Radially Phased-Locked Hermite–Gaussian Correlated Beam Array and Its Properties in Oceanic Turbulence
Abstract
:1. Introduction
2. Model of an RPLHGSM Beam Array
3. Propagation of an RPLHGSM Beam Array in Oceanic Turbulence
4. Numerical Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baykal, Y.; Ata, Y.; Gökçe, M.C. Underwater turbulence, its effects on optical wireless communication and imaging: A review. Opt. Laser Technol. 2022, 156, 108624. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.L.; Cai, Y.J. Propagation of Partially Coherent Beam in Turbulent Atmosphere: A Review. Prog. Electromagn. Res. 2015, 150, 123–143. [Google Scholar] [CrossRef]
- Klug, A.; Peters, C.; Forbes, A. Robust structured light in atmospheric turbulence. Adv. Photonics 2023, 5, 016006. [Google Scholar] [CrossRef]
- Korotkova, O.; Farwell, N.; Shchepakina, E. Light scintillation in oceanic turbulence. Waves Random Complex Media 2012, 22, 260–266. [Google Scholar] [CrossRef]
- Baykal, Y. Scintillation index in strong oceanic turbulence. Opt. Commun. 2016, 375, 15–18. [Google Scholar] [CrossRef]
- Xu, G.; Lai, J. Scintillation index and BER performance for optical wave propagation in anisotropic underwater turbulence under the effect of eddy diffusivity ratio. Appl. Opt. 2020, 59, 2551–2558. [Google Scholar] [CrossRef]
- Gercekcioglu, H. Bit error rate of focused Gaussian beams in weak oceanic turbulence. J. Opt. Soc. Am. A 2014, 31, 1963–1968. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, D.Y.; Qin, S.Q.; Zhang, Y.X. Received Probability of Orbital-Angular-Momentum Modes Carried by Diffraction- and Attenuation- Resistant Beams in Weak Turbulent Oceans. J. Mar. Sci. Eng. 2020, 8, 701. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, G.; Shen, Y. Effect of oceanic turbulence with anisotropy on the propagation of multi-sinc Schell-model beams. Results Phys. 2022, 36, 105447. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Chang, H.; Huang, J.; Zhu, X.; Cai, Y.; Yu, J. Second-Order Statistics of Self-Splitting Structured Beams in Oceanic Turbulence. Photonics 2023, 10, 339. [Google Scholar] [CrossRef]
- Xu, J.; Tang, M.M.; Zhao, D.M. Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence. Opt. Commun. 2014, 331, 1–5. [Google Scholar] [CrossRef]
- Wei, D.; Wang, K.; Xu, Y.; Du, Q.; Liu, F.; Liu, J.; Dong, Y.; Zhang, L.; Yu, J.; Cai, Y.; et al. Propagation of a Lorentz Non-Uniformly Correlated Beam in a Turbulent Ocean. Photonics 2023, 10, 49. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Zhao, S. Research on Hypergeometric-Gaussian Vortex Beam Propagating under Oceanic Turbulence by Theoretical Derivation and Numerical Simulation. J. Mar. Sci. Eng. 2021, 9, 442. [Google Scholar] [CrossRef]
- Liu, D.; Wang, G.; Yin, H.; Zhong, H.; Wang, Y. Propagation properties of a partially coherent anomalous hollow vortex beam in underwater oceanic turbulence. Opt. Commun. 2019, 437, 346–354. [Google Scholar] [CrossRef]
- Ye, F.; Zhang, J.B.; Xie, J.T.; Deng, D.M. Propagation properties of the rotating elliptical chirped Gaussian vortex beam in the oceanic turbulence. Opt. Commun. 2018, 426, 456–462. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, M.; Dou, J.; Zhao, J.; Li, B. Influences of salinity and temperature on propagation of radially polarized rotationally-symmetric power-exponent-phase vortex beams in oceanic turbulence. Opt. Express 2022, 30, 42772–42783. [Google Scholar] [CrossRef]
- Zhan, H.; Peng, Y.; Chen, B.; Wang, L.; Wang, W.; Zhao, S. Diffractive deep neural network based adaptive optics scheme for vortex beam in oceanic turbulence. Opt. Express 2022, 30, 23305–23317. [Google Scholar] [CrossRef]
- Liu, D.; Zhong, H.; Wang, G.; Yin, H.; Wang, Y. Radial phased-locked multi-Gaussian Schell-model beam array and its properties in oceanic turbulence. Opt. Laser Technol. 2020, 124, 106003. [Google Scholar] [CrossRef]
- Tang, M.; Li, H. Statistical properties of twisted Gaussian Schell-model array beams in anisotropic ocean. Optik 2020, 211, 164612. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wang, F.; Cai, Y.J. Partially coherent light beam shaping via complex spatial coherence structure engineering. Adv. Phys. X 2022, 7, 2009742. [Google Scholar] [CrossRef]
- Wang, H.; Peng, X.; Zhang, H.; Liu, L.; Chen, Y.; Wang, F.; Cai, Y. Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum. Nanophotonics 2022, 11, 689–696. [Google Scholar] [CrossRef]
