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Abstract: Renal ischemia–reperfusion (IR) is inevitable in partial nephrectomy and kidney trans-
plantation. Acute tubular necrosis (ATN) induced by renal IR causes the loss of functional units in
the kidney, pathologically presenting as the nonhomogeneous distribution of normal uriniferous
tubules and usually used to characterize kidney activity. Optical coherence tomography (OCT)
has been proven to have the ability to image the kidney microstructure in vivo and in real time.
However, a fast image analysis method is needed for clinical application purpose. In this work, a
new method for assessing renal IR injury was developed using a fractal-dimension-based texture of
the OCT kidney image. Thirty-five Wistar rats were divided into seven groups for renal ischemia–
reperfusion: control and various ischemia-time groups. A time series of 3D OCT kidney images was
obtained. We calculated the fractal dimension (FD) of OCT en face images and found that the value
increased gradually and finally became stable after 90 min of reperfusion. The stable value in the
long-ischemia-time group was smaller than that in the short-ischemia-time group. The FD value of
the OCT kidney image was highly responsive to renal IR injury. The proposed method is promising
for a fast diagnostic application.

Keywords: optical coherence tomography; renal ischemia–reperfusion injury; fractal dimension;
box counting

1. Introduction

Optical coherence tomography (OCT) is a non-invasive optical imaging technique
published by David Huang et al. in 1991 [1]. Similar in principle to ultrasonic pulse–echo
imaging, OCT uses an interferometer to locate scatterers in tissue by measuring time-gate
light pulses. By employing a broadband light source, the axial resolution of OCT can
achieve several microns or even submicron. Two-dimensional and three-dimensional imag-
ing is realized via a pair of mutually orthogonal scanning galvanometers. Therefore, OCT
has the ability to visualize architectural morphology in organs and tissues. OCT can be
interfaced with endoscopes or laparoscopes. The development of full-field OCT [2], func-
tional OCT [3–6] formed by Doppler, or speckle variance or other algorithms, has further
broadened its applications. In the biomedical field, the applications involve ophthalmol-
ogy [7,8], cardiology [9,10], dermatology [11–13], gastroenterology [14], urology [15–17],
and oncology [18,19].

Due to the difference in optical coefficients, the backscattered signal of the renal
tubules is lower than that of the surrounding tissue. On this basis, OCT has been proven
to have the ability to non-invasively visualize the renal microstructure in vivo and in real
time. Chen et al. published the initial study on OCT imaging of the kidney in 2007 [15].
More researchers have also used OCT to image pathological changes caused by renal
disease [20–27]. In the event of renal surgery, such as nephrectomy, carcinoma resection, or
kidney transplantation, renal ischemia–reperfusion is an unavoidable biological reaction.
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The restoration of blood flow is likely to result in irreversible damage to the nephrons,
known as ischemia–reperfusion injury, when the artery is obstructed for an extended period
of time. Proximal uriniferous tubule is the part that is most sensitive to ischemia. The
primary cause of acute renal injury in clinic is acute tubule injury (ATN), which may rapidly
deteriorate the kidney and even cause kidney failure. In previous studies, we used OCT to
take a time series of images of rat kidneys during ischemia–reperfusion [28]. Significant
changes in tubule density and diameter were observed during IR. Renal activity can be
assessed based on these indicators. Distribution of uriniferous tubules in cross-sectional
and en face OCT images is uneven due to partial necrosis of renal tubules, which have lost
their normal low-signal features. Analyzing the uniformity of tubule distribution in OCT
images can help determine the extent of the renal ischemia–reperfusion injury.

