Room–Temperature Terahertz Detector Based on Monolayer Graphene Integrated with an Asymmetric Bowtie Antenna
Abstract
:1. Introduction
2. Experimental Section
2.1. Design of Asymmetric THz Antenna
2.2. Fabrication of Graphene THz Detector Integrated with the Asymmetric Bowtie Antenna
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hafez, H.A.; Chai, X.; Ibrahim, A.; Mondal, S.; Ferachou, D.; Ropagnol, X.; Ozaki, T. Intense Terahertz Radiation and Their Applications. J. Opt. 2016, 18, 093004. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Ying, Y. Mechanisms and Applications of Terahertz Metamaterial Sensing: A Review. Nanoscale 2017, 9, 13864–13878. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S. Progress in Terahertz Nondestructive Testing: A Review. Front. Mech. Eng. Prc. 2019, 14, 273–281. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 Terahertz Science and Technology Roadmap. J. Phys. D-Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Rogalski, A. Progress in Performance Development of Room Temperature Direct Terahertz Detectors. J. Infrared Millim. Terahertz Waves. 2022, 43, 709–727. [Google Scholar] [CrossRef]
- Wang, J.; Gou, J.; Li, W. Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film. AIP Adv. 2014, 4, 027106. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Gou, J.; Wu, Z.; Jiang, Y. Fabrication and parameters calculation of room temperature terahertz detector with micro–bridge structure. J. Infrared Millim. Terahertz Waves 2015, 36, 49–59. [Google Scholar] [CrossRef]
- Xiao, P.; Tu, X.; Jiang, C.; Li, Z.; Zhou, S.; Pan, D.; Zhao, Q.; Jia, X.; Zhang, L.; Kang, L.; et al. Planar double–slot antenna integrated into a Nb 5 N 6 microbolometer THz detector. Opt. Lett. 2022, 45, 2894–2897. [Google Scholar] [CrossRef]
- Al Hadi, R.; Sherry, H.; Grzyb, J.; Zhao, Y.; Foerster, W.; Keller, H.M.; Cathelin, A.; Kaiser, A.; Pfeiffer, U.R. A 1 k–Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65–nm CMOS. IEEE J. Solid-State Circuits 2012, 47, 2999–3012. [Google Scholar] [CrossRef]
- Ojefors, E.; Pfeiffer, U.R.; Lisauskas, A.; Roskos, H.G. A 0.65 THz Focal–Plane Array in a Quarter–Micron CMOS Process Technology. IEEE J. Solid-State Circuits 2009, 44, 1968–1976. [Google Scholar] [CrossRef]
- Zhang, Z.–Z.; Li, H.; Cao, J.–C. Ultrafast Terahertz Detectors. Acta Phys. Sin.-Ch. Ed. 2018, 67, 1–12. [Google Scholar] [CrossRef]
- Yang, J.; Qin, H.; Zhang, K. Emerging Terahertz Photodetectors Based on Two–Dimensional Materials. Opt. Commun. 2018, 406, 36–43. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Z.; Yeow, J.T.W. Two–Dimensional Materials Applied for Room–Temperature Thermoelectric Photodetectors. Mater. Res. Express. 2020, 7, 112001. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.; Zhao, Z. Recent Progress and Remaining Challenges of 2D Material–Based Terahertz Detectors. Infrared Phys. Techn. 2019, 102, 103024. [Google Scholar] [CrossRef]
- Bae, S.–H.; Kum, H.; Kong, W.; Kim, Y.; Choi, C.; Lee, B.; Lin, P.; Park, Y.; Kim, J. Integration of Bulk Materials with Two–Dimensional Materials for Physical Coupling and Applications. Nat. Mater. 2019, 18, 550–560. [Google Scholar] [CrossRef]
- Vicarelli, L.; Vitiello, M.S.; Coquillat, D.; Lombardo, A.; Ferrari, A.C.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A. Graphene Field–Effect Transistors As Room–Temperature Terahertz Detectors. Nat. Mater. 2012, 11, 865–871. [Google Scholar] [CrossRef]
- Sizov, F.; Rogalski, A. THz Detectors. Prog. Quant. Electron. 2010, 34, 278–347. [Google Scholar] [CrossRef]
- Freitag, M.; Low, T.; Xia, F.; Avouris, P. Photoconductivity of Biased Graphene. Nat. Photonics 2013, 7, 53–59. [Google Scholar] [CrossRef]
- Castilla, S.; Terres, B.; Autore, M.; Viti, L.; Li, J.; Nikitin, A.Y.; Vangelidis, I.; Watanabe, K.; Taniguchi, T.; Lidorikis, E.; et al. Fast and Sensitive Terahertz Detection Using an Antenna–Integrated Graphene PN Junction. Nano Lett. 2019, 19, 2765–2773. [Google Scholar] [CrossRef]
- Viti, L.; Purdie, D.G.; Lombardo, A.; Ferrari, A.C.; Vitiello, M.S. HBN–Encapsulated, Graphene–based, Room–temperature Terahertz Receivers, with High Speed and Low Noise. Nano Lett. 2020, 20, 3169–3177. [Google Scholar] [CrossRef]