- Korotkova, O.; Sahin, S.; Shchepakina, E. Multi-Gaussian Schell-model beams. J. Opt. Soc. Am. A 2012, 29, 2159–2164. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Huang, J.; Ji, X.; Cheng, K.; Wang, T. Rotating anisotropic Gaussian Schell-model array beams. Opt. Commun. 2021, 484, 126684. [Google Scholar] [CrossRef]
- Chen, Y.H.; Liu, L.; Wang, F.; Zhao, C.L.; Cai, Y.J. Elliptical Laguerre-Gaussian correlated Schell-model beam. Opt. Express 2014, 22, 13975–13987. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Gu, J.X.; Wang, F.; Cai, Y.J. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam. Phys. Rev. A 2015, 91, 013823. [Google Scholar] [CrossRef]
- Song, Z.; Liu, Z.; Zhou, K.; Sun, Q.; Liu, S. Propagation characteristics of a non-uniformly Hermite–Gaussian correlated beam. J. Opt. 2016, 18, 015606. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Liu, L.; Dong, Y.; Wang, F.; Hoenders, B.J.; Chen, Y.; Cai, Y.; Peng, X. Propagation Properties of a Twisted Hermite-Gaussian Correlated Schell-Model Beam in Free Space. Front. Phys. 2022, 10, 847649. [Google Scholar] [CrossRef]
- Cai, Y.J.; Lin, Q.; Baykal, Y.; Eyyuboglu, H.T. Off-axis Gaussian Schell-model beam and partially coherent laser array beam in a turbulent atmosphere. Opt. Commun. 2007, 278, 157–167. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, X.L.; Ma, Y.X.; Ma, H.T.; Xu, X.J.; Liu, Z.J. Propagation of partially coherent partially phase-locked laser array in turbulent atmosphere. Opt. Commun. 2010, 283, 1071–1074. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, G.; Yin, Y.; Yin, H.; Wang, Y.; Liu, D. Radial phased-locked Laguerre-Gaussian correlated schell-model beam array. Heliyon 2022, 8, e11295. [Google Scholar] [CrossRef]
- Lu, L.; Wang, Z.; Cai, Y. Propagation properties of phase-locked radially-polarized vector fields array in turbulent atmosphere. Opt. Express 2021, 29, 16833–16844. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.B.; Sun, C.; Lv, X.; Zhang, J.B.; Yang, X.B.; Wang, G.H.; Hong, W.Y.; Deng, D.M. Effect of turbulent atmosphere on the propagation of a radial phased-locked rotating elliptical Gaussian beam array. J. Opt. Soc. Am. A 2019, 36, 1690–1698. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, A.; Dai, H.H. Handbook of Mathematical Formulas and Integrals, 4th ed.; Academic Press Inc.: Cambridge, MA, USA, 2008. [Google Scholar]
- Zhang, Y.; Yang, K.; Li, P.; Wen, F.; Gu, Y.; Wu, Z. Generation of off-axis phased Gaussian optical array along arbitrary curvilinear arrangement. Opt. Commun. 2023, 527, 128967. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, T.; Chang, Q.; Chang, H.; Long, J.; Ma, P.; Zhou, P. Propagation Properties of Gaussian Schell-Model Beam Array in the Jet Engine Exhaust Induced Turbulence. IEEE Photonics J. 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, G.; Ma, X.; Zhong, H.; Yin, H.; Wang, Y.; Liu, D. Intensity and Coherence Characteristics of a Radial Phase-Locked Multi-Gaussian Schell-Model Vortex Beam Array in Atmospheric Turbulence. Photonics 2020, 8, 5. [Google Scholar] [CrossRef]
- Nikishov, V.V.; Nikishov, V.I. Spectrum of Turbulent Fluctuations of the Sea-Water Refraction Index. Int. J. Fluid Mech. Res. 2000, 27, 82–98. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, P.; Wang, G.; Yin, Y.; Zhong, H.; Wang, Y.; Liu, D. Radially Phased-Locked Hermite–Gaussian Correlated Beam Array and Its Properties in Oceanic Turbulence. Photonics 2023, 10, 551. https://doi.org/10.3390/photonics10050551
Zhu P, Wang G, Yin Y, Zhong H, Wang Y, Liu D. Radially Phased-Locked Hermite–Gaussian Correlated Beam Array and Its Properties in Oceanic Turbulence. Photonics. 2023; 10(5):551. https://doi.org/10.3390/photonics10050551
Chicago/Turabian StyleZhu, Peiying, Guiqiu Wang, Yan Yin, Haiyang Zhong, Yaochuan Wang, and Dajun Liu. 2023. "Radially Phased-Locked Hermite–Gaussian Correlated Beam Array and Its Properties in Oceanic Turbulence" Photonics 10, no. 5: 551. https://doi.org/10.3390/photonics10050551
APA StyleZhu, P., Wang, G., Yin, Y., Zhong, H., Wang, Y., & Liu, D. (2023). Radially Phased-Locked Hermite–Gaussian Correlated Beam Array and Its Properties in Oceanic Turbulence. Photonics, 10(5), 551. https://doi.org/10.3390/photonics10050551