The textured surface of a natural scene is intrinsically complex and basic shape primi-
tives are not sufficient to represent it. In 1975, Mandelbrot introduced the fractal dimension
(FD) to describe the degree of irregularity of natural phenomena [29], thus laying the
theoretical foundation of fractal geometry. FD specifies the space to be filled by the fractal
set [30]. As a result, it illustrates the irregularity, roughness, and complexity of a fractal
set. Researchers are interested in fractal-based image analysis, which is utilized to address
various issues in natural sciences. Fractal dimension has been extensively applied in the
fields of shape recognition [31], ecology [32], image segmentation [33,34], complex network
analysis [35], biometrics [36], medicine [37–39], face image fusion [40], and so on.

Based on the time series of OCT images of the rat kidneys during ischemia–reperfusion,
in this paper, the feasibility of employing fractal dimension to assess renal ischemia–
reperfusion injury by measuring the uniformity of renal tubular distribution in OCT images
was evaluated.

2. Materials and Methods
2.1. Animal Protocol

Male Wistar rats (n = 35, 250 ± 20 g, 8 weeks) were provided by Shanghai SLAC
Laboratory Animal Co., Ltd., Shanghai, China. All rats were regularly fed with water and
rat fodder. The animal protocol was approved by the Committee of Animal Care and Use
in Fujian Normal University, China.

Thirty-five Wistar rats were imaged in this study. Five rats served as normal controls,
and thirty rats underwent renal ischemia–reperfusion surgery. To evaluate the ability
of the proposed method to quantify IR injury, rats in the IR group were separated into
6 subgroups (5 rats per group), and the blood supply was restored after 20, 30, 40, 50, 60,
and 90 min of ischemia in each group, respectively. For simplicity’s sake, the groups were
labeled as Normal, I20, I30, I40, I50, I60, and I90. The animals were anesthetized with
isofluorane during the induction and maintenance procedures (induction: 80% oxygen,
5 mL/L isoflurane; maintenance: 80% oxygen, 1.5 mL/L isoflurane). Following induction,
the left kidney was exposed from the lower back, then placed and fixed on a kidney cup
directly beneath the OCT probe. Using a bulldog clamp, the renal arteriovenous ligation
was performed to induce renal ischemia. The kidney would gradually turn darker before
turning atropurpureus. After temporarily obstructing the blood flow, the bulldog clamp
was released to restore blood supply to the kidney. After reperfusion, a time series OCT
imaging was performed on each and every rat kidney. The animals were euthanized after
the completion of the experiment.

2.2. OCT Imaging of the Rat Kidney

A spectral domain OCT (GAN520C1, Thorlabs Inc., Lübeck, Germany) was used in
this study, with a broadband light source centered at 900 nm, as schematically illustrated in
Figure 1. The axial and lateral resolutions of this system are 2.7 and 4 µm, respectively. The
system operates at a scanning rate of 76 kHz with an output power of about 10 mW.
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Three-dimensional sequential OCT images of each kidney were obtained to examine 
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kidney with sufficient blood supply was collected in each individual rat as a baseline. 
Then, a vessel ligation was performed to the kidney. The length of the ligation was deter-
mined by the group. Different groups had varying ischemia durations. For example, 
group I20 underwent a 20 min ischemia. When the bulldog clamp was removed, OCT 
images were obtained at 5, 10, 20, 30, 40, 50, 60, and 90 min after blood reperfusion. The 
same imaging process was repeated for the same group of rats. 

Two-dimensional and three-dimensional imaging is realized via a pair of mutually 
orthogonal scanning galvanometers. The scanning of the X galvanometer yields the cross-
sectional OCT image of normal Wistar rat kidney (XZ plane), as shown in Figure 2a. The 
typical tubular structure, represented as a low-signal area below the capsule, can be 
clearly observed from the cross-sectional image. A three-dimensional OCT image is re-
constructed from a series of cross-sectional images obtained by the scanning of the Y gal-
vanometer. From a 3D OCT image (Figure 2b), OCT en face images (XY plane) can be ex-
tracted (Figure 2c). In the experiment, every single OCT 3D image was taken at a size of 2 
mm × 2 mm × 2.5 mm (X × Y × Z), with 1000 × 1000 × 1024 pixels. 

