Optical Chaos in Saturated Nonlinear Media
Abstract
:1. Introduction
2. Experimental Setup
3. Numerical Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haken, H. Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 1975, 53, 77–78. [Google Scholar] [CrossRef]
- Gibbs, H.M.; Hopf, F.A.; Kaplan, D.L.; Shoemaker, R.L. Observation of chaos in optical bistability. Phys. Rev. Lett. 1981, 46, 474. [Google Scholar] [CrossRef]
- Weiss, C.O.; Klische, W.; Ering, P.S.; Cooper, M. Instabilities and chaos of a single mode NH3 ring laser. Opt. Commun. 1985, 52, 405–408. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X.; Shi, G. Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 2011, 62, 1531–1539. [Google Scholar] [CrossRef]
- Crawford, J.D. Introduction to bifurcation theory. Rev. Mod. Phys. 1991, 63, 991. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, W.; Feng, Y.; Deng, D. Spatiotemporal self-accelerating Airy–Hermite–Gaussian and Airy–helical–Hermite–Gaussian wave packets in strongly nonlocal nonlinear media. Opt. Commun. 2019, 441, 195–207. [Google Scholar] [CrossRef]
- Rodrigues Gonçalves, M.; Rozenman, G.G.; Zimmermann, M.; Efremov, M.A.; Case, W.B.; Arie, A.; Shemer, L.; Schleich, W.P. Bright and dark diffractive focusing. Appl. Phys. B 2022, 128, 51. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Schleich, W.P.; Shemer, L.; Arie, A. Periodic wave trains in nonlinear media: Talbot revivals, Akhmediev breathers, and asymmetry breaking. Phys. Rev. Lett. 2022, 128, 214101. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Shemer, L.; Arie, A. Observation of accelerating solitary wavepackets. Phys. Rev. E 2020, 101, 050201. [Google Scholar] [CrossRef]
- Chen, Y.; Hosseini, B.; Owhadi, H.; Stuart, A.M. Solving and learning nonlinear PDEs with Gaussian processes. J. Comput. Phys. 2021, 447, 110668. [Google Scholar] [CrossRef]
- Gupta, N. Multi Gaussian Breather Solitons in Diffraction Managed Nonlinear Optical Media. Nonlinear Opt. Quantum Opt. Concepts Mod. Opt. 2022, 55, 309–330. [Google Scholar]
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 1999, 71, 463. [Google Scholar] [CrossRef]
- Xin, F.; Di Mei, F.; Falsi, L.; Pierangeli, D.; Conti, C.; Agranat, A.J.; DelRe, E. Evidence of chaotic dynamics in three-soliton collisions. Phys. Rev. Lett. 2021, 127, 133901. [Google Scholar] [CrossRef]
- Eberhard, M.; Savojardo, A.; Maruta, A.; Römer, R.A. Rogue wave generation by inelastic quasi-soliton collisions in optical fibres. Opt. Express 2017, 25, 28086–28099. [Google Scholar] [CrossRef]
- Peng, J.; Tarasov, N.; Sugavanam, S.; Churkin, D. Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser. Opt. Express 2016, 24, 21256–21263. [Google Scholar] [CrossRef]
- Hermann-Avigliano, C.; Salinas, I.A.; Rivas, D.A.; Real, B.; Mančić, A.; Mejía-Cortés, C.; Maluckov, A.; Vicencio, R.A. Spatial rogue waves in photorefractive SBN crystals. Opt. Lett. 2019, 44, 2807–2810. [Google Scholar] [CrossRef]
- Chen, Z.; Li, F.; Lou, C. Statistical study on rogue waves in Gaussian light field in saturated nonlinear media. Chin. Opt. Lett. 2022, 20, 081901. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, H.; Qing, T. Nonlinear dynamics of slider crank mechanism with rubber linkage. J. Mech. Electr. Gineering 2020, 37, 607–613. [Google Scholar]
- Lyapunov, A.M. The general problem of the stability of motion. Int. J. Control 1992, 55, 531–534. [Google Scholar] [CrossRef]
- Murakami, A.; Shore, K. Mean spectral phase and detection of masked periodic signals in chaotic carriers. IET Optoelectron. 2011, 5, 114–120. [Google Scholar] [CrossRef]
- Allio, R.; Guzmán-Silva, D.; Cantillano, C.; Morales-Inostroza, L.; Lopez-Gonzalez, D.; Etcheverry, S.; Vicencio, R.A.; Armijo, J. Photorefractive writing and probing of anisotropic linear and nonlinear lattices. J. Opt. 2015, 17, 025101. [Google Scholar] [CrossRef]
- Qian, X.-M.; Zhu, W.-Y.; Rao, R.-Z. Long-distance propagation of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence. Chin. Phys. B 2012, 21, 094202. [Google Scholar] [CrossRef]
- Baozhou, L. Research on Power Spectrum Estimation and Improved Algorithm of Periodic Graph Method. Electron. Meas. Technol. 2020, 43, 76–79. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Cedeño González, J.R.; Flores, J.J.; Fuerte-Esquivel, C.R.; Moreno-Alcaide, B.A. Nearest neighbors time series forecaster based on phase space reconstruction for short-term load forecasting. Energies 2020, 13, 5309. [Google Scholar] [CrossRef]
- Deeming, T.J. Fourier analysis with unequally-spaced data. Astrophys. Space Sci. 1975, 36, 137–158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Chen, Z.; Song, J.; Li, M.; Lou, C. Optical Chaos in Saturated Nonlinear Media. Photonics 2023, 10, 600. https://doi.org/10.3390/photonics10050600
Li F, Chen Z, Song J, Li M, Lou C. Optical Chaos in Saturated Nonlinear Media. Photonics. 2023; 10(5):600. https://doi.org/10.3390/photonics10050600
Chicago/Turabian StyleLi, Fuqiang, Ziyang Chen, Jie Song, Meng Li, and Cibo Lou. 2023. "Optical Chaos in Saturated Nonlinear Media" Photonics 10, no. 5: 600. https://doi.org/10.3390/photonics10050600
APA StyleLi, F., Chen, Z., Song, J., Li, M., & Lou, C. (2023). Optical Chaos in Saturated Nonlinear Media. Photonics, 10(5), 600. https://doi.org/10.3390/photonics10050600