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Abstract: Light scattering is a common physical phenomenon in nature. The scattering medium
will randomly change the direction of incident light propagation, making it difficult for traditional
optical imaging methods to detect objects behind the scattering body. Wiener filtering deconvolution
technology based on the optical memory effect has broad application prospects by virtue of its
advantages, such as fast calculation speed and low cost. However, this method requires manual
parameter adjustment, which is inefficient and cannot deal with the impact of real-scene noise. This
paper proposes an improved Wiener filtering deconvolution method that improves the exposure
dose during the speckle collection, can quickly obtain the optimal parameter during the calculation
phase, and can be completed within 41.5 ms (for a 2448 × 2048 image). In addition, a neural
network denoising model was proposed to address the noise issue in the deconvolution recovery
results, resulting in an average improvement of 27.3% and 186.7% in PSNR and SSIM of the images,
respectively. The work of this paper will play a role in achieving real-time high-quality imaging of
scattering media and be helpful in studying the physical mechanisms of scattering imaging.

Keywords: scattering imaging; optical memory effect; deconvolution; deep learning

1. Introduction

As a kind of optical imaging, vision is the most important way to obtain information.
However, the scattering media, including diffusors, fog and rain, flowing air, etc., have
become one of the essential factors in optical imaging deterioration [1]. Considering its
complex internal structure and inhomogeneous properties, the scattering medium changes
the transmissive trace of light randomly inside, which makes the patterns of the objects
behind the diffusor seriously disturbed and unrecognizable [2]. Thus, in recent years, many
approaches have been proposed to solve the problem of scattered imaging restoration,
such as wavefront shaping techniques [3–5], phase conjugation [6–8], transmission matrix
measurements [9–11], and deep learning [12–14]. However, these methods still have some
drawbacks, such as slow speed, cumbersome operation, and dependence on the number of
samples. Speckle correlation image restoration techniques based on the optical memory
effect (OME) have been provided [15–17], which are considered one of the most promising
solutions because of their non-invasive nature and ease of implementation.

The technique of scattered imaging deconvolution is one of the classical restorations
based on OME. It can achieve fast image reconstruction as long as the point spread function
(PSF) of the scattering medium is obtained. Zhuang et al. proposed a scattering recovery
imaging method using the point diffusion function of the scattering medium for decon-
volution and realized color imaging recovery [18]. Li et al. proposed spatial lamination
imaging technology through multiple openings on the object surface, which can improve
the resolution and stability of the recovered object [19]. However, the effectiveness of this
method depends on the number of measurements, which prevents its real-time application.
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Consequently, time consumption is also a key issue in the scattered image restoration and
shows the significance of the quality of reconstruction, especially the contrast, stability, and
noise resistance.

In recent years, the time-consuming use of digital phase conjugation technology to
achieve refocusing through scattering media has been 0.7 s [8], and the deep learning
method achieves 128 × 128 pixel image reconstruction within tens of milliseconds [14], but
the Wiener filtering deconvolution method takes less than 1 millisecond at 2048 × 2048 pix-
els. The only variable parameter, K, has a great influence on the restoration quality. How-
ever, to acquire a proper K value for different targets requires many iterations; thus, one of
the key issues of this paper is to seek an optimized K value, which is shown to reduce time
consumption significantly compared to traditional Wiener filtering.

In order to decrease reconstruction image noise and increase contrast, this paper
provides an optimized scattering image restoration method that includes three steps:
step1: exposure-match scattered image record; step2: deconvolution with a novel image
evaluation objective function, proportion of edge frequency (PEF); and step3: denoise based
on a neural network. By using the PEF, the Weiner filter deconvolution is able to seek out
the optimized parameter k and acquire the best restoration image in real time. In order to
remove residual noise after deconvolution and repair some missing parts of patterns, a
U-shaped network is combined as a post-procedure; the task of this network is only image
denoising and enhancement. Compared with getting the final result directly by the deep
learning method, a small number of samples trained in the proposed method can acquire
well-researched results and show significant improvement in noise reduction.

2. Methods
2.1. Proposed Method
2.1.1. Deconvolution

It can be found that when a beam through a scatter medium is deflected at a certain
angle from the fixed incident point, the speckle shows the same pattern’s distribution but
only shifts in the direction of the incident angle [20,21]. This phenomenon is named the
optical memory effect (OME), and the angle range of OME, θ, measured in this paper’s
system is 36 mrad. The PSF, which describes the pulse response characteristics of the
imaging system (diffusor), can be considered shift-invariant in the effective OME region,
which means the imaging process can be expressed as the convolution of the PSF (xi, xo,
yi, yo) of the diffusor and the light intensity distribution of the object O (xo, yo), which is
shown as Equation (2).

