross-like aperture side width (K) was investigated. With
rising K, the second resonant peak should shift towards lower frequencies, and at the same
time, amplitude transmission should increase at both resonances, since a cut area of the
cross-like slot does increase. In other words, with rising K, FSS tends to work as a high-pass
filter instead a band-pass filter. The results are presented in Figures 15 and 16. Obviously,
increasing the aperture width (K) reduces the Q factor, eliciting a relatively broadband
ENZ response near 0.7–0.8 THz by switching from positive to negative group delay in the
high-frequency region above 0.63 THz. According to the experimental results, with K rising
from 60 µm to 100 µm, the ENZ point at 0.32 THz moves to 0.36 THz, and the second third
points at 0.67 THz and 0.97 THz disappear, since the dispersion in this frequency range
becomes positive.
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Figure 14. Frequency-dependent group delay (a) and group velocity (b) normalized to c at different
values of the cross-like slot side length (L).
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Figure 15. Amplitude transmission (a) and phase delay (b) spectra of a THz wave passed through
the bismuth-based FSS at different values of the cross-like slot side width (K).
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Figure 16. Real (a) and imaginary (b) parts of the complex effective permittivity dispersion of the
bismuth-based FSS at different values of the cross-like slot side width (K).
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The frequency spectra of group delay and group velocity with variable value of K
are presented in Figure 17. With rising K, the group delay changes significantly from
negative to positive near 0.8–0.9 THz and falls smoothly near 0.25–0.5 THz. For example,
with increasing L, the group velocity switches from negative to superluminal and then to
subluminal mode near 0.8–0.9 THz. At the same time, the noticeable shift occurs near such
frequencies as 0.2–0.3 THz, and 0.6 THz. These frequencies also lie within transparency
windows of the atmosphere.

The dynamical tuning was also studied. The influence of voltage applied between two
opposite electrodes on the shift of the effective permittivity dispersion was investigated in
the range of 0–10 V (see Figure 18). There is a possibility to adjust effective permittivity
dispersion with high precision. When a voltage of 10 V is applied, the maximum range of
such a change along vertical axis reaches 1. For example, it allows one to move ENZ point
at 0.705 THz to 0.724 THz or to change the effective permittivity real part at 0.304 THz from
0.23 to−0.26. The similar shift of group delay is presented in Figure 19: these dependencies
confirm the possibility of a group delay precise adjustment at any desired frequency in the
range under study. For example, in the case of G = 280 µm, L = 250 µm, and K = 80 µm,
the most noticeable change in this parameter is observed near 0.4 THz, 0.6 THz, 0.8 THz,
and 0.95 THz. Most of these frequencies (excluding 0.95 THz) lie within atmospheric
transparency windows.
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Figure 17. Frequency-dependent group delay (a) and group velocity (b) normalized to c at different
values of the cross-like slot side width (K).
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Figure 18. Shift of the complex effective permittivity dispersion real (a) and imaginary (b) parts for
the bismuth-based FSS with G = 280 µm, L = 250 µm, and K = 80 µm under the influence of external
voltage applied between two opposite electrodes (up to 10 V).
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Figure 19. Shift of the group delay spectrum for the bismuth-based FSS with G = 280 µm, L = 250
µm, and K = 80 µm under the influence of external voltage.

4. Conclusions

In conclusion, statically/dynamically tunable amplitude transmission and phase shift
spectra, effective permittivity dispersion, and group delay and group velocity spectra
were demonstrated both numerically and experimentally on the basis of FSS consisting
of a thin Bi film on a mica substrate. FSS with a polarization-independent configuration
is produced by laser engraving, which provides a high-quality pattern. Static tuning is
achieved by geometric variation; FSS unit cell size affects its Q factor and transmission
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coefficient, expanding or narrowing the frequency regions with NGD; cross-like slot length
variation shifts the first resonant peak and stretches the corresponding effective permittivity
into a low-frequency region; and cross-like slot width influences the second peak position
(affecting the operation of the structure as a band-pass or a high-pass filter) and allows
one to obtain a wide-band epsilon-near-zero dispersion. Dynamic tuning provides precise
adjustment when voltage applied between two opposite electrodes influences the shift
of an effective permittivity dispersion and a group delay spectrum. All the frequency
regions with noticeable change in group delay/group velocity lie within atmospheric trans-
parency windows, which are to be used in 6G communications. The proposed structure
combines a simple manufacturing procedure with the possibility of dynamic tuning using
printed electrodes and operation in frequency bands that are well-matched with atmo-
spheric transparency windows and may be applied for tunable phase shift compensation,
temporal modulation, dispersion management in systems of THz signal modulation, and
for encoding in communications.
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