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Abstract: An ultra-broadband, compact and CMOS-compatible arbitrary ratio power splitter that is
based on a directional coupler is proposed on the silicon-on-insulator (SOI) platform. The proposed
device consists of an adiabatic sub-wavelength grating (ASWG) and a conventional directional
coupler. The wavelength dependence is greatly reduced by introducing an ASWG in the coupling
region of the directional coupler. Simulation results show that our proposed device has an operating
bandwidth of 250 nm for arbitrary power splitting ratios, with a transmission power variation of
less than 8.5%, covering the wavelength range from 1400 nm to 1650 nm. Meanwhile, the device
footprint has been narrowed to less than 46 µm. In addition, the power splitters also exhibit a low
excess loss of below 0.24 dB. Our proposed ASWG-assisted power splitters show excellent potential
for application in large-scale photonic integrated circuits.
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1. Introduction

With the exponential growth of data streams, silicon photonics technology has shown
enormous application prospects and economic effects in the fields of datacom and tele-
com [1,2]. Benefiting from great compatibility with the conventional CMOS process [3],
photonic integrated chips (PICs) based on SOI platforms provide many advantages, such as
high-speed transmission, large data capacity and easy fabrication. The large refractive index
contrast between SOI materials allows us to design silicon photonic devices with a more
compact footprint, enabling high-density integration and cost reduction [4–6]. In silicon
photonic systems, power splitters (PSs) are adopted as a building block for power allocation,
based on mode interference or mode evolution [7,8]. PSs underpin essential components in
many scenarios, including optical switches [9], modulators [10,11], wavelength division (de-
)multiplexers (WDMs) [12,13], optical phase arrays (OPAs) [14,15], optical neural networks
(ONNs) [16,17], etc. Based on different principles, there are various methods to realize PSs,
such as multimode couplers (MMIs), Y-junctions, directional couplers (DCs), etc. MMIs
based on the self-imaging principle are a popular choice for achieving power splitting, ow-
ing to their small wavelength dependence and compact footprint. However, these devices
tend to suffer a non-negligible power imbalance and an insertion loss compared with other
PSs [18,19]. Y-junction couplers are also a common choice of design because of their simple
construction and easy fabrication. They offer a minor loss and a compact footprint, as well
as allowing for arbitrary power splitting ratios (PSRs). However, the loss caused by mode
mismatch cannot be ignored when the branch angle is not sufficiently small [20]. DCs
have attracted a lot of attention because of their simple structure and compact footprint.
The insertion loss is generally low, but these devices exhibit a high wavelength sensitivity,
resulting in a poor operating bandwidth [21]. Based on DCs, different schemes have been
proposed to reduce the wavelength dependence, including asymmetric DCs, adiabatic
DCs and sub-wavelength grating-based DCs (SWG-DCs). Asymmetric DCs modulate
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the dispersion by introducing an asymmetric structure in the coupling region, thereby
increasing the operational bandwidth. However, the improved bandwidth is limited in
this method, and it is difficult to further enhance its performance [22,23]. Adiabatic DCs
are based on mode evolution, and they are able to achieve a large operating bandwidth
with better robustness to fabrication imperfections. However, the dimensions required to
achieve the adiabatic mode evolution for adiabatic DCs are too long for large-scale photonic
integration [24,25]. SWG-DCs allow for significant improvements in the bandwidth and
footprint by introducing periodic pins in the coupling region to modulate the waveguide
refractive index. On the downside, these devices sacrifice some fabrication tolerance [26,27].
As a fundamental optical element with substantial application scope, it is essential to
implement PSs with a tradeoff of multiple performance characteristics.

In this paper, we propose an ASWG-assisted DC (ASWG-DC), enabling an arbitrary
ratio with an ultra-broad bandwidth, compact dimensions and low loss. By introducing an
ASWG in the coupling region, a high wavelength insensitivity can be inherently realized in
the operating waveband, benefiting from the adiabatic single-mode evolution. In addition,
through tuning the width difference of the pins, we can achieve arbitrary PSRs. Simulation
results show that the operating bandwidth of the device reaches 250 nm, with a maximum
transmission power fluctuation of 8.5%, covering from 1400 nm to 1650 nm for PSRs of
50%:50%, 60%:40%, 70%:30%, 80%:20% and 90%:10%. Benefiting from the adoption of the
SWG, the mode evolution footprint can be reduced significantly to less than 46 µm. The
ASWG-based arbitrary ratio power splitters exhibit an excess loss as low as 0.24 dB. In ad-
dition, our proposed devices also show an excellent robustness to fabrication imperfections.
With multiple performance metrics obtained, our proposed device offers great prospects
for applications in high-density PICs.

