On the Quenching Mechanism of Ce, Tb Luminescence and Scintillation in Compositionally Disordered (Gd, Y, Yb)3Al2Ga3O12 Garnet Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Luminescence and Scintillation Properties
3.2. Ce3+ and Tb3+ Luminescence Quenching Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reisfeld, R.; Kalisky, Y. Nd3+ and Yb3+ Germanate and Tellurite Glasses for Fluorescent Solar Energy Collectors. Chem. Phys. Lett. 1981, 80, 178–183. [Google Scholar] [CrossRef]
- Grigoryev, I.S.; Klapshina, L.G.; Lermontova, S.A.; Semenov, V.V.; Treushnikov, V.M.; Treushnikov, V.V.; Bushuk, B.A.; Clement, S.; Douglas, W.E. Efficient Luminescent Solar Concentrators Based on Defectless Organic Glasses Containing Novel Ytterbium Cyanoporphyrazine Complex. Nanotechnol. Russ. 2012, 7, 492–498. [Google Scholar] [CrossRef]
- Boulon, G.; Brenier, A.; Laversenne, L.; Guyot, Y.; Goutaudier, C.; Cohen-Adad, M.-T.; Métrat, G.; Muhlstein, N. Search of Optimized Trivalent Ytterbium Doped-Inorganic Crystals for Laser Applications. J. Alloys Compd. 2002, 341, 2–7. [Google Scholar] [CrossRef]
- Brenier, A.; Boulon, G. Overview of the Best Yb3+-Doped Laser Crystals. J. Alloys Compd. 2001, 323–324, 210–213. [Google Scholar] [CrossRef]
- Dieke, G.H.; Crosswhite, H.M.; Crosswhite, H. Spectra and Energy Levels of Rare Earth Ions in Crystals; Interscience: New York, NY, USA, 1968. [Google Scholar]
- Antonini, P.; Belogurov, S.; Bressi, G.; Carugno, G.; Iannuzzi, D. Infrared Scintillation of Yb(10%):YAG Crystal. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 486, 799–802. [Google Scholar] [CrossRef]
- Nakazawa, E. Charge-Transfer Type Luminescence of Yb3+ Ions in LuPO4 and YPO4. Chem. Phys. Lett. 1978, 56, 161–163. [Google Scholar] [CrossRef]
- van Pieterson, L.; Heeroma, M.; de Heer, E.; Meijerink, A. Charge Transfer Luminescence of Yb3+. J. Lumin. 2000, 91, 177–193. [Google Scholar] [CrossRef]
- Guerassimova, N.; Garnier, N.; Dujardin, C.; Petrosyan, A.G.; Pedrini, C. X-ray Excited Charge Transfer Luminescence of Ytterbium-Containing Aluminium Garnets. Chem. Phys. Lett. 2001, 339, 197–202. [Google Scholar] [CrossRef]
- Bressi, G.; Carugno, G.; Conti, E.; Noce, C.D.; Iannuzzi, D. New Prospects in Scintillating Crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 461, 361–364. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Akagi, T.; Nikl, M.; Solovieva, N.; Lebbou, K.; Dujardin, C.; Pédrini, C.; Fukuda, T. {Y3−x,Ybx}[Ga]2(Ga)3O12 and {Lu2Yb1}[Al]2(Al)3O12 Single Crystals for Scintillator Application Grown by the Modified Micro-Pulling-down Method. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 486, 79–82. [Google Scholar] [CrossRef]
- Kamenskikh, I.; Dujardin, C.; Garnier, N.; Guerassimova, N.; Ledoux, G.; Mikhailin, V.; Pedrini, C.; Petrosyan, A.; Vasil’ev, A. Temperature Dependence of the Charge Transfer and f–f Luminescence of Yb3+ in Garnets and YAP. J. Phys. Condens. Matter 2005, 17, 5587. [Google Scholar] [CrossRef]
- Belogurov, S.; Bressi, G.; Carugno, G.; Conti, E.; Iannuzzi, D.; Meneguzzo, A. Experimental evidence of infrared scintillation in crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2000, 452, 381–385. [Google Scholar] [CrossRef]
