Reproduction of Visible Absorbance Spectra of Highly Scattering Suspensions within an Integrating Sphere by Monte Carlo Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Setup
2.3. Optical Properties of Samples
2.4. Monte Carlo Simulation (MC)
2.4.1. Photon Initialization
2.4.2. Inside the IS
2.4.3. Inside the Sample
2.4.4. End of Photon Processing and Estimation of Absorbance
3. Results
3.1. Absorbance Measured When a Sample Is Placed inside the IS
3.2. Reproduction of Absorbance Measurement Results by MC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Concentration of Absorbar | The Number of Photons | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1000 | 5000 | 10,000 | 25,000 | 50,000 | 75,000 | |||||||
Ā | σ | Ā | σ | Ā | σ | Ā | σ | Ā | σ | Ā | σ | |
3 μM | 0.160 | 0.033 | 0.158 | 0.013 | 0.155 | 0.009 | 0.152 | 0.007 | 0.153 | 0.005 | 0.152 | 0.005 |
9 μM | 0.307 | 0.024 | 0.330 | 0.007 | 0.329 | 0.008 | 0.330 | 0.009 | 0.329 | 0.006 | 0.327 | 0.004 |
15 μM | 0.476 | 0.044 | 0.486 | 0.032 | 0.494 | 0.011 | 0.493 | 0.008 | 0.490 | 0.003 | 0.492 | 0.005 |
30 μM | 0.854 | 0.030 | 0.835 | 0.025 | 0.843 | 0.018 | 0.843 | 0.014 | 0.843 | 0.006 | 0.842 | 0.007 |
45 μM | 1.125 | 0.079 | 1.086 | 0.024 | 1.116 | 0.019 | 1.108 | 0.013 | 1.114 | 0.012 | 1.112 | 0.009 |
60 μM | 1.358 | 0.082 | 1.308 | 0.055 | 1.284 | 0.043 | 1.285 | 0.025 | 1.287 | 0.023 | 1.280 | 0.014 |
75 μM | 1.465 | 0.135 | 1.366 | 0.059 | 1.377 | 0.038 | 1.381 | 0.020 | 1.372 | 0.022 | 1.376 | 0.014 |
90 μM | 1.462 | 0.126 | 1.427 | 0.085 | 1.417 | 0.045 | 1.428 | 0.041 | 1.427 | 0.026 | 1.410 | 0.016 |
120 μM | 1.439 | 0.118 | 1.461 | 0.054 | 1.421 | 0.047 | 1.439 | 0.043 | 1.440 | 0.023 | 1.438 | 0.025 |
Concentration of Absorbar | The Number of Photons | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1000 | 5000 | 10,000 | 25,000 | 50,000 | 75,000 | |||||||
Ā | σ | Ā | σ | Ā | σ | Ā | σ | Ā | σ | Ā | σ | |
3 μM | 0.146 | 0.024 | 0.152 | 0.015 | 0.143 | 0.014 | 0.146 | 0.006 | 0.147 | 0.006 | 0.141 | 0.004 |
9 μM | 0.346 | 0.042 | 0.347 | 0.007 | 0.346 | 0.008 | 0.347 | 0.006 | 0.352 | 0.003 | 0.352 | 0.005 |
15 μM | 0.533 | 0.053 | 0.526 | 0.014 | 0.530 | 0.011 | 0.525 | 0.009 | 0.523 | 0.004 | 0.525 | 0.005 |
30 μM | 0.799 | 0.063 | 0.786 | 0.034 | 0.772 | 0.017 | 0.788 | 0.013 | 0.777 | 0.009 | 0.784 | 0.008 |
45 μM | 0.874 | 0.086 | 0.901 | 0.034 | 0.884 | 0.011 | 0.868 | 0.013 | 0.880 | 0.007 | 0.875 | 0.008 |
60 μM | 0.914 | 0.073 | 0.917 | 0.034 | 0.915 | 0.020 | 0.918 | 0.010 | 0.918 | 0.009 | 0.924 | 0.006 |
75 μM | 0.962 | 0.109 | 0.941 | 0.035 | 0.934 | 0.029 | 0.943 | 0.012 | 0.940 | 0.006 | 0.947 | 0.009 |
90 μM | 0.953 | 0.075 | 0.951 | 0.051 | 0.944 | 0.017 | 0.950 | 0.016 | 0.960 | 0.009 | 0.953 | 0.007 |
120 μM | 0.901 | 0.071 | 0.971 | 0.026 | 0.952 | 0.026 | 0.965 | 0.011 | 0.963 | 0.012 | 0.961 | 0.009 |
References
- Adimule, V.; Suryavanshi, A.; Bc, Y.; Nandi, S.S. A Facile Synthesis of Poly(3-Octyl Thiophene):Ni0.4Sr0.6TiO3 Hybrid Nanocomposites for Solar Cell Applications. Macromol. Symp. 2020, 392, 2000001. [Google Scholar] [CrossRef]