2. Device Schematic and Operation Principle

In a conventional mode-interference-based DC, both the fundamental even and odd
modes are initially excited. These two modes interfere with each other, leading to a
power oscillation between the two waveguides. Due to the differences in beat length at
different wavelengths caused by the mode dispersion, conventional DCs suffer from a large
wavelength dependence. In contrast to common DCs, the operating theory of ASWG-DCs
is mainly based on the single-mode evolution through the adiabatic transition region. In
principle, both the fundamental mode and the next higher-order mode are excited by the
excitation of an isolated waveguide mode at the input port. However, provided that the
input is sufficiently asynchronous, the power of the isolated mode will mainly merge into
a single system mode. This system mode will propagate through the adiabatic transition
region with negligible power coupling to the other system mode, given that the structure is
sufficiently adiabatic. This behavior ensures that the devices operate in the desired manner
for both 3 dB and full couplers and greatly avoids the effect of mode dispersion [28].
Accordingly, ASWG-DCs are inherently broadband, insensitive to fabrication imperfections
and do not require an exact length. Our proposed ASWG-DCs are mainly designed based
on the SOI platform, and their structure is shown in Figure 1a.

The device is composed of a 220 nm thick silicon waveguide with a 2 µm BOX and a
2 µm thick silicon substrate. On the top of the silicon layer, a 2 µm thick SiO2 is considered
as the cladding layer. As shown in Figure 1b,c, to better explain the structure and working
principle of the device, the specific structure of the proposed PSs can be divided into five
parts. The first section, with a length of Ls, consists mainly of straight and bent waveguides.
This section acts as the input of the device and needs to ensure that the input mode from
the left port can meet stable single-mode transmissions. Meanwhile, the curved waveguide
follows a Bessel curve. Since the trend of the waveguide changes slowly, the loss of the
waveguide can be further reduced. The second portion of the device is composed of tapered
waveguides with a length of Lt and a pair of SWGs with the same pins. The widths of the
trapezoid structures are tapered from W1 and W2 to Wc, with the widths of the upper and
lower SWGs remaining W1 and W2, respectively. In designing this part of the structure, it
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is necessary to ensure that the light field does not convert into higher-order modes when
propagating in this region. Region III consists of two strip waveguides with lengths of Lc
and widths of Wc, separated by G, and adiabatic sub-wavelength gratings. The pins of the
upper and lower gratings are tapered from W1, W2 to W3, W4, respectively, allowing the
mode evolution as the light enters the region. The coupling strength is also enhanced with
the ASWG introduced, making the footprint for mode evolution significantly narrower.
Conventional adiabatic evolution devices usually require lengths of more than 100 µm
to maintain single-mode propagation, which is not conducive to large-scale photonic
integration. In addition, we can adjust the refractive index of the waveguide to control the
power distribution of the incident optical field. Specifically, arbitrary PSRs can be achieved
by optimizing the width of the pins and the width of the strip waveguide, Wc. Region IV
mainly contains trapezoid waveguides with lengths of Lt and SWGs with widths of W3
and W4. The widths of the trapezoid waveguides are tapered from Wc to W3 and W4,
respectively. Region V, with a length of Ls, has a similar structure to Region I, allowing the
decoupled modes to propagate out stably. It is designed to connect the ASWG-DC with the
rest of the photonic integrated circuits. Both Region IV and Region V need to be designed to
ensure that the optical modes do not convert to higher-order modes. In addition, although
the widths of the SWGs in the different regions are not fixed, they all have an identical
variation period of Λ, and the lengths of the pins are all Lp, with the upper and lower pins
separated by G. Based on the above design principles, we initially set the SWG length Lc
in the coupling region to 20 µm and the widths W1, W2, W3 and W4 to 610 nm, 350 nm,
480 nm and 480 nm. Moreover, we chose 200 nm as the variation period Λ, and the pins’
length Lp was set to 100 nm [29]. The detailed parameter settings are shown in Table 1.
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Figure 1. (a) Schematic view of the proposed ASWG-DC on a SOI platform. (b) The top view of the
schematic and the geometric parameters of the device. (c) A zoom-in of the schematic and geometric
parameters of the ASWG.

Table 1. Parameters and corresponding values of the proposed device.