Ii(xi, yi) =
x ∞

−∞
O(xo, yo)PSF(xi, xo, yi, yo)dxo dyo (1)

where (xi, yi) and (xo, yo) represent the image plane and the object plane, respectively. Thus,
Ii (xi, yi) is the intensity distribution of the image. The convolution form of this equation
can be seen below.

Ii(xi, yi) = O(xo, yo) ∗ PSF(xi, xo, yi, yo) (2)

Furthermore, in spatial frequency,

I(ξ, η) = O(ξ, η)PSF(ξ, η) (3)

Ideally, the object can be obtained directly by inverse filtering of Ii; however, this
method is very sensitive to noise. Wiener filtering, which has the ability to suppress noise,
is adopted because other methods, such as Lucy-Richardson deconvolution [22], wavelet
deconvolution [23], and iterative algorithms based on maximum likelihood estimation,
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require lengthy or complex procedures [24]. Therefore, the object O (ξ, η) can be described
with the intensity distribution of the image I (ξ, η) by Equation (4).

O(ξ, η) ≈ PSF∗(ξ, η)

|PSF(ξ, η)|2 + SN
SO

I(ξ, η) =
PSF∗(ξ, η)

|PSF(ξ, η)|2 + K
I(ξ, η) (4)

where the SNR (Signal to Noise Ratio) is SO
SN

, SN is the power spectrum of the noise, SO
is the power spectrum of the image, and K = 1/SNR. The figure of object O (xo, yo) can be
acquired by the inverse Fourier transform of O (ξ, η).

In the experiment, if the image distribution Ii (xi, yi) is captured by the camera and
the PSF (xo, yo, xi, yi) is obtained by calculation, then K is the only unknown parameter
in Equation (4), which is usually artificially estimated. An inappropriate K value leads to
a deterioration of the image; thus, a K value quick search method should be adopted to
acquire clear restoration.

2.1.2. Proportion of the Edge Frequency

A non-reference image restoration quality evaluation function called proportion of the
edge frequency (PEF) is proposed to realize the fast optimization of the K value. Unlike
the image evaluation method with reference, it only needs the spectral information of the
image to evaluate the current restoration results.

It is generally believed that the spectral distribution of an image represents the pro-
portion of each spatial frequency component in the entire image. To facilitate analysis,
one-dimensional sampling of the spectrum of the image is conducted along the Ox direc-
tion, as shown in Figure 1. The closer the selected K value is to the reciprocal of the real
SNR of the system, the better the recovery effect is, and the sharper edge and the spectrum
intensity distribution have also undergone corresponding changes. In the experiment, it
can be found that as the value of K approaches the optimal value gradually, in addition to
the better image quality, the proportion of the image distribution in part of the frequency
range also increases. We call this part of the range the edge frequency, and its proportion
in the whole image frequency distribution is called the proportion of the edge frequency
(PEF). The range of normalized edge frequency is 0.005–0.03 (This data is measured experi-
mentally, and the process of obtaining PEF will be described in Section 3.2), which means

PEF(K) =
sum{F(K)[0.005 : 0.03]}

sum{F(K)[0 : 1]} (5)

where F (K) is the one-dimensional spectrum distribution from the center origin to the
rightmost end of the spectrum diagram. Under this condition, the full width at half peak
(FWHM) of the single peak curve of PEF changing with the K value reaches the minimum,
so it can be most sensitive for searching the coordinates corresponding to the extreme point.

2.1.3. U-Shape Neural Network

In Figure 1, It can be seen that noise exists no matter what k is. In this paper, a
U-shape neural network is used for noise reduction, where the input of the model is a
deconvolution-recovered image and the output label is the corresponding original object
image. The total number of pairs is 1600. The model training frame and the detailed
structure of the network are shown in Figure 2. The strategy of pre-training and transfer
learning, with the TID2013 dataset [25], makes the model have initial image denoising
ability. The encoder-decoder framework is used in the experimental model; the encoder is
composed of four convblocks connected by max pool layers; the convblock, as seen from
Figure 2c, consists of convolution layers, batch normalization layers, and leaky rectified
linear unit (leaky ReLU) nonlinear activation functions. Then the up-sampling decoder
process begins, in which the feature map from the corresponding encoder is copied and
cropped so more high-frequency information is preserved for up-sampling. After that, a
convolutional layer is added to produce the final result. 1600 groups of deconvolution
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restored images and corresponding original images are used, of which 1500 groups belong
to training sets and the other 100 groups are verification sets, which contain patterns that
were not involved in the training to check whether the model is overfitted. The dataset has
seven kinds of samples; six of them were used for training, and another one was only used
for verification. All data is recovered as images by Wiener filter deconvolution.
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In order to avoid blurring of the output images, perception loss (PL) combined with
mean absolute error (MAE) is chosen as the loss function. MAE can be calculated from
the predicted images, and original object images and PL are obtained by using VGG-16
to extract image features at different stages, which is the summation of the MSE for these
image feature maps, and then summing up MSE losses at different stages.

