Multiplexing Linear and Nonlinear Bragg Diffractions through Volume Gratings Fabricated by Femtosecond Laser Writing in Lithium Niobate Crystal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle
2.2. Sample Fabrication and Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armstrong, J.A.; Bloembergen, N.; Ducuing, J.; Pershan, P.S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 1962, 127, 1918–1939. [Google Scholar] [CrossRef]
- Boes, A.; Chang, L.; Langrock, C.; Yu, M.; Zhang, M.; Lin, Q.; Lončar, M.; Fejer, M.; Bowers, J.; Mitchell, A. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 2023, 379, eabj4396. [Google Scholar] [CrossRef] [PubMed]
- Fejer, M.M.; Magel, G.A.; Jundt, D.H.; Byer, R.L. Quasi-phase-matched second harmonic generation: Tuning and tolerances. IEEE J. Quantum Electron. 1992, 28, 2631–2654. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Nada, N.; Saitoh, M.; Watanabe, K. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 1993, 62, 435–436. [Google Scholar] [CrossRef]
- Myers, L.E.; Eckardt, R.C.; Fejer, M.M.; Byer, R.L.; Bosenberg, W.R.; Pierce, J.W. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B 1995, 12, 2102–2116. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, Y.Y.; Ming, N.B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 1997, 278, 843–846. [Google Scholar] [CrossRef]
- Chen, B.; Ren, M.; Liu, R.; Zhang, C.; Sheng, Y.; Ma, B.; Li, Z. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals. Light Sci. Appl. 2014, 3, e189. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.S.; Wang, H.; Deng, Y.H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Qin, J.; Wu, D.; Ding, X.; Hu, Y.; et al. Quantum computational advantage using photons. Science 2020, 370, 1460–1463. [Google Scholar] [CrossRef]
- Berger, V. Nonlinear photonic crystals. Phys. Rev. Lett. 1998, 81, 4136–4139. [Google Scholar] [CrossRef] [Green Version]
- Broderick, N.G.; Ross, G.W.; Offerhaus, H.L.; Richardson, D.J.; Hanna, D.C. Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal. Phys. Rev. Lett. 2000, 84, 4345–4348. [Google Scholar] [CrossRef]
- Leng, H.Y.; Yu, X.Q.; Gong, Y.X.; Xu, P.; Xie, Z.D.; Jin, H.; Zhang, C.; Zhu, S.N. On-chip steering of entangled photons in nonlinear photonic crystals. Nat. Commun. 2011, 2, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, P.; Ji, S.H.; Zhu, S.N.; Yu, X.Q.; Sun, J.; Wang, H.T.; He, J.L.; Zhu, Y.Y.; Ming, N.B. Conical second harmonic generation in a two-dimensional chi(2) photonic crystal: A hexagonally poled LiTaO3 crystal. Phys. Rev. Lett. 2004, 93, 133904. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, S.M.; Neshev, D.N.; Fischer, R.; Krolikowski, W.; Arie, A.; Kivshar, Y.S. Generation of second-harmonic conical waves via nonlinear bragg diffraction. Phys. Rev. Lett. 2008, 100, 103902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tal, E.; Noa, V.-B.; Ayelet, G.-P.; Ady, A. Nonlinear generation and manipulation of Airy beams. Nat. Photonics 2009, 3, 395–398. [Google Scholar] [CrossRef]
- Wei, D.; Zhu, Y.; Zhong, W.; Cui, G.; Wang, H.; He, Y.; Zhang, Y.; Lu, Y.; Xiao, M. Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal. Appl. Phys. Lett. 2017, 110, 261104. [Google Scholar] [CrossRef]
- Chen, Y.; Ni, R.; Wu, Y.; Du, L.; Hu, X.; Wei, D.; Zhang, Y.; Zhu, S. Phase-Matching Controlled Orbital Angular Momentum Conversion in Periodically Poled Crystals. Phys. Rev. Lett. 2020, 125, 143901. [Google Scholar] [CrossRef]
- Trajtenberg-Mills, S.; Juwiler, I.; Arie, A. On-axis shaping of second-harmonic beams. Laser Photonics Rev. 2015, 9, L40–L44. [Google Scholar] [CrossRef]