- McKechnie, W.S.; Tugcu, N.; Kandula, S. Accurate and Rapid Protein Concentration Measurement of In-Process, High Concentration Protein Pools. Biotechnol. Prog. 2018, 34, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Drieschner, T.; Ostertag, E.; Boldrini, B.; Lorenz, A.; Brecht, M.; Rebner, K. Direct Optical Detection of Cell Density and Viability of Mammalian Cells by Means of UV/VIS Spectroscopy. Anal. Bioanal. Chem. 2020, 412, 3359–3371. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre-Tudo, J.L.; Buica, A.; Nieuwoudt, H.; Aleixandre, J.L.; du Toit, W. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines. J. Agric. Food Chem. 2017, 65, 4009–4026. [Google Scholar] [CrossRef]
- Numata, Y.; Nair, S.V.; Nakagawa, K.; Ishino, H.; Kobayashi, T.; Tokunaga, E. Optical Size Effect of Organic Nanocrystals Studied by Absorption Spectroscopy within an Integrating Sphere. Chem. Phys. Lett. 2014, 601, 128–133. [Google Scholar] [CrossRef]
- Wrigglesworth, E.G.; Johnston, J.H. Mie Theory and the Dichroic Effect for Spherical Gold Nanoparticles: An Experimental Approach. Nanoscale Adv. 2021, 3, 3530–3536. [Google Scholar] [CrossRef]
- Ishino, H.; Nair, S.V.; Nakagawa, K.; Kobayashi, T.; Tokunaga, E. Effect of Light Scattering on the Transmission Spectra of Organic Nanocrystals. Appl. Phys. Lett. 2011, 99, 053304. [Google Scholar] [CrossRef] [Green Version]
- Dazzi, A.; Deniset-Besseau, A.; Lasch, P. Minimising Contributions from Scattering in Infrared Spectra by Means of an Integrating Sphere. Analyst 2013, 138, 4191–4201. [Google Scholar] [CrossRef] [Green Version]
- Gaigalas, A.K.; He, H.-J.; Wang, L. Measurement of Absorption and Scattering With an Integrating Sphere Detector: Application to Microalgae. J. Res. Natl. Inst. Stand. Technol. 2009, 114, 69–81. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Razi Naqvi, K. On Recording the True Absorption Spectrum and the Scattering Spectrum of a Turbid Sample: Application to Cell Suspensions of the Cyanobacterium Anabaena Variabilis. J. Photochem. Photobiol. B Biol. 2000, 58, 123–129. [Google Scholar] [CrossRef]
- Röttgers, R.; Gehnke, S. Measurement of Light Absorption by Aquatic Particles: Improvement of the Quantitative Filter Technique by Use of an Integrating Sphere Approach. Appl. Opt. 2012, 51, 1336–1351. [Google Scholar] [CrossRef] [Green Version]
- Mori, A.; Yamashita, K.; Tabata, Y.; Seto, K.; Tokunaga, E. Absorbance Spectroscopy of Light Scattering Samples Placed inside an Integrating Sphere for Wide Dynamic Range Absorbance Measurement. Rev. Sci. Instrum. 2021, 92, 123103. [Google Scholar] [CrossRef]
- Würth, C.; Pauli, J.; Lochmann, C.; Spieles, M.; Resch-Genger, U. Integrating Sphere Setup for the Traceable Measurement of Absolute Photoluminescence Quantum Yields in the Near Infrared. Anal. Chem. 2012, 84, 1345–1352. [Google Scholar] [CrossRef]