PL =
4

∑
j=1

1
cjmjnj

∣∣∣∣φj
(

Î
)
− φj(I)

∣∣∣∣2 (6)

MAE =
1

hw

h

∑
i=1

w

∑
j=1

∣∣I(i, j)− Î(i, j)
∣∣ (7)

Loss = MAE + PL (8)

where c, m, n, φ, Î, I, h, and w represent the channel, length, and width of the feature; the
loss network; the value of the original object; the value of the predicted image; and the
size of the inputs. We developed the network with a graphics processing unit (NVIDIA
GTX 1080Ti) using the TensorFlow framework; other detailed configurations are shown in
Table 1. And the average reconstruction time of the object is at the level of 100 milliseconds.
During the training process, the initial learning rate is 10−3, and decreases by 10% every
10 epochs. The training epochs are 400, and the batch size is 8. Moreover, due to the
position deviation between the restored image by deconvolution and the original target
object, it does not meet the requirements of one-to-one correspondence between the input
and output pixel positions of the denoising model, so it is necessary to translate and correct
the position of the original object. In detail, we find the minimum circumscribed rectangle
of the original object image and speckle reconstruction image first, then the horizontal
and vertical offsets of two bounding rectangles are calculated, and the original images
are translated. In order to improve the robustness of the model, we use random clipping,
random rotation, and other operations on the training image to increase the amount of data.
In the process of data augmentation, in order to avoid the mismatch between the input
image and the label pattern, which affects the learning and training of the model, the same
operation is performed on the input image and the corresponding label.

Table 1. Computer configuration.

Item Configuration

CPU Intel(R) Core i7-7700 CPU: 3.60 GHz
GPU NVidia GeForce GTX 1080 Ti

Operating system Ubuntu 18.04 LTS
Environment Python 3.6, CUDA 10.0

2.2. Experimental Setup

The experimental system schematic diagram (a) and actual optical path (b) are shown
in Figure 3. d1, d2, and d3, which represent the distances among the object, diffuser,
imaging lens (L2), and camera, are 420 mm, 88 mm, and 183 mm, respectively. The aperture
is used to limit the diameter of the light beam so that it is just slightly larger than the object.
The light source is an LED with a working wavelength range of 620 ± 10 nm. Other details
of the experiment instruments are shown in Table 2.
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(b) actual optical path.

Table 2. Instruments and parameters of the experiment.

Instruments Parameters

Light source (620 nm LED) Daheng GCI-060401; Power: 3 W
Collimating lens L1 f = 100 mm

Aperture Φ ≤ 4 cm
Object Hollow pattern, size ≤ 4 mm × 4 mm

Diffuser Newport, 10◦, polycarbonate, thickness 0.76 mm
Imaging lens L2 f = 100 mm

Camera Do3think MGS508M-H2, resolution: 2448 × 2048

Seven patterns used in the experiment are shown in Figure 4a–g below. These seven
figures are named “Rui”, “L”, “R”, “Spines”, “Cross”, “RL”, and “Guang”, respectively.
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3. Results and Analysis
3.1. Deconvolution with Exposure Improvement

Generally, the experimental process of deconvolution can be divided into two steps:
calibration and deconvolution. Calibration involves acquiring the PSF distribution of the
diffuser, which is shown in Figure 5a, from a known reference, which is a pinhole in the
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experiment. Then the next step for the unknown object was recording the speckles of it
and calculating the original image from the speckles and PSF in the first step, which is
called deconvolution. A Chinese character, “Guang”, as an instance, is chosen to be the
object, and the speckle of it shown in Figure 5b is recorded. The recovery result by Weiner
filter deconvolution can be seen in Figure 5c, and though the pattern restored is similar
to the object to a certain degree, neither its intense massive noise nor its blurred contour
are satisfactory.
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Figure 5. (a) Speckle of PSF; (b) Speckle of object; (c) Preliminary deconvolution result; (e–g) Decon-
volution results with different exposure settings, where (e) calibration exposure time is 10 ms and
gain coefficient is 1.0; (f) calibration exposure time is 40 ms and gain coefficient is 1.0; (g) calibration
exposure time is 10 ms and gain coefficient is 4.0; all the object speckles acquired exposure time is
40 ms and gain coefficient is 1.0; (d,h) Original objects.

