Hybrid Resonator 1319 nm Nd:YAG InnoSlab Laser
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Shaping System
3.2. Characteristics of 1319 nm Nd:YAG InnoSlab Laser
3.3. Theoretical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, H.Y.; Zhang, G.; Huang, C.H.; Wei, Y.; Huang, L.X.; Chen, J.; Chen, W.D.; Chen, Z.Q. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser. Appl. Opt. 2007, 46, 384–388. [Google Scholar] [CrossRef]
- Bian, Q.; Bo, Y.; Zuo, J.W.; Yuan, L.; Gao, H.W.; Peng, Q.J. High-power wavelength-tunable and power-ratio-controllable dual-wavelength operation at 1319 nm and 1338 nm in a Q-switched Nd:YAG laser. Photon. Res. 2022, 10, 2287. [Google Scholar] [CrossRef]
- Saha, A.; Ray, A.; Mukhopadhyay, S.; Sinha, N.; Datta, P.K.; Dutta, P.K. Simultaneous multi-wavelength oscillation of Nd laser around 1.3 µm A potential source for coherent terahertz generation. Opt. Express 2006, 14, 4721–4726. [Google Scholar] [CrossRef]
- Wang, J.T.; Lin, W.P.; Zhang, L.; Zhou, T.J.; Lu, Y.H.; Gao, Q.S. 1319 nm Nd:YAG Planar Waveguide Laser Amplifier with an optocal to optical Efficiency of 15%. In Proceedings of the Laser Applications Conference, Vienna, Austria, 29 September–3 October 2019. [Google Scholar]
- Xiao, Q.; Pan, X.; Guo, J.; Wang, X.; Wang, J.; Jiang, X.; Li, G.; Lu, X.; Wang, X.; Zhou, S.; et al. High-stability, high-beam-quality, and pulse-width-tunable 1319 nm laser system for VISAR applications in high-power laser facilities. Appl. Opt. 2020, 59, 6070–6075. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Fujikawa, S. Diode-Pumped Nd:YAG Laser Producing 122-W CW Power at 1.319 μm. IEEE J. Quantum Elect. 2000, 36, 751–756. [Google Scholar] [CrossRef]
- Li, M.L.; Zhao, W.F.; Zhang, S.B.; Guo, L.; Hou, W.; Li, J.M.; Lin, X.C. 1.86 W cw single-frequency 1319 nm ring laser pumped at 885 nm. Appl. Opt. 2012, 51, 1241–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Lu, J.; Murai, T.; Takaichi, K.; Uematsu, T.; Xu, J.; Ueda, K.-I.; Yagi, H.; Yanagitani, T.; Kaminskii, A.A. 36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser. Opt. Lett. 2002, 27, 1120–1122. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Jeong, J.; Hwang, S.; Lee, S.; Cho, S.; Yu, T.J. Performance Evaluation of Solid-State Laser Gain Module by Measurement of Thermal Effect and Energy Storage. Photonics 2021, 8, 418. [Google Scholar] [CrossRef]
- Lavi, R.; Jackel, S.; Tal, A.; Lebiush, E.; Tzuk, Y.; Goldring, S. 885 nm high-power diodes end-pumped Nd YAG laser. Opt. Commun. 2001, 195, 427–430. [Google Scholar] [CrossRef]
- Zheng, J.K.; Bo, Y.; Xie, S.Y.; Zuo, J.W.; Wang, P.Y.; Guo, Y.D.; Liu, B.L.; Peng, Q.J.; Cui, D.F.; Lei, W.Q. High Power Quasi-Continuous-Wave Diode-End-Pumped Nd:YAG Slab Amplifier at 1319 nm. Chin. Phys. Lett. 2013, 30, 074202. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Xu, Y.T.; Guo, Y.D.; Wang, B.S.; Xu, J.; Xu, J.L.; Gao, H.W.; Yuan, L.; Yuan, H.T.; Lin, Y.Y. 8.2 kW high beam quality quasi-continuous-wave face-pumped Nd:YAG slab amplifier. Appl. Opt. 2015, 54, 5011–5015. [Google Scholar] [CrossRef]
- Guo, C.; Zuo, J.; Bian, Q.; Xu, C.; Zong, Q.; Bo, Y.; Shen, Y.; Zong, N.; Gao, H.; Lin, Y. Compact, high-power, high-beam-quality quasi-CW microsecond five-pass zigzag slab 1319 nm amplifier. Appl. Opt. 2017, 56, 3445–3448. [Google Scholar] [CrossRef]
- Du, K.; Liao, Y.; Loosen, P. Nd:YAG slab laser end-pumped by laser-diode stacks and its beam shaping. Opt. Commun. 1997, 140, 53–56. [Google Scholar] [CrossRef]
- Du, K.; Clarkson, W.A.; Hodgson, N.; Shori, R.K. Unique performances and favourable applications of INNOSLAB lasers. Proc. SPIE 2009, 7193, 71932B. [Google Scholar] [CrossRef]
- Li, X.; Javed, F.; Zhang, H.; Liu, X.; Chen, T.; Yang, S.; Zang, T.; Jiang, Y.; Jiang, J. High power diode end-pumped 1.3 μm Nd:YAG InnoSlab laser. Results Phys. 2022, 37, 105468. [Google Scholar] [CrossRef]
- Zang, T.; Yang, S.; Liu, L.; Wang, W.; Meng, S.; Jiang, J.; Zhang, H. LD end-pumped 1319 nm Nd:YAG slab laser. Chin. J. Lasers 2022, 49, 2116001. [Google Scholar]
- Zhang, X.; He, T.; Luo, X.; Chen, X.; Zhang, L.; Xu, X.; Ren, H.; Xu, L.; Lu, Y.; Sun, J.; et al. Study of long-pulse quasicontinuous wave INNOSLAB amplifier at 1319 nm. Opt. Eng. 2020, 59, 056112. [Google Scholar] [CrossRef]
- Ma, Z.; Li, D.; Gao, J.; Wu, N.; Du, K. Thermal effects of the diode end-pumped Nd:YVO4 slab. Opt. Commun. 2007, 275, 179–185. [Google Scholar] [CrossRef]
- Koechner, K. Thermo-Optic Effects, in Solid-State Laser Engineering, 6th ed.; Rhodes, W.T., Ed.; The Springer Series in Optical Sciences: Georgia, GA, USA, 2005; pp. 442–479. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chen, T.; Liu, X.; Zhang, H.; Wang, J.; Guo, H. Hybrid Resonator 1319 nm Nd:YAG InnoSlab Laser. Photonics 2023, 10, 652. https://doi.org/10.3390/photonics10060652
Zhang S, Chen T, Liu X, Zhang H, Wang J, Guo H. Hybrid Resonator 1319 nm Nd:YAG InnoSlab Laser. Photonics. 2023; 10(6):652. https://doi.org/10.3390/photonics10060652
Chicago/Turabian StyleZhang, Shengzi, Tanghan Chen, Xiaomeng Liu, Hengli Zhang, Jiang Wang, and Heqing Guo. 2023. "Hybrid Resonator 1319 nm Nd:YAG InnoSlab Laser" Photonics 10, no. 6: 652. https://doi.org/10.3390/photonics10060652
APA StyleZhang, S., Chen, T., Liu, X., Zhang, H., Wang, J., & Guo, H. (2023). Hybrid Resonator 1319 nm Nd:YAG InnoSlab Laser. Photonics, 10(6), 652. https://doi.org/10.3390/photonics10060652