Rotational Bloch Boundary Conditions and the Finite-Element Implementation in Photonic Devices
Abstract
:1. Introduction
2. Theoretical and Numerical Models
2.1. Group-Character Labeled Wave Wunction and Domain Truncation in Rotationally Symmetric Structure
2.2. Group-Character Revised Weak Form Formulation in Rotationally Symmetric Structure
2.3. COMSOL Implementation
2.4. Finite Element Implementation
3. Results and Discussions
3.1. Two-Dimensional Photonic Crystal Fiber
3.2. Three-Dimensional Photonic Crystal Resonator
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gedney, S.D.; Mittra, R. Analysis of the Electromagnetic Scattering by Thick Gratings Using a Combined FEM/MM Solution. IEEE Trans. Antennas Propag. 1991, 39, 1605–1614. [Google Scholar] [CrossRef]
- Gedney, S.D.; Lee, J.f.; Mittra, R. A Combined FEM/MoM Approach to Analyze the Plane Wave Diffraction by Arbitrary Gratings. IEEE Trans. Microw. Theory Tech. 1992, 40, 363–370. [Google Scholar] [CrossRef]
- Jin, J.-M.; Volakis, J.L. Scattering and Radiation Analysis of Three-Dimensional Cavity Arrays via a Hybrid Finite-Element Method. IEEE Trans. Antennas Propag. 1993, 41, 1580–1586. [Google Scholar] [CrossRef] [Green Version]
- Maurin, F.; Claeys, C.; Van Belle, L.; Desmet, W. Bloch Theorem with Revised Boundary Conditions Applied to Glide, Screw and Rotational Symmetric Structures. Comput. Methods Appl. Mech. Eng. 2017, 318, 497–513. [Google Scholar] [CrossRef]
- Treyssède, F. Free and Forced Response of Three-Dimensional Waveguides with Rotationally Symmetric Cross-Sections. Wave Motion 2019, 87, 75–91. [Google Scholar] [CrossRef]
- Yang, Y.; Mace, B.R.; Kingan, M.J. Vibroacoustic Analysis of Periodic Structures Using a Wave and Finite Element Method. J. Sound Vib. 2019, 457, 333–353. [Google Scholar] [CrossRef]
- Zhou, C.W.; Treyssède, F. Two-Dimensional Elastic Bloch Waves in Helical Periodic Structures. Int. J. Solids Struct. 2020, 204–205, 34–51. [Google Scholar] [CrossRef]
- Renno, J.; Sassi, S.; Gowid, S. Wave Propagation in Double Helical Rods. Wave Motion 2020, 93, 102446. [Google Scholar] [CrossRef]
- Treyssède, F. A Model Reduction Method for Fast Finite Element Analysis of Continuously Symmetric Waveguides. J. Sound Vib. 2021, 508, 116204. [Google Scholar] [CrossRef]
- Finite Element Solution of Time-Harmonic Modal Fields in Periodic Structures. Available online: https://www.infona.pl/resource/bwmeta1.element.ieee-art-000000060850 (accessed on 12 February 2023).
- Mias, R.L.C. Ferrari Closed Singly Periodic Three Dimensional Waveguide Analysis Using Vector Finite Elements. Electron. Lett. 1994, 30, 1863–1865. [Google Scholar] [CrossRef]
- Tavallaee, A.A.; Webb, J.P. Finite-Element Modeling of Evanescent Modes in the Stopband of Periodic Structures. IEEE Trans. Magn. 2008, 44, 1358–1361. [Google Scholar] [CrossRef]
- Garcia-Contreras, G.; Córcoles, J.; Ruiz-Cruz, J.A. Degeneracy-Discriminating Modal FEM Computation in Higher Order Rotationally Symmetric Waveguides. IEEE Trans. Antennas Propag. 2021, 69, 8003–8008. [Google Scholar] [CrossRef]
- Habib, M.S.; Antonio-Lopez, J.E.; Markos, C.; Schülzgen, A.; Amezcua-Correa, R. Single-Mode, Low Loss Hollow-Core Anti-Resonant Fiber Designs. Opt. Express 2019, 27, 3824–3836. [Google Scholar] [CrossRef] [PubMed]
- Mock, A.; Trader, P. Photonic Crystal Fiber Analysis Using Cylindrical FDTD with Bloch Boundary Conditions. Piers Online 2010, 6, 783–787. [Google Scholar] [CrossRef] [Green Version]
- Inui, T.; Tanabe, Y.; Onodera, Y. Group Theory and Its Applications in Physics; Springer Science & Business Media: Berlin, Germany, 2012; Volume 78, ISBN 3-642-80021-1. [Google Scholar]
- Jin, J.-M. The Finite Element Method in Electromagnetics; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 1-118-84202-2. [Google Scholar]
Rotational Bloch Boundary Conditions | Constraint | Constraint Force |
---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | |||
1 | −1 | 1 | −1 | 1 | −1 | |||
1 | −1 | |||||||
1 | −1 | |||||||
1 | 1 | |||||||
1 | 1 |
FEM Class | |||||||
---|---|---|---|---|---|---|---|
FEM Class | |||||||
---|---|---|---|---|---|---|---|
FEM Class | |||||||
---|---|---|---|---|---|---|---|
- | |||||||
(2) | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, J.; Liu, L.; Chen, Y. Rotational Bloch Boundary Conditions and the Finite-Element Implementation in Photonic Devices. Photonics 2023, 10, 691. https://doi.org/10.3390/photonics10060691
Wang Z, Wang J, Liu L, Chen Y. Rotational Bloch Boundary Conditions and the Finite-Element Implementation in Photonic Devices. Photonics. 2023; 10(6):691. https://doi.org/10.3390/photonics10060691
Chicago/Turabian StyleWang, Zhanwen, Jingwei Wang, Lida Liu, and Yuntian Chen. 2023. "Rotational Bloch Boundary Conditions and the Finite-Element Implementation in Photonic Devices" Photonics 10, no. 6: 691. https://doi.org/10.3390/photonics10060691
APA StyleWang, Z., Wang, J., Liu, L., & Chen, Y. (2023). Rotational Bloch Boundary Conditions and the Finite-Element Implementation in Photonic Devices. Photonics, 10(6), 691. https://doi.org/10.3390/photonics10060691