Figure 1. Schematic configuration of the OCT system for imaging rat kidneys in experiment.

Three-dimensional sequential OCT images of each kidney were obtained to examine
renal ischemia–reperfusion injury. Before vessel ligation, an OCT image of the normal
kidney with sufficient blood supply was collected in each individual rat as a baseline. Then,
a vessel ligation was performed to the kidney. The length of the ligation was determined
by the group. Different groups had varying ischemia durations. For example, group I20
underwent a 20 min ischemia. When the bulldog clamp was removed, OCT images were
obtained at 5, 10, 20, 30, 40, 50, 60, and 90 min after blood reperfusion. The same imaging
process was repeated for the same group of rats.

Two-dimensional and three-dimensional imaging is realized via a pair of mutually
orthogonal scanning galvanometers. The scanning of the X galvanometer yields the cross-
sectional OCT image of normal Wistar rat kidney (XZ plane), as shown in Figure 2a.
The typical tubular structure, represented as a low-signal area below the capsule, can
be clearly observed from the cross-sectional image. A three-dimensional OCT image is
reconstructed from a series of cross-sectional images obtained by the scanning of the Y
galvanometer. From a 3D OCT image (Figure 2b), OCT en face images (XY plane) can be
extracted (Figure 2c). In the experiment, every single OCT 3D image was taken at a size of
2 mm × 2 mm × 2.5 mm (X × Y × Z), with 1000 × 1000 × 1024 pixels.
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Figure 2. OCT images of normal Wistar rat kidney: (a) cross-sectional image; (b) three-dimensional
image; and an en face image at (c) 50 µm above the focal plane (green plane in C-scan (b)); (d) focal
plane (yellow plane in (b)); and (e) 100 µm below the focal plane (blue plane in (b)). The scale bar is
100 µm.
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Since the surface of the kidney was curved and the objective lens has a limited depth
of focus (DOF), the OCT en face images out of the focal plane were obscure and lacked
detail. Figure 2d shows an en face image of rat kidney at the focal plane. Figure 2c,e were
taken from 50 µm above and 100 µm below the focal plane, respectively. To evaluate IR
injury using OCT images with clear and useful information, the 3D image surface must be
flattened and focal plane images extracted.

2.3. Fractal Dimension Calculation of OCT Image

The calculation of fractal dimension using differential box counting (DBC) is fast and
easy to compute. The number of boxes required to completely cover or fill a fractal set
determines the DBC, which is dependent on the box dimension of the fractal set. If the scale
of the studied two-dimensional image is recorded as unit 1, a number of boxes with scale
r (r ≤ 1) are applied to cover the image and count the number of boxes containing target
pixels. In our study, the target pixel refers to the pixel corresponding to the uriniferous
tubule. Count the quantity of boxes Nr that contain the target pixels while decreasing the
box side length r until the mesh size approaches a pixel. Then, D f is called the fractal
dimension of the fractal set if it satisfies Equation (1) [41].

Nr =

(
1
r

)D f

as r → 0 (1)

Equation (1) can also be expressed by Equation (2).

lim
r→0

[
Nr/

(
1
r

)D f
]
= k (2)

where k is a positive constant. To obtain the value of D f , a logarithm is introduced on
both sides of Equation (2). When the denominator becomes infinite as r → 0 , the final
expression for estimating Df is shown in Equation (3), which is obtained by removing the
constant term from Equation (2).