- Leyre, S.; Coutino-Gonzalez, E.; Joos, J.J.; Ryckaert, J.; Meuret, Y.; Poelman, D.; Smet, P.F.; Durinck, G.; Hofkens, J.; Deconinck, G.; et al. Absolute Determination of Photoluminescence Quantum Efficiency Using an Integrating Sphere Setup. Rev. Sci. Instrum. 2014, 85, 123115. [Google Scholar] [CrossRef]
- Quintanilla, M.; Hemmer, E.; Marques-Hueso, J.; Rohani, S.; Lucchini, G.; Wang, M.; Zamani, R.R.; Roddatis, V.; Speghini, A.; Richards, B.S.; et al. Cubic versus Hexagonal—Phase, Size and Morphology Effects on the Photoluminescence Quantum Yield of NaGdF 4 :Er 3+ /Yb 3+ Upconverting Nanoparticles. Nanoscale 2022, 14, 1492–1504. [Google Scholar] [CrossRef]
- MacDougall, S.K.W.; Ivaturi, A.; Marques-Hueso, J.; Richards, B.S. Measurement Procedure for Absolute Broadband Infrared Up-Conversion Photoluminescent Quantum Yields: Correcting for Absorption/Re-Emission. Rev. Sci. Instrum. 2014, 85, 063109. [Google Scholar] [CrossRef]
- Jones, C.M.S.; Panov, N.; Skripka, A.; Gibbons, J.; Hesse, F.; Bos, J.-W.G.; Wang, X.; Vetrone, F.; Chen, G.; Hemmer, E.; et al. Effect of Light Scattering on Upconversion Photoluminescence Quantum Yield in Microscale-to-Nanoscale Materials. Opt. Express 2020, 28, 22803–22818. [Google Scholar] [CrossRef]
- Villanueva, Y.; Veenstra, C.; Steenbergen, W. Measuring Absorption Coefficient of Scattering Liquids Using a Tube inside an Integrating Sphere. Appl. Opt. 2016, 55, 3030–3038. [Google Scholar] [CrossRef]
- Darby, B.L.; Auguié, B.; Meyer, M.; Pantoja, A.E.; Le Ru, E.C. Modified Optical Absorption of Molecules on Metallic Nanoparticles at Sub-Monolayer Coverage. Nat. Photonics 2016, 10, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Tassan, S.; Ferrari, G.M. Variability of Light Absorption by Aquatic Particles in the Near-Infrared Spectral Region. Appl. Opt. 2003, 42, 4802–4810. [Google Scholar] [CrossRef]
- Chess, D.J.; Billings, E.; Covian, R.; Glancy, B.; French, S.; Taylor, J.; de Bari, H.; Murphy, E.; Balaban, R.S. Optical Spectroscopy in Turbid Media Using an Integrating Sphere: Mitochondrial Chromophore Analysis during Metabolic Transitions. Anal. Biochem. 2013, 439, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haardt, H.; Maske, H. Specific in Vivo Absorption Coefficient of Chlorophyll a at 675 Nm1. Limnol. Oceanogr. 1987, 32, 608–619. [Google Scholar] [CrossRef] [Green Version]
- Aduev, B.P.; Nurmukhametov, D.R.; Belokurov, G.M.; Zvekov, A.A.; Kalenskii, A.V.; Nikitin, A.P.; Liskov, I.Y. Integrating Sphere Study of the Optical Properties of Aluminum Nanoparticles in Tetranitropentaerytrite. Tech. Phys. 2014, 59, 1387–1392. [Google Scholar] [CrossRef]
- Nelson, N.B.; Prézelin, B.B. Calibration of an Integrating Sphere for Determining the Absorption Coefficient of Scattering Suspensions. Appl. Opt. 1993, 32, 6710–6717. [Google Scholar] [CrossRef]
- How to Choose Integrating Spheres and White Reference Plates. Available online: https://www.shimadzu.com/an/service-support/technical-support/technical-information/uv-vis/uv-ap/white/index.html (accessed on 16 June 2023).