Symbol Value Symbol Value

Wc 0.12 µm Lt 15 µm
W1 0.61 µm Lc 20 µm
W2 0.35 µm Lp 0.1 µm
W3 0.48 µm Λ 0.2 µm
W4 0.48 µm G 0.1 µm
Ls 10 µm

As mentioned above, based on the mode evolution principle, the refractive index can
be modulated by adjusting the structure of the pair of ASWGs and the widths of the core
straight-strip waveguides in the adiabatic transition region, thereby changing the allocation
of the optical field at the emitting end. We defined the width difference ∆W1 at the right
end of the SWGs in region III as:

∆W1 = W3 − W4 (1)
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As shown in Figure 2, based on the parameter settings in Table 1, we simulated the
optical transmission at the cross port at 1550 nm when changing the lower SWG widths
of W2 and W4. In the simulation process, we kept W3 at 480 nm and varied W4 from
440 nm to 480 nm to modify ∆W1. In addition, we needed to keep the gap of the pair of
ASWGs constant. As a result, W2 and W4 had to be changed for the lower ASWG with
the waveguide taper angle constant when the width difference ∆W1 was introduced. We
initially employed the mature commercial software Lumerical Eigenmode Expansion (EME)
to calculate the function of the power splitting ratio of the adiabatic coupler and ∆W1, with
the transverse electric (TE) fundamental mode being excited at the input. The EME solver
can be used to address Maxwell’s equations in the frequency domain by, firstly, slicing
the device along the main propagation axis and then solving for the eigenmodes in each
cell. A 20 nm mesh grid was adopted in the simulation, and the perfect match layer (PML)
was used in three different dimensions. Based on the optimized results, the Lumerical
3D finite-difference time-domain (FDTD) was used for further verification of the arbitrary
power splitting performance. The FDTD solver is able to divide the simulation model
into discrete time and volume grid-constructed cells and further solve the corresponding
Maxwell’s equations to obtain the required field components.
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Figure 2. The simulated transmission from cross port at wavelength of 1550 nm, given ∆W1 varying
from 0 to 40 nm.

It was clear that as ∆W1 varied from 0 to 40 nm, the transmission from the bar port
could vary from 0 to 0.5. Based on this principle, arbitrary PSRs can theoretically be
achieved. The coupling strength of conventional directional couplers is known to be
strongly wavelength-dependent and, thus, has a narrow operating bandwidth. By intro-
ducing an ASWG in the coupling region, we were able to significantly attenuate the impact
of dispersion, increase the operating bandwidth and decrease the footprint. Moreover, the
adiabatic length does not need to be precisely defined due to the single-mode evolution,
which leaves room for further reduction in the adiabatic evolution length under different
power splitting ratios. For high-density silicon photonic systems, our proposed device
offers a promising application scope that profits from the multiple performance metrics.

3. Results and Discussion

In the optimization process, we simulated the complete device through the mature
commercial software Lumerical 3D FDTD, with the TE fundamental modes as excitation
and the light source covering wavelengths from 1400 nm to 1650 nm. To verify that the
proposed structure could realize arbitrary PSRs, we simulated structural variations in the
SWG-DCs to optimize the device performance for PSRs of 50%:50%, 60%:40%, 70%:30%,
80%:20% and 90%:10%. The 4.1 Ghz Core-i7 CPU was employed, and 160 GB RAM was
provided for the computing resources. In the simulation process, the mesh grid was set
to 20 nm, and the boundary conditions for different dimensions were perfectly matched
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layers, with each simulation taking about 5 h. We defined the PSR at the two outputs of the
device as follows:

PSR = Tcross/(Tbar + Tcross) (2)

where Tbar represents the transmission obtained from bar port, and Tcross stands for the
transmission obtained from cross port. As shown in Figure 3, when the TE mode was
incident from input port, we simulated the transmission curve for arbitrary PSRs and
corresponding light field profiles.
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According to the simulation results, our optimized device can perform reliable power
splitting in the desired operating waveband, with a minor wavelength dependence, given
maximum transmission power variations of 3.5%, 4.6%, 6.6%, 8.5% and 4.7% from the bar
port for splitting ratios from 50%:50% to 90%:10%. After the light is incident from the
input port, it undergoes mode evolution in the coupling region and exits steadily from
the bar port and the cross port without conversion to higher-order modes. Conventional
SWG-based devices are designed based on the mode interference principle and involve
different modes which suffer from the birefringence. Our proposed power splitters are
designed based on the principle of adiabatic mode evolution. By designing the SWG as a
trapezoidal shape, perfect adiabatic evolution can be achieved at a sufficient length. This
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maintains a stable, single-mode propagation and avoids the desired mode converting into
other modes, effectively realizing birefringence-free operation. The structural parameters
corresponding to the PSRs from 50%:50% to 90%:10% are shown in Table 2, based on our
optimization data. The adiabatic evolution principle can also be applied to TM mode
operations, but the parameters for the corresponding arbitrary power splitting ratios need
to be redesigned based on the characteristics of the TM mode.