- Dorenbos, P. Charge Transfer Bands in Opt. Mater. and Related Defect Level Location. Opt. Mater. 2017, 69, 8–22. [Google Scholar] [CrossRef]
- Lecoq, P.; Gektin, A.; Korzhik, M. Particle Acceleration and Detection. In Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-45522-8. [Google Scholar]
- Henderson, E.W.; Meehan, J.P. Optical Properties of Divalent Rare Earth Ions in SrAlF5. J. Lumin. 1974, 8, 415–427. [Google Scholar] [CrossRef]
- Raipurkar, J.R.; Atram, R.G.; Muthal, P.L.; Dhopte, S.M.; Moharil, S.V. Luminescence of Yb2+ in RbCaCl3. J. Lumin. 2013, 134, 456–458. [Google Scholar] [CrossRef]
- Rowe, E.; Bhattacharya, P.; Tupitsyn, E.; Groza, M.; Burger, A.; Cherepy, N.J.; Payne, S.A.; Sturm, B.W.; Pédrini, C. A New Lanthanide Activator for Iodide Based Scintillators: Yb2+. IEEE Trans. Nucl. Sci. 2013, 60, 1057–1060. [Google Scholar] [CrossRef]
- Rowe, E.; Tupitsyn, E.; Wiggins, B.; Bhattacharya, P.; Matei, L.; Groza, M.; Buliga, V.; Burger, A.; Beck, P.; Cherepy, N.J.; et al. Double Salts Iodide Scintillators: Cesium Barium Iodide, Cesium Calcium Iodide, and Barium Bromine Iodide. Cryst. Res. Technol. 2013, 48, 227–235. [Google Scholar] [CrossRef]
- Alekhin, M.S.; Biner, D.A.; Krämer, K.W.; Dorenbos, P. Optical and Scintillation Properties of SrI2:Yb2+. Opt. Mater. 2014, 37, 382–386. [Google Scholar] [CrossRef]
- Dorenbos, P. Anomalous Luminescence of Eu2+ and Yb2+ in Inorganic Compounds. J. Phys. Condens. Matter 2003, 15, 2645. [Google Scholar] [CrossRef]
- Wu, Y.; Chakoumakos, B.C.; Shi, H.; Du, M.-H.; Greeley, I.; Loyd, M.; Rutstrom, D.J.; Stand, L.; Koschan, M.; Melcher, C.L. Crystal Structure, Electronic Structure, Optical and Scintillation Properties of Self-Activated Cs4YbI6. J. Lumin. 2018, 201, 460–465. [Google Scholar] [CrossRef]
- Wojtowicz, A.J.; Lempicki, A.; Wisniewski, D.; Boatner, L.A. Cerium-Doped Orthophosphate Scintillators. MRS Online Proc. Libr. 1994, 348, 123. [Google Scholar] [CrossRef]
- Cooke, D.W.; Muenchausen, R.E.; Bennett, B.L.; McClellan, K.J.; Portis, A.M. Temperature-Dependent Luminescence of Cerium-Doped Ytterbium Oxyorthosilicate. J. Lumin. 1998, 79, 185–190. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, C.; Liang, H.; Su, Q.; Zhou, J.; Wang, J. Growth and Optical Properties of (Yb3-xYx)Al5O12:Ce3+ Single Crystals. Opt. Mater. 2011, 34, 152–154. [Google Scholar] [CrossRef]
- Yoshida, Y.; Shinozaki, K.; Igashira, T.; Kawano, N.; Okada, G.; Kawaguchi, N.; Yanagida, T. Characterizations of Pr-Doped Yb3Al5O12 Single Crystals for Scintillator Applications. Solid State Sci. 2018, 78, 1–6. [Google Scholar] [CrossRef]
- Yoshida, Y.; Okada, G.; Kawaguchi, N.; Yanagida, T. Scintillation Properties of Ce-Doped Yb3Al5O12 Single Crystals. Optik 2019, 182, 884–889. [Google Scholar] [CrossRef]
- Korzhik, M.; Kudriavtseva, P.S.; Lubetskii, A.; Fedorov, A.; Lobko, A.; Moroz, V. Scintillation porperties of BGO:Yb. J. Appl. Spectrosc. 1992, 57, 299. [Google Scholar]
- Korzhik, M.V.; Drobyshev, G.Y.; Kondratiev, D.M.; Borisevich, A.E.; Pavlenko, V.B.; Timochenko, T.N. Scintillation Quenching in Cerium-Doped Ytterbium-Based Crystals. Phys. Status Solidi B 1996, 197, 495–501. [Google Scholar] [CrossRef]