D f = lim
r→0

 log(Nr)

log
(

1
r

)
 (3)

A series of data points
(

log
(

1
r

)
, log(Nr)

)
is obtained, and the fractal dimension D f

can be calculated by solving the slope of the regression line through these points.
Figure 3 shows the flow chart of solving the fractal dimension of OCT images. Surface

flattening of OCT three-dimensional data sets was performed first. OCT en face images at the
focal plane were extracted for further analysis. First, the A-lines of each OCT cross-sectional
image were aligned. Then, the aligned cross-sectional images were reconstructed to form
a new three-dimensional image. Finally, the image at the focal plane was extracted from
the 3D image. All operations were completed by MATLAB, except the fractal dimension
analysis. Image segmentation using the OTSU algorithm was performed to obtain binarized
images, which was helpful to isolate hyporeflective tubular structures. Following that, OCT
images were covered with 2 × 2, 3 × 3, 4 × 4, 6 × 6, 8 × 8, 12 × 12, 16 × 16, 32 × 32 and
64 × 64 boxes. Let the OCT image’s side length be a unit. When varying the numbers of
boxes that cover the image, the corresponding side length of the box and the number of
boxes containing the target pixel Nr were determined. After the logarithm was taken, the
least squares method was used for linear fitting, and the slope was calculated as the fractal
dimension D f of the image. The calculation of fractal dimension using the box counting
method was executed using ImageJ in the experiment.
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Figure 3. Flow chart of fractal dimension calculation of OCT en face image.

3. Results

Figure 4a,b show a three-dimensional OCT image of a normal rat kidney reconstructed
after the alignment of A-lines in cross-sectional images. Figures 4c and 5a depict the en
face image taken from the reconstructed 3D image at the focal plane. The en face image
shows the uniformly distributed morphological microstructures of renal tubules. Uniformly
distributed morphological microstructures of uriniferous tubules are visible in the en face
image of the normal kidney.
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Figure 4. Reconstruction of three-dimensional OCT image after alignment of A-lines. (a) Original
OCT images; (b) reconstructed OCT 3D image of rat kidney after surface flattening; (c) cross-sectional
image after alignment of A-lines and OCT en face image extracted from reconstructed 3D image at the
focal plane. The scale bar is 200 µm.

Before calculating the fractal dimension, all the OCT images were binarized. Taking
the normal kidney image as an example, Figure 5b shows the binary image of Figure 5a.
The feature of uniformly distributed tubules was also exhibited in the binary image. Using
the Fractal Box Counter in ImageJ toolbox, 2 × 2, 3 × 3, 4 × 4, 6 × 6, 8 × 8, 12 × 12,
16 × 16, 32 × 32 and 64 × 64 boxes were used to cover the image, then the number of boxes
(Nr) containing tubular pixels was counted. The data points (log(box size), log(Nr)) were
plotted in Figure 5c. Through the least squares method, the linear fitting equation and the
slope of −1.888 were obtained. The fractal dimension of the image is the absolute value of
the slope of the fitted line, 1.888. The goodness of the linear fit was 0.9983.
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Figure 5. The FD calculation of a normal OCT image. (a) Normal OCT en face image at the focal plane;
(b) the binary image of (a); (c) linear fitting of the data points (log(box size), log(Nr)). The scale bar
is 200 µm.

Figure 6 shows the time series OCT images in the group I30. The baseline image for
Figure 6 is shown in the en face images of Figures 4c and 5a. As a result of swelling or
necrotic shedding of the endothelial cells, the tubular lumen of the uriniferous tubules
reduces during renal ischemia–reperfusion. In OCT images, the necrosis tubules lose
their typical low-signal features and resemble the tissue surrounding them, as shown
in Figure 6. Therefore, these images showed an uneven distribution of tubules. The
values of the fractal dimension of these images were calculated and are shown to the
right in Figure 6a–h. The fractal dimension of the normal kidney image was the largest.
After ischemia, uriniferous tubules can no longer be seen in OCT images, and the fractal
dimension reached its minimum value at this time. During reperfusion, blood supply is
restored and the renal tubules gradually reopen. Therefore, fractal dimension rose sharply
in the first 20 min after reperfusion and reached its maximum at 30 min, as shown in
Figure 7. Then, the value drops slightly until it reached a relatively stable value, about 1.772.
The fitted y intercept also exhibits a similar shift, increasing with reperfusion and eventually
approaching a relatively stable value. However, ischemia–reperfusion damage to some
tubules is irreversible. Due to ischemia, partial renal tubule necrosis is not reproduced in
OCT images, resulting in the final stable value of fractal dimension not reaching the normal
renal counterpart.

