Investigation of Giant Nonlinearity in a Plasmonic Metasurface with Epsilon-Near-Zero Film
Abstract
:1. Introduction
2. Method and Dual-Mode Metasurface
2.1. Multiphysics Hydrodynamic Model
2.2. Numerical Approach
2.3. Computational Grid
2.4. Final Discretized Formula
2.5. GPU Programming Structure
2.6. Dual-Mode Plasmonic Metasurface with ENZ Material
3. Results
3.1. Simulation Setup
3.2. Revealing the Enhanced Nonlinearity from the Dual-Mode Metasurface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.C.; Fan, Y.; Guo, J.; Fu, X.; Cui, T.J. Second-Harmonic Generation of Spoof Surface Plasmon Polaritons Using Nonlinear Plasmonic Metamaterials. ACS Photonics 2016, 3, 139–146. [Google Scholar] [CrossRef]
- Bachelier, G.; Russier-Antoine, I.; Benichou, E.; Jonin, C.; Brevet, P.-F. Multipolar second-harmonic generation in noble metal nanoparticles. J. Opt. Soc. Am. B 2008, 25, 955–960. [Google Scholar] [CrossRef]
- Butet, J.; Russier-Antoine, I.; Jonin, C.; Lascoux, N.; Benichou, E.; Brevet, P.-F. Sensing with Multipolar Second Harmonic Generation from Spherical Metallic Nanoparticles. Nano Lett. 2012, 12, 1697–1701. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jin, J.; Kim, Y.-J.; Park, I.-Y.; Kim, Y.; Kim, S.-W. Highharmonic generation by resonant plasmon field enhancement. Nature 2008, 453, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Kivshar, Y.S.; Alexander, T.J.; Turitsyn, S.K. Nonlinear modes of a macroscopic quantum oscillator. Phys. Lett. A 2001, 278, 225–230. [Google Scholar] [CrossRef]
- Fang, M.; Huang, Z.; Sha, W.E.I.; Wu, X. Maxwell–Hydrodynamic Model for Simulating Nonlinear Terahertz Generation from Plasmonic Metasurfaces. IEEE J. Multiscale Multiphys. Comput. Tech. 2017, 2, 194–201. [Google Scholar] [CrossRef]
- Liu, J.; Brio, M.; Zeng, Y.; Zakharian, A.R.; Hoyer, W.; Koch, S.W.; Moloney, J.V. Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model. J. Comput. Phys. 2010, 229, 5921–5932. [Google Scholar] [CrossRef]
- Liu, C.; Pang, K.; Manukyan, K.; Reshef, O.; Zhou, Y.; Patrow, J.; Pennathur, A.; Song, H.; Zhao, Z.; Zhang, R.; et al. Resonance Splitting and Enhanced Optical Nonlinearities in ITO-based Epsilon-near-zero Metasurface with Cross-shaped Nanoantennas. In CLEO: QELS Fundamental Science; Optica Publishing Group: Washington, DC, USA, 2019; p. FW4B–5. [Google Scholar] [CrossRef]
- Matsunaga, T.; Mag-Usara, V.K.; Ejiri, K.; Tetsukawa, S.; Liu, S.; Agulto, V.C.; Nishitani, S.; Nishitani, M.; Yoshimura, M.; Nakajima, M. High intensity spintronic terahertz emitter with ito and microsheet glass structure. In Proceedings of the 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, The Netherlands, 28 August 2022–2 September 2022; IEEE: New York, NY, USA; pp. 1–2. [Google Scholar]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Fang, M.; Huang, Z.; Sha, W.E.; Xiong, X.Y.; Wu, X. Full hydrodynamic model of nonlinear electromagnetic response in metallic metamaterials. arXiv 2016, arXiv:1610.09624. [Google Scholar] [CrossRef]
- Ginzburg, P.; Krasavin, A.V.; Wurtz, G.A.; Zayats, A.V. Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures. ACS Photonics 2015, 2, 8–13. [Google Scholar] [CrossRef]
- Lu, Y.; Feng, X.; Wang, Q.; Zhang, X.; Fang, M.; Sha, W.E.; Huang, Z.; Xu, Q.; Niu, L.; Chen, X.; et al. Integrated Terahertz Generator-Manipulators Using Epsilon-near-Zero-Hybrid Nonlinear Metasurfaces. Nano Lett. 2021, 21, 7699–7707. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Niu, K.; Huang, Z.; Sha, W.E.I.; Wu, X.; Koschny, T.; Soukoulis, C.M. Investigation of broadband terahertz generation from metasurface. Opt. Express 2018, 26, 14241–14250. [Google Scholar] [CrossRef] [PubMed]