Exposure time becomes the only important parameter that affects imaging because
of low photo sensibility (ISO) and a zero gain coefficient. A deconvolution recovery
experiment that has different exposure doses between calibration and deconvolution proves
that incorrect exposure will degrade the restored images, as shown in Figure 5e, and when
the exposure doses are the same (even with different exposure times and gain coefficients),
the quality of the result is higher, as shown in Figure 5f,g [26].

It can be inferred that the exposure of calibration and deconvolution must be consis-
tent. On this basis, the relationship between the image restoration quality and the exposure
is shown in Figure 6. When the exposure time is more than 20 ms, both of the evalua-
tion indicators, PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity) [27],
approximately reach the peak value.

The reconstructed image quality is influenced by the size of the pinhole in calibration.
The experimental results of deconvolution with different sizes of pinholes can be seen in
the figure below. Figure 7a–c represent the deconvolution recovery results of pinholes with
diameters of 190 µm, 140 µm, and 90 µm, respectively. It can be seen that as the size of the
pinholes decreases, the contrast of the pattern keeps increasing, and the outline becomes
clearer. Moreover, SSIM and PSNR are used to evaluate the image quality, and as shown
in the Table 3 below, the results generally support the above observations. Therefore, the
smallest pinhole (Φ = 90 µm) is chosen as an optimal calibration sample to acquire the PSF
of the diffuser in subsequent experiments.
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Guang [0.004, 0.033] 

Figure 7. Restored results of deconvolution with different sizes of pinholes (sample “R” is taken as an
example and by the same K, 2 × 107). (a–c) represent the deconvolution recovery results of pinholes
with diameters of 190 µm, 140 µm, and 90 µm, respectively.

Table 3. Instruments and parameters of the experiment.

Diameters of Pinholes/µm SSIM PSNR/dB

190 0.407 23.28
140 0.425 23.20
90 0.444 24.28

3.2. Optimum Seeking Method of Parameter K

At first, 20 observers were invited to obtain the approximate range of optimal values
for K corresponding to every object listed in Figure 4, as shown in Table 4 below.

Table 4. The approximate range of K for every object.

Object The Range of Optimal K Values for the Object

Rui 8.5 × 106~1.9 × 107

L 3.2 × 107~8.5 × 107

R 1.5 × 107~6.5 × 107

Spines 8.2 × 106~3.3 × 107

Cross 2.1 × 106~1.2 × 107

RL 2.1 × 106~1.6 × 107

Guang 1.3 × 107~3.3 × 107

To obtain the precise optimal K value quickly, a novel quality evaluation function for
restored images without reference information, PEF, is provided. Furthermore, the edge
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frequency intervals of seven objects are measured, which are shown in Table 5. In order to
facilitate processing and description, we have normalized the coordinates. The intersection
of statistical interval distributions is used as the final edge frequency interval, which is
[0.005, 0.03]. We believe that this is representative of other images with similar complexity
and distribution.

Table 5. The range of edge frequency of every object.

Object The Range of Normalized Edge Frequency

Rui [0.003, 0.036]
L [0.005, 0.032]
R [0.005, 0.032]

Spines [0.002, 0.037]
Cross [0.005, 0.035]

RL [0.004, 0.030]
Guang [0.004, 0.033]

Based on PEF, according to 2.2.2, an optimal K-value seek method is presented. The
detailed algorithm flow, as shown in Figure 8. First, the exposure-optimized speckle pattern
and the PSF distribution are inputs. Secondly, K is iterated incrementally with a variable
step size ∆K and deconvoluted with a Wiener filter, and PEF is calculated based on the
recovery results. The initial value K0 is 103, and the ∆K is 2i × 103, which ensure coverage
for all the approximate ranges in Table 4. If the PEF(Ki) of the iteration i is decreasing and
less than half the sum of the initial and maximum values, the iteration is terminated. The
relationship between data log(Ki) and PEF(Ki) is fitted with a Gaussian function that is
unimodal to find the peak transverse coordinate µ. Finally, K is taken as µ and deconvoluted
to get the recovered image of an unknown object speckle. The fitting curve of PEF(K)–log(K)
and the optimized restored result are shown in Figure 9.
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Perform the best K-value Wiener filtering deconvolution for the speckle repetition
at different resolutions. The average time consumed is shown in Table 6. Even with
500 megapixel resolution, the total time consumption is less than 42 milliseconds, which
meets the real-time processing requirement of nearly 24 fps.