Furthermore, we calculated the fractal dimensions of OCT images of different groups
in the experiment. The fractal dimension of the normal kidney was 1.888 ± 0.040. The
value represented the mean and standard deviation of 35 rats; 5 from the control group and
30 from the ischemia–reperfusion group (baseline). In the IR group, the mean of the fractal
dimension at each time point following 30 min of reperfusion was used to calculate the
ultimate stable value for each individual rat. Given the individual differences, the average
of the five final stable values from each group was utilized to represent the typical value of
the fractal dimension following IR in this group. The FD values for each IR group are listed
in Table 1 and shown in Figure 8. The results showed that the longer the ischemia time,
the smaller the fractal dimension of the image after reperfusion, indicating that there are
more damaged uriniferous tubules. There were very significant differences in FD between
normal kidneys and IR kidneys (t-test, p < 0.001). However, in the short-term-ischemia
group, we found no significant difference in FD values in the I20, I30, and I40 groups
(p = 0.329 between I20 and I30, p = 0.122 between I30 and I40). There was a significant
difference between the two groups for 50–60 min of ischemia (p = 0.0006), and highly
significant difference between groups I60 and I90 (p = 1.47 × 10−8). There were significant
differences among the normal control group, the I20–I40 group, the I50–I60 group, and the
I90 group (p < 0.001). The results indicated that the fractal dimension was highly sensitive
to IR injury. Based on this, fractal dimension can be an indicator used to evaluate the degree
of ischemia–reperfusion injury.
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Table 1. Measured fractal dimension of each group.

Group Normal I20 I30 I40 I50 I60 I90

FD 1.888 ± 0.040 1 1.730 ± 0.033 1.741 ± 0.036 1.697 ± 0.054 1.586 ± 0.055 1.531 ± 0.036 1.271 ± 0.027
1 All values are given as Mean ± Standard Deviation.
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deviation was calculated from 35 rats, 5 from the control group and 30 from the ischemia–reperfusion
group (baseline). The mean and standard deviation of each group was calculated from of the five
final stable values from each group. ** denotes a statistically significant difference between the groups
(p < 0.001).

4. Discussion

OCT enables in vivo, real-time imaging of the kidney. The histomorphological mi-
crostructure of the kidney exhibited in OCT images can aid in the diagnosis of renal status.
In this study, we imaged the rat kidney using a spectral domain OCT. Figure 2 shows the
OCT images of a Wistar rat kidney, including the cross-sectional image, three-dimensional
image, and an en face image extracted from the 3D one. The microstructure of the kidney
can be clearly observed in the images. The bright boundary on the upper surface is the renal
capsule, and below the capsule is the superficial layer of the renal cortex. According to the
pathological structure of the kidney, the black tubular structure (low backscattering signal)
in the OCT image corresponds to the uriniferous tubules. Unlike the study of Yu Chen
et al., we could not observe the glomeruli in the images. This is due to the animal strain.
The animals we used in the study were not Munich Wistar rats, which have superficial
glomerulus with direct contact with the renal capsule.
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Proximal renal tubules are extremely sensitive to ischemic response. By designing
animal models of renal diseases, scholars have conducted numerous relevant experiments to
verify the possibility of OCT imaging in renal clinical diagnostic applications. Yu Chen and
Andrews et al. applied OCT to image living kidneys for the first time, and to monitor the
structural changes of renal tubules and glomerulus throughout the ischemia–reperfusion,
and during intravenous mannitol injection [16]. The results showed that intravenous
mannitol can thin the tubular wall and enlarge the diameter of the tubular, which can
prevent the tubule contraction caused by the swelling of the proximal renal tubules during
ischemia. Onozato et al. [20] studied four human kidneys in vitro. The work predicted the
possibility of OCT application in the diagnosis of kidney diseases. Hsing-Wen Wang et al.
simulated chronic kidney disease (CKD) with intravenous doxorubicin injection in Munich
rats [22,23]. OCT images were obtained at multiple time points during the injection process,
and the density and diameter of renal tubules in the images were analyzed for evaluating
CKD. Dilated tubules can be observed at 4 to 8 weeks, especially at 8 weeks, with changes
in tubular density and diameter due to tubule loss and swelling. The results suggest that,
by interpreting histopathological information from images, OCT can be used to monitor
age-related progressive nephropathy and to evaluate the status of aging donor kidneys.