- Yu, D.C.; Rabouw, F.T.; Boon, W.Q.; Kieboom, T.; Ye, S.; Zhang, Q.Y.; Meijerink, A. Insights into the Energy Transfer Mechanism in Ce3+–Yb3+ Codoped YAG Phosphors. Phys. Rev. B 2014, 90, 165126. [Google Scholar] [CrossRef]
- Fetliński, B.; Turczyński, S.; Malinowski, M.; Szczepański, P. Down-Shifting in the YAM:Ce3+ + Yb3+ System for Solar Cells. Materials 2021, 14, 2753. [Google Scholar] [CrossRef]
- Korzhik, M.; Borisevich, A.; Fedorov, A.; Gordienko, E.; Karpyuk, P.; Dubov, V.; Sokolov, P.; Mikhlin, A.; Dosovitskiy, G.; Mechninsky, V.; et al. The Scintillation Mechanisms in Ce and Tb Doped (GdxY1−x)Al2Ga3O12 Quaternary Garnet Structure Crystalline Ceramics. J. Lumin. 2021, 234, 117933. [Google Scholar] [CrossRef]
- Korzhik, M.; Abashev, R.; Fedorov, A.; Dosovitskiy, G.; Gordienko, E.; Kamenskikh, I.; Kazlou, D.; Kuznecova, D.; Mechinsky, V.; Pustovarov, V.; et al. Towards Effective Indirect Radioisotope Energy Converters with Bright and Radiation Hard Scintillators of (Gd,Y)3Al2Ga3O12 Family. Nucl. Eng. Technol. 2022, 54, 2579–2585. [Google Scholar] [CrossRef]
- Jarrell, J.T.; Cherepy, N.J.; Seeley, Z.M.; Murphy, J.W.; Swanberg, E.L.; Voss, L.F.; Frye, C.D.; Stoyer, M.A.; Henderson, R.A.; O’Neal, S.P.; et al. Beta Radiation Hardness of GYGAG(Ce) Transparent Ceramic Scintillators. IEEE Trans. Nucl. Sci. 2022, 69, 938–941. [Google Scholar] [CrossRef]
- Jarrell, J.; Cherepy, N.; Murphy, J.W.; Nikolic, R.J.; Swanberg, E.L., Jr. Indirect Conversion Nuclear Battery Using Transparent Scintillator Material. U.S. Patent No 11,415,713, 16 October 2022. [Google Scholar]
- Vergeer, P.; Vlugt, T.J.H.; Kox, M.H.F.; den Hertog, M.I.; van der Eerden, J.P.J.M.; Meijerink, A. Quantum Cutting by Cooperative Energy Transfer in YbxY1−xPO4:Tb3+. Phys. Rev. B 2005, 71, 014119. [Google Scholar] [CrossRef]
- Guo, L.; Yu, H.; Liu, J.; Wu, B.; Guo, Y.; Fu, Y.; Zhao, L. Three-Photon near-Infrared Quantum Cutting in β-NaGdF4:Yb3+. J. Alloys Compd. 2019, 784, 739–743. [Google Scholar] [CrossRef]
- Korzhik, M.; Retivov, V.; Dosovitskiy, G.; Dubov, V.; Kamenskikh, I.; Karpuk, P.; Komendo, I.; Kuznetsova, D.; Smyslova, V.; Mechinsky, V.; et al. First Observation of the Scintillation Cascade in Tb3+-Doped Quaternary Garnet Ceramics. Phys. Status Solidi RRL 2023, 17, 2200368. [Google Scholar] [CrossRef]
- Hehlen, M.P.; Güdel, H.U. Optical Spectroscopy of the Dimer System Cs3Yb2Br9. J. Chem. Phys. 1993, 98, 1768–1775. [Google Scholar] [CrossRef]
- Mironov, V.S.; Kaminskii, A.A. Covalent Mechanism of Cooperative Optical Transitions in Lanthanide Exchange-Coupled Pairs. Intensity Calculations for Double Transitions in a M2L11 F1–F1 Dimer. Phys. Status Solidi B 1996, 194, 307–318. [Google Scholar] [CrossRef]
- Malashkevich, G.E.; Kouhar, V.V.; Pestryakov, E.V.; Sigaev, V.N.; Golubev, N.V.; Ziyatdinova, M.Z.; Sukhodola, A.A. Spectral-Luminescent and Laser Properties of the (Y1−x,Ybx)2O3−Al2O3−B2O3 Glasses. Opt. Mater. 2018, 76, 253–259. [Google Scholar] [CrossRef]