- Liu, C.–H.; Chang, Y.–C.; Norris, T.B.; Zhong, Z. Graphene Photodetectors with Ultra–Broadband and High Responsivity at Room Temperature. Nat. Nanotechnol. 2014, 9, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Degl’Innocenti, R.; Xiao, L.; Jessop, D.S.; Kindness, S.J.; Ren, Y.; Lin, H.; Zeitler, J.A.; Alexander–Webber, J.A.; Joyce, H.J.; Braeuninger–Weimer, P.; et al. Fast Room–Temperature Detection of Terahertz Quantum Cascade Lasers with Graphene–Loaded Bow–Tie Plasmonic Antenna Arrays. ACS Photonics 2016, 3, 1747–1753. [Google Scholar] [CrossRef]
- Guo, W.; Wang, L.; Chen, X.; Liu, C.; Tang, W.; Guo, C.; Wang, J.; Lu, W. Graphene–Based Broadband Terahertz Detector Integrated with A Square–Spiral Antenna. Opt. Lett. 2018, 43, 1647–1650. [Google Scholar] [CrossRef]
- Bean, J.A.; Tiwari, B.; Szakmany, G.; Bernstein, G.H.; Fay, P.; Porod, W. Antenna Length and Polarization Response of Antenna–Coupled MOM Diode Infrared Detectors. Infrared Phys. Techn. 2010, 53, 182–185. [Google Scholar] [CrossRef]
- Pan, G.; Li, B.; Heath, M.; Horsell, D.; Wears, M.L.; Al Taan, L.; Alwan, S. Transfer–Free Growth of Graphene on SiO2 Insulator Substrate from Sputtered Carbon and Nickel Films. Carbon 2013, 65, 349–358. [Google Scholar] [CrossRef]
- Giannazzo, F.; Sonde, S.; Raineri, V.; Patane, G.; Compagnini, G.; Aliotta, F.; Ponterio, R.; Rimini, E. In Optical, Morphological and Spectroscopic Characterization of Graphene on SiO2. In Proceedings of the 23rd International Conference on Amorphous and Nanocrystalline Semiconductors (ICANS23), Utrecht, The Netherlands, 23–28 August 2010; pp. 1251–1255. [Google Scholar]
- Zhou, L.; Fox, L.; Wlodek, M.; Islas, L.; Slastanova, A.; Robles, E.; Bikondoa, O.; Harniman, R.; Fox, N.; Cattelan, M.; et al. Surface Structure of Few Layer Graphene. Carbon 2018, 136, 255–261. [Google Scholar] [CrossRef]
- Generalov, A.A.; Andersson, M.A.; Yang, X.; Vorobiev, A.; Stake, J. A 400–GHz Graphene FET Detector. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 614–616. [Google Scholar] [CrossRef]
- Tong, J.; Muthee, M.; Chen, S.–Y.; Yngvesson, S.K.; Yan, J. Antenna Enhanced Graphene THz Emitter and Detector. Nano Lett. 2015, 15, 5295–5301. [Google Scholar] [CrossRef]
- Qin, H.; Sun, J.; Liang, S.; Li, X.; Yang, X.; He, Z.; Yu, C.; Feng, Z. Room–Temperature, Low–Impedance and High–Sensitivity Terahertz Direct Detector Based on Bilayer Graphene Field–Effect Transistor. Carbon 2017, 116, 760–765. [Google Scholar] [CrossRef]
- Harald, S.; Liu, H.C. Quantum Well Infrared Photodetectors: Physics and Applications; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
Antenna Type | Active Area | Operation Frequency | Response Time | NEP | Responsivity |
---|---|---|---|---|---|
Spiral antenna [24] | 0.02 mm2 | 0.11–0.3 THz | 9 μs | 0.35 nW/Hz1/2 | 28 V/W |
Dipole antenna [20] | 0.0045 mm2 | 1.8–4.2 THz | <30 ns | 80 pW/Hz1/2 | 105 V/W |
Bowtie antenna [21] | 0.0025 mm2 | 3.0 THz | ≤3.3 ns | 160 pW/Hz1/2 | 49 V/W |
Bowtie antenna [29] | 0.05 mm2 | 0.4 THz | – | 130 pW/Hz1/2 | 74 V/W |
Double patch antenna [30] | 0.0014 mm2 | 1.9 THz | – | 1.7 nW/Hz1/2 | 4.9 V/W |
Dipole antenna [31] | – | 0.3 THz | – | 51 pW/Hz1/2 | 30 V/W |
Bowtie antenna [23] | 0.001 mm2 | 2.0 THz | – | 150 nW/Hz1/2 | 34 μA/W |
Asymmetric bowtie antenna (This work) | 0.0015 mm2 | 1.8–3.2 THz | <21 μs | 0.59 nW/Hz1/2 | 19.6 V/W (0.007 A/W) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Ma, C.; Ou, H.; Wang, X.; Liu, S.; Chen, H.; Zheng, S.; Deng, S. Room–Temperature Terahertz Detector Based on Monolayer Graphene Integrated with an Asymmetric Bowtie Antenna. Photonics 2023, 10, 576. https://doi.org/10.3390/photonics10050576
Guo Z, Ma C, Ou H, Wang X, Liu S, Chen H, Zheng S, Deng S. Room–Temperature Terahertz Detector Based on Monolayer Graphene Integrated with an Asymmetric Bowtie Antenna. Photonics. 2023; 10(5):576. https://doi.org/10.3390/photonics10050576
Chicago/Turabian StyleGuo, Zicheng, Chaojun Ma, Hai Ou, Ximiao Wang, Shaojing Liu, Huanjun Chen, Shaoyong Zheng, and Shaozhi Deng. 2023. "Room–Temperature Terahertz Detector Based on Monolayer Graphene Integrated with an Asymmetric Bowtie Antenna" Photonics 10, no. 5: 576. https://doi.org/10.3390/photonics10050576
APA StyleGuo, Z., Ma, C., Ou, H., Wang, X., Liu, S., Chen, H., Zheng, S., & Deng, S. (2023). Room–Temperature Terahertz Detector Based on Monolayer Graphene Integrated with an Asymmetric Bowtie Antenna. Photonics, 10(5), 576. https://doi.org/10.3390/photonics10050576