Table 2. Parameters and characteristics for different SRs.

Splitting Ratio W4 (nm) Lc (µm) Wc (nm)

50%:50% 480 11 115
60%:40% 473 16 115
70%:30% 466 15 105
80%:20% 457 14 110
90%:10% 444 14 115

Due to the refractive index modulation of the SWG, the dimensions of the adiabatic
gratings for arbitrary power splitting ratios were drastically reduced to below 16 µm, with
a total footprint of less than 46 µm. In addition, we calculated the excess loss (EL) of the
device in the wavelength range from 1400 nm to 1650 nm. We defined the EL of the device
as follows:

EL = −10 log10(Tbar + Tcross) (3)

As shown in Figure 4, the EL of our proposed device is as low as 0.24 dB. This shows
that our device is capable of achieving ultra-broad bandwidth, compact size and low loss
simultaneously, providing a relatively comprehensive performance improvement.
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Figure 4. The calculated EL of ASWG-DCs for arbitrary PSRs from 1400 nm to 1650 nm.

In subsequent device fabrication processes, our proposed device will be fabricated
on a commercial SOI wafer from Soitec. We will process the designed waveguide pattern
through employing electron beam lithography (EBL), with a positive resist for zep 250 nm
being used as the photomask. There is only one etch required because our device is
designed based on a strip waveguide with a silicon layer thickness of 220 nm. The top layer
of silicon will be fully etched to a depth of 220 nm via inductively coupled plasma (ICP) dry
etching to yield the complete waveguide structure. Prior to device fabrication, it is essential
that the robustness of the proposed device to fabrication imperfections be investigated
accordingly. The transmission from the bar port at a wavelength of 1550 nm was simulated
when the waveguide thickness varied from −10 nm to 10 nm, the width varied from
−10 nm to 10 nm and the width of the pins varied from −10 nm to 10 nm. When we
changed the thickness of the waveguides, the other structural parameters remained at their
original values, and vice versa. As shown in Figure 5, it is clear that the devices are able to
operate steadily within the above fabrication deviation levels.
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The comparison of the simulation results between the state-of-the-art imbalanced
couplers and the ASWG-DCs demonstrated in this work is summarized in Table 3. To the
best of our knowledge, our proposed adiabatic evolution-based power splitters offer a much
smaller footprint compared to other adiabatic couplers, as well as an ultra-broad operating
bandwidth covering the E, S, C, L and U wavebands. With multiple performance metrics,
our study provides a significant potential for application in the large-scale silicon system.

Table 3. Comparison of simulation results of the reported power splitter and this work.

Reference Type Size (µm) Operation Band Bandwidth (nm) EL (dB)

[26] SWG, Adiabatic DC 65 S + C + L 100 <0.2
[25] Adiabatic DC 240 O 200 NA
[24] Adiabatic DC 80 S + C + L 100 0.05
[19] MMI 52.5 S + C + L 100 <1.5
[30] Asymmetric DC 60 O 80 <0.38

This work ASWG, DC 46 E + S + C + L + U 250 <0.24

4. Conclusions

In conclusion, we present an ASWG-assisted arbitrary ratio PS with ultra-broad band-
width, a compact footprint and low loss. By optimizing the structure of the ASWG to
tune the refractive index, the wavelength dependence and dimensions of the device can be
significantly improved. Through FDTD simulations, we realized PSRs from 50%:50% to
90%:10% with an operating bandwidth of 250 nm, covering 1400 to 1650 nm. In the operat-
ing waveband above, our proposed device exhibits stable power splitting characteristics,
with transmission power fluctuations of less than 8.5% for arbitrary power splitting ratios.
Benefiting from the introduction of the SWGs, the device dimensions were reduced to less
than 46 µm. In addition, our work shows that the excess loss of the device is below 0.24 dB.
It was also found that the device offers significant robustness to fabrication imperfections.
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With a tradeoff of multiple performance metrics, our proposed device shows great potential
for applications in large-scale PICs.
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