- Shapira, A.; Shiloh, R.; Juwiler, I.; Arie, A. Two-dimensional nonlinear beam shaping. Opt. Lett. 2012, 37, 2136–2138. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sheng, Y.; Zhu, S.; Xiao, M.; Krolikowski, W. Nonlinear photonic crystals: From 2D to 3D. Optica 2021, 8, 372–381. [Google Scholar] [CrossRef]
- Keren-Zur, S.; Ellenbogen, T. A new dimension for nonlinear photonic crystals. Nat. Photonics 2018, 12, 575–577. [Google Scholar] [CrossRef]
- Wei, D.; Wang, C.; Wang, H.; Hu, X.; Wei, D.; Fang, X.; Zhang, Y.; Wu, D.; Hu, Y.; Li, J.; et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics 2018, 12, 596–600. [Google Scholar] [CrossRef]
- Xu, T.X.; Switkowski, K.; Chen, X.; Liu, S.; Koynov, K.; Yu, H.H.; Zhang, H.J.; Wang, J.Y.; Sheng, Y.; Krolikowski, W. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photonics 2018, 12, 591–595. [Google Scholar] [CrossRef]
- Wang, C.; Chen, P.; Wei, D.; Zhang, L.; Zhang, Z.; Xu, L.; Hu, Y.; Li, J.; Zhang, Y.; Xiao, M.; et al. Sequential Three-Dimensional Nonlinear Photonic Structures for Efficient and Switchable Nonlinear Beam Shaping. ACS Photonics 2023, 10, 456–463. [Google Scholar] [CrossRef]
- Ady, A. Storing and retrieving multiple images in 3D nonlinear photonic crystals. Light Sci. Appl. 2021, 10, 202. [Google Scholar] [CrossRef]
- Imbrock, J.; Wesemann, L.; Kroesen, S.; Ayoub, M.; Denz, C. Waveguide-integrated three-dimensional quasi-phase-matching structures. Optica 2020, 7, 28–34. [Google Scholar] [CrossRef]
- Shan, L.; Leszek Mateusz, M.; Wieslaw, K.; Yan, S. Nonlinear Volume Holography in 3D Nonlinear Photonic Crystals. Laser Photonics Rev. 2020, 14, 2000224. [Google Scholar] [CrossRef]
- Wei, D.; Wang, C.; Xu, X.; Wang, H.; Hu, Y.; Chen, P.; Li, J.; Zhu, Y.; Xin, C.; Hu, X.; et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nat. Commun. 2019, 10, 4193. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Wang, C.; Wei, D.; Hu, Y.; Xu, X.; Li, J.; Wu, D.; Ma, J.; Ji, S.; Zhang, L.; et al. Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light Sci. Appl. 2021, 10, 146. [Google Scholar] [CrossRef]
- Mazur, L.M.; Liu, S.; Chen, X.; Krolikowski, W.; Sheng, Y. Localized Ferroelectric Domains via Laser Poling in Monodomain Calcium Barium Niobate Crystal. Laser Photonics Rev. 2021, 15, 2100088. [Google Scholar] [CrossRef]
- Xu, X.; Wang, T.; Chen, P.; Zhou, C.; Ma, J.; Wei, D.; Wang, H.; Niu, B.; Fang, X.; Wu, D.; et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 2022, 609, 496–501. [Google Scholar] [CrossRef]
- Shao, M.; Liang, F.; Yu, H.; Zhang, H. Angular engineering strategy of an additional periodic phase for widely tunable phase-matched deep-ultraviolet second harmonic generation. Light Sci. Appl. 2022, 11, 31. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, X.; He, H.; Zhang, L.; Zhou, Y.; Chen, Z.; Malomed, B.A.; Li, Y. Vortex Solitons in Quasi-Phase-Matched Photonic Crystals. Phys. Rev. Lett. 2023, 130, 157203. [Google Scholar] [CrossRef] [PubMed]
- Gattass, R.R.; MazuR, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Shao, M.; Liang, F.; Yu, H.; Zhang, H. Pushing periodic-disorder-induced phase matching into the deep-ultraviolet spectral region: Theory and demonstration. Light Sci. Appl. 2020, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.; Wang, Z.; Xu, B.; Qiu, J. Photonic circuits written by femtosecond laser in glass: Improved fabrication and recent progress in photonic devices. Adv. Photonics 2021, 3, 024002. [Google Scholar] [CrossRef]
- Chen, F.; de Aldana, J.R.V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 2014, 8, 251–275. [Google Scholar] [CrossRef]