- Bychkov, V.L.; Mokin, A.Y. On Analogies between Hydrodynamics and Electrodynamics for Plasma Technologies I. IEEE Trans. Plasma Sci. 2014, 42, 3916–3920. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Teixeira, F.L.; Volakis, J.L. Fast Modeling of Terahertz Plasma-Wave Devices Using Unconditionally Stable FDTD Methods. IEEE J. Multiscale Multiphys. Comput. Tech. 2018, 3, 29–36. [Google Scholar] [CrossRef]
- Chen, X.; Yang, F.; Li, M.; Xu, S. Analysis of Nonlinear Metallic Metasurface Elements Using Maxwell-Hydrodynamic Model with Time-Domain Perturbation Method. IEEE Trans. Antennas Propag. 2019, 68, 2213–2223. [Google Scholar] [CrossRef]
- Yee, K. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar] [CrossRef]
- Shams, R.; Sadeghi, P. On optimization of finite-difference time-domain (FDTD) computation on heterogeneous and GPU clusters. J. Parallel Distrib. Comput. 2011, 71, 584–593. [Google Scholar] [CrossRef]
- Chi, J.; Liu, F.; Weber, E.; Li, Y.; Crozier, S. GPU-Accelerated FDTD Modeling of Radio-Frequency Field–Tissue Interactions in High-Field MRI. IEEE Trans. Biomed. Eng. 2011, 58, 1789–1796. [Google Scholar] [CrossRef]
- Gunawardana, M.; Kordi, B. GPU and CPU-Based Parallel FDTD Methods for Frequency-Dependent Transmission Line Models. IEEE Lett. Electromagn. Compat. Pract. Appl. 2022, 4, 66–70. [Google Scholar] [CrossRef]
- Fujii, M.; Tahara, M.; Sakagami, I.; Freude, W.; Russer, P. High-Order FDTD and Auxiliary Differential Equation Formulation of Optical Pulse Propagation in 2-D Kerr and Raman Nonlinear Dispersive Media. IEEE J. Quantum Electron. 2004, 40, 175–182. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, H.; Jiang, T. Research on rough sea surface EM computation model based on parallel FDTD method. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; IEEE: New York, NY, USA; p. 2193. [Google Scholar]
- Liu, S.; Zou, B.; Zhang, L.; Ren, S. Heterogeneous CPU+GPU-accelerated FDTD for scattering problems with dynamic load balancing. IEEE Trans. Antennas Propag. 2020, 68, 6734–6742. [Google Scholar] [CrossRef]
- Liu, S.; Zou, B.; Zhang, L.; Ren, S. A Multi-GPU Accelerated Parallel Domain Decomposition One-Step Leapfrog ADI-FDTD. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 816–820. [Google Scholar] [CrossRef]
- Luo, L.; Chatzakis, I.; Wang, J.; Niesler, F.B.P.; Wegener, M.; Koschny, T.; Soukoulis, C.M. Broadband terahertz generation from metamaterials. Nat. Commun. 2014, 5, 3055. [Google Scholar] [CrossRef] [PubMed]
- Keren-Zur, S.; Tal, M.; Fleischer, S.; Mittleman, D.M.; Ellenbogen, T. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nat. Commun. 2019, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Minerbi, E.; Keren-Zur, S.; Ellenbogen, T. Nonlinear Metasurface Fresnel Zone Plates for Terahertz Generation and Manipulation. Nano Lett. 2019, 19, 6072–6077. [Google Scholar] [CrossRef]
Background Permittivity | Electron Density | Collision Frequency | |
Au | 1 | 5.8613 × 1028 | 1.2 × 1014 |
ITO | 4.1 | 2.3406 × 1027 | 2.9326 × 1014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Xu, K.; Feng, J.; Fang, M. Investigation of Giant Nonlinearity in a Plasmonic Metasurface with Epsilon-Near-Zero Film. Photonics 2023, 10, 592. https://doi.org/10.3390/photonics10050592
Liu C, Xu K, Feng J, Fang M. Investigation of Giant Nonlinearity in a Plasmonic Metasurface with Epsilon-Near-Zero Film. Photonics. 2023; 10(5):592. https://doi.org/10.3390/photonics10050592
Chicago/Turabian StyleLiu, Chenran, Ke Xu, Jian Feng, and Ming Fang. 2023. "Investigation of Giant Nonlinearity in a Plasmonic Metasurface with Epsilon-Near-Zero Film" Photonics 10, no. 5: 592. https://doi.org/10.3390/photonics10050592
APA StyleLiu, C., Xu, K., Feng, J., & Fang, M. (2023). Investigation of Giant Nonlinearity in a Plasmonic Metasurface with Epsilon-Near-Zero Film. Photonics, 10(5), 592. https://doi.org/10.3390/photonics10050592