In this work, we established a renal ischemia–reperfusion model of Wistar rats and
observed the rat kidney using OCT in real time. The rats were separated into different
groups for various ligation times, and the degree of IR injury was evaluated by analyzing
the microstructure of OCT images. The results showed that tubules are sensitive to ischemia.
Ischemia may cause swelling of the tubular endothelial cells, leading to tubule contraction
or even necrosis. Therefore, when the kidney is ligated, we cannot see any tubules on OCT
images. The tubules in OCT images reopen following reperfusion. However, the shed
cells in some tubules would block the lumen after reperfusion, resulting the correspondent
tubules no longer visible in OCT images and the uneven distribution of renal tubules.

Researchers use renal tubule density or tubular diameter to evaluate kidney status
quantitatively [26,27]. In our previous study, we also used tubule density and tubular
diameter to evaluate the IR injury [28]. The indicators of tubule density and tubular
diameter are highly response to IR and can be used to access IR injury. However, this
method requires a large amount of calculation. Taking tubular diameter as an example, the
OCT image should be smoothed and binarized first, and the ROIs (tubular lumens) in the
image chosen to further analyze. Skeletons and boundaries of tubules are extracted from
the ROIs and used to calculate the diameters. Bohan Wang et al. used ConvNet training
(CNN Image Classifier) to classify renal tubules and non-renal tubules, and then quantified
the identified renal tubules. This study demonstrated that the developed CAD system
can distinguish renal tubules from OCT images and automatically measure the size of
coiled tubules [27]. However, the application of automatic quantization algorithm or deep
learning has a heavy calculation and certain requirements for computer configuration, such
as GPU and computer memory.

In this study, we used fractal dimension to quantify the uneven distribution of renal
tubules and further evaluate IR injury. The results indicate that FD is sensitive to ischemia.
To verify the ability of FD to quantify IR injury, rats were separated into several IR groups
and endured various ligation times. For an individual rat, the FD has a maximum value
at baseline (normal kidney), and minimum value during ischemia, following which FD
increases rapidly until finally reaching a stable value. Due to the loss of tubules (necrosis),
the stable value is always smaller than the baseline. The longer the ischemia time, the
smaller the FD value. The statistical analysis results indicate that FD can be used to
differentiate IR injury.

Fractal dimension also has its shortcomings. According to its statistical methodology,
it is difficult to diagnose a disease from the microstructure of the kidney’s morphology,
such as changes in tubular diameter (like an aging kidney). Moreover, the calculation is
highly dependent on the image quality and segmentation, and algorithmic improvements
should be taken in the follow-up work. However, fractal dimension is suitable for rapid
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diagnosis because it requires less computation. It can be used in the clinic diagnosis of
acute kidney injury (AKI) caused by acute tubular necrosis (ATN) in renal surgery.

5. Conclusions

From a mathematical view point, calculating the fractal box dimension provides a
more objective indicator to describe the distribution uniformity of renal tubules. Our
results indicate that the application of fractal theory for measurement of distribution of
renal microstructures, namely renal tubules, in OCT images can quantify acute kidney
injury caused by ischemia–reperfusion and thus can be used to assess local and global renal
activity.
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