- Auffray, E.; Augulis, R.; Fedorov, A.; Dosovitskiy, G.; Grigorjeva, L.; Gulbinas, V.; Koschan, M.; Lucchini, M.; Melcher, C.; Nargelas, S.; et al. Excitation Transfer Engineering in Ce-Doped Oxide Crystalline Scintillators by Codoping with Alkali-Earth Ions. Phys. Status Solidi A 2018, 215, 1700798. [Google Scholar] [CrossRef]
- Korjik, M.; Bondarau, A.; Dosovitskiy, G.; Dubov, V.; Gordienko, K.; Karpuk, P.; Komendo, I.; Kuznetsova, D.; Mechinsky, V.; Pustovarov, V.; et al. Lanthanoid-Doped Quaternary Garnets as Phosphors for High Brightness Cathodoluminescence-Based Light Sources. Heliyon 2022, 8, e10193. [Google Scholar] [CrossRef]
- Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; et al. Synthesis of Crystalline Ce-Activated Garnet Phosphor Powders and Technique to Characterize Their Scintillation Light Yield. Opt. Mater. 2018, 78, 312–318. [Google Scholar] [CrossRef]
- Liu, X.; Teng, Y.; Zhuang, Y.; Xie, J.; Qiao, Y.; Dong, G.; Chen, D.; Qiu, J. Broadband Conversion of Visible Light to Near-Infrared Emission by Ce3+, Yb3+-Codoped Yttrium Aluminum Garnet. Opt. Lett. 2009, 34, 3565–3567. [Google Scholar] [CrossRef] [PubMed]
- Pankratova, V.; Skuratov, V.A.; Buzanov, O.A.; Mololkin, A.A.; Kozlova, A.P.; Kotlov, A.; Popov, A.I.; Pankratov, V. Radiation effects in Gd3(Al,Ga)5:O12:Ce3+ single crystals induced by swift heavy ions. Opt. Mater. X. 2022, 16, 100217. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifšic, E.M. Teoreticeskaja fizika/Lev D. Landau. In Kvantovaja Mechanika: Nereljativistskaja Teorija, 4th ed.; Lifšic, E.M., Ed.; Nauka: Moscow, Russia, 1989; ISBN 978-5-02-014421-7. [Google Scholar]
- Nargelas, S.; Talochka, Y.; Vaitkevičius, A.; Dosovitskiy, G.; Buzanov, O.; Vasil’ev, A.; Malinauskas, T.; Korzhik, M.; Tamulaitis, G. Influence of Matrix Composition and Its Fluctuations on Excitation Relaxation and Emission Spectrum of Ce Ions in (GdxY1−x)3Al2Ga3O12:Ce Scintillators. J. Lumin. 2022, 242, 118590. [Google Scholar] [CrossRef]
- Solarz, P.; Głowacki, M.; Berkowski, M.; Ryba-Romanowski, W. Growth and Spectroscopy of Gd3Ga3Al2O12 (GGAG) and Evidence of Multisite Positions of Sm3+ Ions in Solid Solution Matrix. J. Alloys Compd. 2016, 689, 359–365. [Google Scholar] [CrossRef]
- Bartosiewicz, K.; Babin, V.; Kamada, K.; Yoshikawa, A.; Nikl, M. Energy Migration Processes in Undoped and Ce-Doped Multicomponent Garnet Single Crystal Scintillators. J. Lumin. 2015, 166, 117–122. [Google Scholar] [CrossRef]
- Bohacek, P.; Krasnikov, A.; Nikl, M.; Zazubovich, S.; Zolotarjovs, A. On Low-Temperature Luminescence Quenching in Gd3(Ga,Al)5O12:Ce Crystals. Opt. Mater. 2019, 95, 109252. [Google Scholar] [CrossRef]
- Sontakke, A.D.; Ueda, J.; Katayama, Y.; Zhuang, Y.; Dorenbos, P.; Tanabe, S. Role of Electron Transfer in Ce3+ Sensitized Yb3+ Luminescence in Borate Glass. J. Appl. Phys. 2015, 117, 013105. [Google Scholar] [CrossRef]
- Ueda, J.; Miyano, S.; Tanabe, S. Formation of Deep Electron Traps by Yb3+ Codoping Leads to Super-Long Persistent Luminescence in Ce3+-Doped Yttrium Aluminum Gallium Garnet Phosphors. ACS Appl. Mater. Interfaces 2018, 10, 20652–20660. [Google Scholar] [CrossRef]