- Martinez, A.; Dubov, M.; Khrushchev, I.; Bennion, I. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 2004, 40, 1170–1171. [Google Scholar] [CrossRef]
- Gerke, T.D.; Piestun, R. Aperiodic volume optics. Nat. Photonics 2010, 4, 188–193. [Google Scholar] [CrossRef]
- Wei, D.; Chen, P.; Zhang, Y.; Yao, W.; Ni, R.; Hu, X.; Lv, X.; Zhu, S.; Xiao, M.; Zhang, Y. Generation of high-efficiency, high-purity, and broadband Laguerre-Gaussian modes from a Janus optical parametric oscillator. Adv. Photonics Nexus 2023, 2, 036007. [Google Scholar] [CrossRef]
- Mikutis, M.; Kudrius, T.; Šlekys, G.; Paipulas, D.; Juodkazis, S. High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams. Opt. Mater. Express 2013, 3, 1862–1871. [Google Scholar] [CrossRef]
- Fang, X.; Yang, H.; Yao, W.; Wang, T.; Zhang, Y.; Gu, M.; Xiao, M. High-dimensional orbital angular momentum multiplexing nonlinear holography. Adv. Photonics 2021, 3, 015001. [Google Scholar] [CrossRef]
- Ye, W.; Zeuner, F.; Li, X.; Reineke, B.; He, S.; Qiu, C.W.; Liu, J.; Wang, Y.; Zhang, S.; Zentgraf, T. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 2016, 7, 11930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.X.; Chen, S.M.; Cai, Y.; Zhang, S.; Cheah, K.W. Third Harmonic Generation of Optical Vortices Using Holography-Based Gold-Fork Microstructure. Adv. Opt. Mater. 2014, 2, 389–393. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Zheng, Y.; Li, H.; Chen, X. Universal modeling of second-order nonlinear frequency conversion in three-dimensional nonlinear photonic crystals. Opt. Express 2018, 26, 15675–15682. [Google Scholar] [CrossRef] [PubMed]
- Burghoff, J.; Hartung, H.; Nolte, S.; Tünnermann, A. Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl. Phys. A 2007, 86, 165–170. [Google Scholar] [CrossRef]
- Li, G.; Zhang, S.; Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2017, 2, 17010. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, J.; Liu, S.; Huang, P.; Chen, B.; Wei, D.; Liu, J. Efficient second harmonic generation by harnessing bound states in the continuum in semi-nonlinear etchless lithium niobate waveguides. Light Sci. Appl. 2022, 11, 317. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Y. Integrated lithium niobate photonics. Nanophotonics 2020, 9, 1287–1320. [Google Scholar] [CrossRef]
- Lin, J.; Yao, N.; Hao, Z.; Zhang, J.; Mao, W.; Wang, M.; Chu, W.; Wu, R.; Fang, Z.; Qiao, L.; et al. Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator. Phys. Rev. Lett. 2019, 122, 173903. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, P.; Chang, C.; Liu, X.; Wei, D. Multiplexing Linear and Nonlinear Bragg Diffractions through Volume Gratings Fabricated by Femtosecond Laser Writing in Lithium Niobate Crystal. Photonics 2023, 10, 562. https://doi.org/10.3390/photonics10050562
Lai P, Chang C, Liu X, Wei D. Multiplexing Linear and Nonlinear Bragg Diffractions through Volume Gratings Fabricated by Femtosecond Laser Writing in Lithium Niobate Crystal. Photonics. 2023; 10(5):562. https://doi.org/10.3390/photonics10050562
Chicago/Turabian StyleLai, Pailin, Chun Chang, Xinyu Liu, and Dunzhao Wei. 2023. "Multiplexing Linear and Nonlinear Bragg Diffractions through Volume Gratings Fabricated by Femtosecond Laser Writing in Lithium Niobate Crystal" Photonics 10, no. 5: 562. https://doi.org/10.3390/photonics10050562
APA StyleLai, P., Chang, C., Liu, X., & Wei, D. (2023). Multiplexing Linear and Nonlinear Bragg Diffractions through Volume Gratings Fabricated by Femtosecond Laser Writing in Lithium Niobate Crystal. Photonics, 10(5), 562. https://doi.org/10.3390/photonics10050562