Table 6. Average time consumption of each part of the optimal K-value Wiener filter deconvolution.

Image Resolution Weiner Filter
Deconvolution PEF Calculation Data Fitting Total

2448 × 2048 34.3 6.5 0.7 41.5
1224 × 1024 16.6 6.4 0.8 23.8

612 × 512 12.3 6.4 0.7 19.4
All time data is in milliseconds.

3.3. Denoise

Although the Wiener filter algorithm can suppress the influence of Gaussian noise,
there is still a cluster-like noise distribution, so denoising is necessary as a post-process.
Traditional methods such as NL-means [28] and 3D block matching (BM3D) [29] have been
tried. Furthermore, the results of two traditional methods are shown in Figure 10b,c. In
recent years, research on model-based noise removal has become more prominent. For
example, the denoising method based on the total variation (TV) model is combined with
inertial proximal ADMM [30] or overlapping group sparsity [31]. The denoised effect of
the above two methods is shown in Figure 10d,e below. These methods usually define the
denoising task as an optimization problem based on maximum a posteriori (MAP), which
has strong mathematical derivation, but the performance of image restoration under the
noise intensity in this experiment is significantly insufficient. In addition, due to the high
complexity of iterative optimization, it is usually time-consuming. Compared to the raw
recovery image in Figure 10a, the NL-means, BM3D, and model-based procedures are all
invalid where the noise is still visible. Therefore, a convolutional neural network with a
U-shape network structure is inserted into the recovery program as a post-process and
achieves the great results seen in Figure 11. It is worth mentioning that good noise removal
results have been achieved for both untrained cases (‘the Guang’) and untrained cases
(the other patterns). In addition, even if the speckles are acquired at different areas of the
same diffusor that are out of the original OME range or the diffusor is replaced, the image
quality can still be improved to a high level after inputting the result of the deconvolution
calculation into the model, as can be seen in Figure 12. These image pairs are also added to
the validation set.
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Figure 12. Noise removal effects of different methods. (a) Restoration with deconvolution
(K = 209,085,916.7); (b) results from verification sets that were not added to training; (c) result
from speckles acquired at different times with scatter plates from different batches; (d) original object.

Table 7 counts the PSNR and SSIM values of images before and after denoising under
different conditions. Not only has the noise in the image been reduced significantly, but the
brightness of the target pattern has also been improved and enhanced; these two indicators
have improved by 27.3% and 186.7%, respectively. Furthermore, the noise removal of the
deconvolution result is not limited by the optical memory effect.

Table 7. Average scores of different image qualities.

Item Deconvolution Results
Denoise with Network

Trained Samples Validation Samples

PSNR/dB 22.58 28.75 27.36
SSIM 0.30 0.86 0.84
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The distribution of noise does not conform to the Gaussian distribution of common
noise in the field of digital image processing, as shown in Figure 13, but is more in line with
the Rayleigh distribution. Therefore, a more effective denoising tool is needed. Different
from denoising methods based on Gaussian noise models, when we transform the method
of image restoration from denoising to segmentation and use a U-shaped model to separate
the real pattern from the noise, good results have been achieved.
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Figure 13. Distribution of noise in the recovery with deconvolution. (a) Noise in the deconvolution
results; (b) distribution of the noise.

4. Conclusions

In conclusion, this paper presents an exposure improved and optimal K-value Wiener
filtering deconvolution method to realize denoising and contracting in scattering image
restoration. The experimental result shows that, with the assistance of PEF, the robustness
and quality of deconvolution technology have been improved, and the time consumption
has been reduced to 41.5 ms (≈24 fps) with five-megapixel resolution, which means that
real-time recovery imaging is possible. It is also further explored the noise processing in
scattering imaging; the PSNR and SSIM of the images after denoising have been improved
by 27.3% and 186.7%, respectively, and the resulting model not only has effective denoising
ability but also has good generalization performance. This further expands the application
potential of convolution recovery imaging. In addition, the provided method is more
conducive to exploring the physical meaning of the mapping from speckle to object image
in three steps.

The performance of the provided method is still insufficient for the restoration of
weak light scenes or very complex patterns, such as slight deformations of the patterns. It
depends on the subsequent modification and a more novel and efficient network structure
to achieve better image denoising and enhancement. With a deeper understanding of the
physical characteristics of the scattering process and the progress of the deep learning
model and the development of computer hardware, real-time and high-quality scattering
imaging recovery will be within reach.
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