- Korzhik, M.; Tamulaitis, G.; Vasil’ev, A.N. Particle Acceleration and Detection. In Physics of Fast Processes in Scintillators; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-21965-9. [Google Scholar]
- Karpyuk, P.; Korzhik, M.; Fedorov, A.; Kamenskikh, I.; Komendo, I.; Kuznetsova, D.; Leksina, E.; Mechinsky, V.; Pustovarov, V.; Smyslova, V.; et al. The Saturation of the Response to an Electron Beam of Ce-and Tb-Doped GYAGG Phosphors for Indirect β-Voltaics. Appl. Sci. 2023, 13, 3323. [Google Scholar] [CrossRef]
# | Composition | Abbreviation | Calculated Density, g/cm3 |
---|---|---|---|
1a | Gd2.85Al2Ga2.97O12Ce0.015 | Gd3Yb0Y0-Ce | 6.67 |
1b | Gd2.90Al2Ga2.97O12Tb0.10 | Gd3Yb0Y0-Tb | 6.67 |
2 | Gd1.485Yb1.5Al2Ga2.91O12Ce0.015 | Gd1.5Yb1.5Y0-Ce | 6.96 |
3 | Gd1.350Yb1.5Al2Ga2.91O12Tb0.15 | Gd1.5Yb1.5Y0-Tb | 6.92 |
4 | Gd1.485Y0.75Yb0.75Al2Ga2.91O12Ce0.015 | Gd1.5Yb0.75Y0.75-Ce | 6.47 |
5 | Gd1.350Y0.75Yb0.75Al2Ga2.91O12Tb0.15 | Gd1.5Yb0.75Y0.75-Tb | 6.43 |
6 | Gd1.485Y1.2Yb0.3Al2Ga2.91O12Ce0.015 | Gd1.5Yb0.3Y1.2-Ce | 6.18 |
7 | Gd1.350Y1.2Yb0.3Al2Ga2.91O12Tb0.15 | Gd1.5Yb0.3Y1.2-Tb | 6.17 |
8a | Gd1.485Y1.5Al2Ga2.91O12Ce0.015 | Gd1.5Yb0Y1.5-Ce | 5.91 |
8b | Gd1.400Y1.5Al2Ga2.91O12Tb0.10 | Gd15Yb0Y1.5-Tb | 5.94 |
Ce3+:4f05d12F7/2,5/2 | 133.0 | 0.08 eV | ||
Yb3+: CTS2F5/2 | 545.0 | 0.1 eV | 5.45 | 0.026 eV |
Yb3+: CTS2F7/2 | 557.0 | 0.092 eV | 5.57 | 0.019 eV |
Sample | Photoluminescence Decay Constant at Excitation 315 nm τ, ms | Relative Yield of Tb3+ Photoluminescence 380–750 nm at Excitation 275 nm, rel. un | Relative LY of Scintillation, Rel. un |
---|---|---|---|
Gd1.5Yb1.5Y0-Tb | 2.27 | 0.1 | 0.05 |
Gd1.5Yb0.75Y0.75-Tb | 2.67 | 0.4 | 0.07 |
Gd1.5Yb0.3Y1.2-Tb | 2.82 | 0.9 | 0.25 |
Gd15Yb0Y1.5-Tb | 2.91 | 1.0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubov, V.; Kuznetsova, D.; Kamenskikh, I.; Komendo, I.; Malashkevich, G.; Ramanenka, A.; Retivov, V.; Talochka, Y.; Vasil’ev, A.; Korzhik, M. On the Quenching Mechanism of Ce, Tb Luminescence and Scintillation in Compositionally Disordered (Gd, Y, Yb)3Al2Ga3O12 Garnet Ceramics. Photonics 2023, 10, 615. https://doi.org/10.3390/photonics10060615
Dubov V, Kuznetsova D, Kamenskikh I, Komendo I, Malashkevich G, Ramanenka A, Retivov V, Talochka Y, Vasil’ev A, Korzhik M. On the Quenching Mechanism of Ce, Tb Luminescence and Scintillation in Compositionally Disordered (Gd, Y, Yb)3Al2Ga3O12 Garnet Ceramics. Photonics. 2023; 10(6):615. https://doi.org/10.3390/photonics10060615
Chicago/Turabian StyleDubov, Valery, Daria Kuznetsova, Irina Kamenskikh, Ilia Komendo, Georgii Malashkevich, Andrei Ramanenka, Vasili Retivov, Yauheni Talochka, Andrei Vasil’ev, and Mikhail Korzhik. 2023. "On the Quenching Mechanism of Ce, Tb Luminescence and Scintillation in Compositionally Disordered (Gd, Y, Yb)3Al2Ga3O12 Garnet Ceramics" Photonics 10, no. 6: 615. https://doi.org/10.3390/photonics10060615
APA StyleDubov, V., Kuznetsova, D., Kamenskikh, I., Komendo, I., Malashkevich, G., Ramanenka, A., Retivov, V., Talochka, Y., Vasil’ev, A., & Korzhik, M. (2023). On the Quenching Mechanism of Ce, Tb Luminescence and Scintillation in Compositionally Disordered (Gd, Y, Yb)3Al2Ga3O12 Garnet Ceramics. Photonics, 10(6), 615. https://doi.org/10.3390/photonics10060615