Relocking and Locking Range Extension of Partially Locked AMLL Cavity Modes with Two Detuned RF Sinusoids
Abstract
:1. Introduction
2. Theory
2.1. Interaction of Pulses in the Modulator
2.2. Effect on Pulsetrains
2.3. Phase Locking Condition and Locking Limits
3. Experiments and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of
Appendix B. Two Input
References
- Cicerone, M.T.; Camp, C.H. Histological coherent Raman imaging: A prognostic review. Analyst 2018, 143, 33–59. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Fang, C.-Y.; Chang, H.-C.; Treussart, F.; Trebbia, J.-B.; Lounis, B. Polarization effects in lattice–STED microscopy. Faraday Discuss. 2015, 184, 37–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klar, T.A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takasaki, K.T.; Ding, J.B.; Sabatini, B.L. Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys. J. 2013, 104, 770–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidenstein, S.C.; D’Este, E.; Böhm, M.J.; Danzl, J.G.; Belov, V.N.; Hell, S.W. Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses. Sci. Rep. 2016, 6, 26725. [Google Scholar] [CrossRef]
- Yao, X.S.; Davis, L.; Maleki, L. Coupled optoelectronic oscillators for generating both RF signal and optical pulses. J. Light. Technol. 2000, 18, 73–78. [Google Scholar] [CrossRef]
- Yin, K.; Zhang, B.; Yang, W.; Chen, H.; Chen, S.; Hou, J. Flexible picosecond thulium-doped fiber laser using the active mode-locking technique. Opt. Lett. 2014, 39, 4259–4262. [Google Scholar] [CrossRef]
- Xiao, K.; Jin, X.; Jin, X.; Yu, X.; Zhang, X.; Zheng, S.; Chi, H.; Feng, L.; Xu, M. Channelized amplification of RF signal based on actively mode locked fiber laser. Opt. Commun. 2018, 421, 46–49. [Google Scholar] [CrossRef]
- Hjelme, D.R.; Mickelson, A.R. Theory of timing jitter in actively mode-locked lasers. IEEE J. Quantum Electron. 1992, 28, 1594–1606. [Google Scholar] [CrossRef]
- Eichler, H.J.; Koltchanov, I.G.; Liu, B. Numerical study of the spiking instability caused by modulation frequency detuning in an actively mode-locked solid-state laser. Appl. Phys. B 1995, 61, 81–88. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Hsiang, W.-W.; Lai, Y. Synchronous-asynchronous laser mode-locking transition. Phys. Rev. A 2015, 92, 013848. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.H. Experimental investigation of the cavity modulation frequency detuning effect in an active harmonically mode-locked fiber laser. J. Opt. Soc. B Am. Opt. Phys. 2013, 30, 1479–1485. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Mayor, S.; Prabhakar, A. Synchronization between two fixed cavity mode locked lasers. In Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology, Porto, Portugal, 27 February–1 March 2017; Volume 1, pp. 273–282. [Google Scholar]
- Krishnamoorthy, S.; Thiruthakkathevan, S.; Prabhakar, A. Active fibre mode-locked lasers in synchronization for STED microscopy. In Optics, Photonics and Laser Technology 2017; Springer: Berlin/Heidelberg, Germany, 2019; pp. 233–253. [Google Scholar]
- Krishnamoorthy, S. Mode Unlocking and Relocking in a Detuned Actively Mode Locked Fiber Ring Laser. Ph.D. Thesis, Indian Institute of Technology Madras, Chennai, India, 2020. [Google Scholar]
- Kuznetsov, A.; Kharenko, D.; Podivilov, E.; Babin, S. Fifty-ps raman fiber laser with hybrid active-passive mode locking. Opt. Express 2016, 24, 16280–16285. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.G.; Kablukov, S.I.; Timirtdinov, Y.A.; Babin, S.A. Actively mode locked raman fiber laser with multimode ld pumping. Photonics 2022, 9, 539. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, L.; Jiang, H.; Fan, T.; Feng, Y. Actively mode-locked raman fiber laser. Opt. Express 2015, 23, 19831–19836. [Google Scholar] [CrossRef] [Green Version]
- Koliada, N.A.; Nyushkov, B.N.; Ivanenko, A.V.; Kobtsev, S.M.; Harper, P.; Turitsyn, S.K.; Denisov, V.I.; Pivtsov, V.S. Generation of dissipative solitons in an actively mode-locked ultralong fibre laser. Quantum Electron. 2013, 43, 5. [Google Scholar] [CrossRef]