- Gaballah, A.; Abdelmageed, A. Investigation of Energy Efficiency Index for Indoor LED Lighting Units. Semicond. Phys. Quantum Electron. Optoelectron. 2023, 26, 97–104. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Liu, W.-R.; Yeh, Y.-T.; Jang, S.-M.; Chen, T.-M. The Luminescence Properties and Ce3+ → Tb3+ Energy Transfer of Ca3Y2(Si3O9)2. ECS Trans. 2009, 25, 157. [Google Scholar] [CrossRef]
- Kara, E.; Çilesiz, İ.; Gülsoy, M. Monitoring System for Investigating the Effect of Temperature Change on Optical Properties. Lasers Med. Sci. 2018, 33, 1763–1768. [Google Scholar] [CrossRef]
- Yust, B.G.; Mimun, L.C.; Sardar, D.K. Optical Absorption and Scattering of Bovine Cornea, Lens, and Retina in the near-Infrared Region. Lasers Med. Sci. 2012, 27, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Fukutomi, D.; Ishii, K.; Awazu, K. Highly Accurate Scattering Spectra of Strongly Absorbing Samples Obtained Using an Integrating Sphere System by Considering the Angular Distribution of Diffusely Reflected Light. Lasers Med. Sci. 2015, 30, 1335–1340. [Google Scholar] [CrossRef]
- Fukutomi, D.; Ishii, K.; Awazu, K. Determination of the Scattering Coefficient of Biological Tissue Considering the Wavelength and Absorption Dependence of the Anisotropy Factor. Opt. Rev. 2016, 23, 291–298. [Google Scholar] [CrossRef]
- Hülsbusch, M.; Blazek, V. Photon-Tissue Interaction Modelled by Monte Carlo Method for Optimizing Optoelectronic Sensor Concepts. In Studies in Skin Perfusion Dynamics: Photoplethysmography and its Applications in Medical Diagnostics; Blazek, V., Kumar, V.J., Leonhardt, S., Mukunda Rao, M., Eds.; Biological and Medical Physics Biomedical Engineering; Springer: Singapore, 2021; pp. 163–175. ISBN 9789811554490. [Google Scholar]
- Saccomandi, P.; Larocca, E.S.; Rendina, V.; Schena, E.; D’Ambrosio, R.; Crescenzi, A.; Di Matteo, F.M.; Silvestri, S. Estimation of Optical Properties of Neuroendocrine Pancreas Tumor with Double-Integrating-Sphere System and Inverse Monte Carlo Model. Lasers Med. Sci. 2016, 31, 1041–1050. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y. Monte-Carlo Optical Model Coupled with Inverse Adding-Doubling for Building Integrated Photovoltaic Smart Window Design and Characterisation. Sol. Energy Mater. Sol. Cells 2021, 223, 110972. [Google Scholar] [CrossRef]
- Morales-Cruzado, B.; Pérez-Gutiérrez, F.G.; de Lange, D.F.; Romero-Méndez, R. Study of the Effect Introduced by an Integrating Sphere on the Temporal Profile Characterization of Short Laser Pulses Propagating through a Turbid Medium. Appl. Opt. 2015, 54, 2383–2390. [Google Scholar] [CrossRef]
- Friebel, M.; Helfmann, J.; Netz, U.J.; Meinke, M.C. Influence of Oxygen Saturation on the Optical Scattering Properties of Human Red Blood Cells in the Spectral Range 250 to 2000 Nm. J. Biomed. Opt. 2009, 14, 034001. [Google Scholar] [CrossRef]
- Salomatina, E.V.; Jiang, B.; Novak, J.; Yaroslavsky, A.N. Optical Properties of Normal and Cancerous Human Skin in the Visible and Near-Infrared Spectral Range. J. Biomed. Opt. 2006, 11, 064026. [Google Scholar] [CrossRef] [Green Version]