- Yao, J.; Yao, J.; Wang, Y.; Tjin, S.C.; Zhou, Y.; Lam, Y.L.; Liu, J.; Lu, C. Active mode locking of tunable multi-wavelength fiber ring laser. Opt. Commun. 2001, 191, 341–345. [Google Scholar] [CrossRef]
- Lee, C.G.; Kim, Y.J.; Park, C.-S. Optical pulse shaping by cross-phase modulation in a harmonic mode-locked semiconductor fiber ring laser under large cavity detuning. J. Light. Technol. 2006, 24, 1237. [Google Scholar]
- Nakazawa, M.; Yoshida, E. A 40 GHz 850 fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser. IEEE Photonics Technol. Lett. 2000, 12, 1613–1615. [Google Scholar] [CrossRef]
- Wise, F.; Lefrancois, S. Fiber Source of Synchronized Picosecond Pulses for Coherent Raman Microscopy and Other Applications. U.S. Patent 10,608,400, 31 March 2020. [Google Scholar]
- Sato, K.; Ishii, H.; Kotaka, I.; Kondo, Y.; Yamamoto, M. Frequency range extension of actively mode-locked lasers integrated with electroabsorption modulators using chirped gratings. IEEE J. Sel. Top. Quantum Electron. 1997, 3, 250–255. [Google Scholar] [CrossRef]
- York, R.A. Nonlinear analysis of phase relationships in quasi-optical oscillator arrays. IEEE Trans. Microw. Theory Techn. 1993, 41, 1799–1809. [Google Scholar] [CrossRef]
- Yeung, M.S.; Strogatz, S.H. Time delay in the Kuramoto model of coupled oscillators. Phys. Rev. Lett. 1999, 82, 648. [Google Scholar] [CrossRef] [Green Version]
- Habruseva, T.; Huyet, G.; Hegarty, S.P. Dynamics of quantum-dot mode-locked lasers with optical injection. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1272–1279. [Google Scholar] [CrossRef] [Green Version]
- Shortiss, K.; Lingnau, B.; Dubois, F.; Kelleher, B.; Peters, F.H. Harmonic frequency locking and tuning of comb frequency spacing through optical injection. Opt. Express 2019, 27, 36976–36989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lingnau, B.; Shortiss, K.; Dubois, F.; Peters, F.H.; Kelleher, B. Universal generation of devil’s staircases near hopf bifurcations via modulated forcing of nonlinear systems. Phys. Rev. E 2020, 102, 030201. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Prabhakar, A. Mode unlocking characteristics of an RF detuned actively mode-locked fiber ring laser. Opt. Commun. 2019, 431, 39–44. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Mayor, S.; Prabhakar, A. Mode re-locking in an RF detuned actively mode-locked fiber ring laser. In Proceedings of the The European Conference on Lasers and Electro-Optics, Munich, Germany, 23–27 June 2019. [Google Scholar]
- Adler, R. A study of locking phenomena in oscillators. Proc. IRE 1946, 34, 351–357. [Google Scholar] [CrossRef]
- Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering; Westview Press: Boulder, CO, USA, 2014. [Google Scholar]
- Razavi, B. A study of injection pulling and locking in oscillators. In Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, San Jose, CA, USA, 24 September 2003; pp. 305–312. [Google Scholar]
- Haus, H.A. A theory of forced mode locking. IEEE J. Quant. Electron. 1975, 11, 323–330. [Google Scholar] [CrossRef]
- Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Pearson-Prentice-Hall Upper Saddle River: Saddle River, NJ, USA, 2002. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnamoorthy, S.; Prabhakar, A. Relocking and Locking Range Extension of Partially Locked AMLL Cavity Modes with Two Detuned RF Sinusoids. Photonics 2023, 10, 735. https://doi.org/10.3390/photonics10070735
Krishnamoorthy S, Prabhakar A. Relocking and Locking Range Extension of Partially Locked AMLL Cavity Modes with Two Detuned RF Sinusoids. Photonics. 2023; 10(7):735. https://doi.org/10.3390/photonics10070735
Chicago/Turabian StyleKrishnamoorthy, Shree, and Anil Prabhakar. 2023. "Relocking and Locking Range Extension of Partially Locked AMLL Cavity Modes with Two Detuned RF Sinusoids" Photonics 10, no. 7: 735. https://doi.org/10.3390/photonics10070735
APA StyleKrishnamoorthy, S., & Prabhakar, A. (2023). Relocking and Locking Range Extension of Partially Locked AMLL Cavity Modes with Two Detuned RF Sinusoids. Photonics, 10(7), 735. https://doi.org/10.3390/photonics10070735