- Simpson, C.R.; Kohl, M.; Essenpreis, M.; Cope, M. Near-Infrared Optical Properties Ofex Vivohuman Skin and Subcutaneous Tissues Measured Using the Monte Carlo Inversion Technique. Phys. Med. Biol. 1998, 43, 2465–2478. [Google Scholar] [CrossRef]
- Bergmann, F.; Foschum, F.; Zuber, R.; Kienle, A. Precise Determination of the Optical Properties of Turbid Media Using an Optimized Integrating Sphere and Advanced Monte Carlo Simulations. Part 2: Experiments. Appl. Opt. 2020, 59, 3216–3226. [Google Scholar] [CrossRef]
- Hamdy, O.; Mohammed, H.S. Investigating the Transmission Profiles of 808 Nm Laser through Different Regions of the Rat’s Head. Lasers Med. Sci. 2021, 36, 803–810. [Google Scholar] [CrossRef]
- Nilsson, A.M.K.; Berg, R.; Andersson-Engels, S. Measurements of the Optical Properties of Tissue in Conjunction with Photodynamic Therapy. Appl. Opt. 1995, 34, 4609–4619. [Google Scholar] [CrossRef] [Green Version]
- Vincely, V.D.; Vishwanath, K. Accuracy of Retrieving Optical Properties from Liquid Tissue Phantoms Using a Single Integrating Sphere. Appl. Opt. 2022, 61, 375–385. [Google Scholar] [CrossRef]
- C101-E123 UV Talk Letter Vol. 9. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/journal/talk_letters/9633/jpa113001.pdf (accessed on 16 June 2023).
- Mie Scattering. Available online: https://omlc.org/software/mie/ (accessed on 16 April 2023).
- Sultanova, N.; Kasarova, S.; Nikolov, I. Dispersion Properties of Optical Polymers. Acta Phys. Pol. A 2009, 116, 585–587. [Google Scholar] [CrossRef]
- Shahin, A.; Bachir, W.; Sayem El-Daher, M. Polystyrene Microsphere Optical Properties by Kubelka–Munk and Diffusion Approximation with a Single Integrating Sphere System: A Comparative Study. J. Spectrosc. 2019, 2019, e3406319. [Google Scholar] [CrossRef]
- Welch, A.J.; Gemert, M.J.C. Optical-Thermal Response of Laser-Irradiated Tissue; Plenum Press: New York, NY, USA, 1995. [Google Scholar]
Input Parameters | Output Parameters | |||||
---|---|---|---|---|---|---|
Wavelength [nm] | Diameter [nm] | Refractive Index | Scattering Efficiency | Absorption Efficiency | Anisotropy Efficiency | |
Real | Imaginary | |||||
591 | 500 | 1.585 | 0.000 | 0.8346288 | 0.0000000 | 0.8394426 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, A.; Yamashita, K.; Tokunaga, E. Reproduction of Visible Absorbance Spectra of Highly Scattering Suspensions within an Integrating Sphere by Monte Carlo Simulation. Photonics 2023, 10, 754. https://doi.org/10.3390/photonics10070754
Mori A, Yamashita K, Tokunaga E. Reproduction of Visible Absorbance Spectra of Highly Scattering Suspensions within an Integrating Sphere by Monte Carlo Simulation. Photonics. 2023; 10(7):754. https://doi.org/10.3390/photonics10070754
Chicago/Turabian StyleMori, Ayaka, Kyohei Yamashita, and Eiji Tokunaga. 2023. "Reproduction of Visible Absorbance Spectra of Highly Scattering Suspensions within an Integrating Sphere by Monte Carlo Simulation" Photonics 10, no. 7: 754. https://doi.org/10.3390/photonics10070754
APA StyleMori, A., Yamashita, K., & Tokunaga, E. (2023). Reproduction of Visible Absorbance Spectra of Highly Scattering Suspensions within an Integrating Sphere by Monte Carlo Simulation. Photonics, 10(7), 754. https://doi.org/10.3390/photonics10070754