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Abstract: Underwater wireless optical communication (UWOC) plays key role in the underwater
wireless sensor networks (UWSNs), which have been widely employed for both scientific and
commercial applications. UWOC offers high transmission data rates, high security, and low latency
communication between nodes in UWSNs. However, significant absorption and scattering loss in
underwater channels, due to ocean water conditions, can introduce highly non-linear distortion in the
received signals, which can severely deteriorate communication quality. Consequently, addressing the
challenge of processing UWOC signals with low optical signal-to-noise ratios (OSNRs) is critical for
UWOC systems. Increasing the transmitting optical power and investigating more advanced signal
processing technologies to recover transmitted symbols are two primary approaches to improve
system tolerance in noisy UWOC signal channels. In this paper, we propose and demonstrate
the application of deep echo state networks (DeepESNs) for channel equalization in high-speed
UWOC systems to enhance system performance with both PAM and QPSK-OFDM modulations.
Our experimental results demonstrate the effectiveness of DeepESNs in UWOC systems, achieving
error-free underwater transmission over 40.5 m with data rates up to 167 Mbps. Moreover, we
compare the performance of DeepESNs to conventional echo state networks and provide suggestions
on the configuration of a DeepESN for UWOC signals.

Keywords: underwater wireless optical communication; signal modulation; digital signal processing;
deep echo state network; machine learning

1. Introduction

A modern underwater wireless sensor network (UWSN) often consists of widely
distributed underwater sensors, relay buoys, autonomous underwater vehicles (AUVs),
and remotely operated underwater vehicles (ROVs) to accomplish underwater sensing,
monitoring, and communication tasks [1–8]. To link the distributed nodes in an UWSN,
underwater optical wireless communication (UWOC), underwater acoustic communication
(UWAC), and underwater radio frequency (RF) communication (URFC) are leading candi-
dates [1] delivering essential data around each node and providing various underwater
services for scientific and commercial applications, such as water quality monitoring [5],
maintaining of oil platforms [9], and life study [10].

UWOC links typically utilize green or blue light as the signal carrier, featuring the
highest propagation speed in water compared to UWAC and URFC [1,11]. The bandwidth
of the light is in the range of hundreds of terahertz. Most UWOC systems employ a line-of-
sight configuration, effectively avoiding signal diffusion scenarios common in UWAC and
URFC. This configuration also significantly enhances the security of the communication
system by inhibiting eavesdropping attacks. With the advantages of ultra-high bandwidth,
low latency, and enhanced security, UWOC systems present considerable potential for ap-
plications in UWSNs, particularly for tasks requiring real-time data transmission. However,
underwater optical channels encounter substantial interference due to severe absorption
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and scattering phenomena. Scattering occurs when light deviates from its original path
due to interactions with small particles or objects in the water, thereby diffusing light
throughout its propagation pathway. Meanwhile, absorption converts light energy into
other energy forms, such as heat, in a UWOC channel. These factors inevitably impose
constraints on the achievable link length of UWOC systems [1]. While other interferences,
such as chromatic and spatial dispersions, exist within UWOC channels, they are ignored in
this work due to their comparably lesser impact than the power loss induced by absorption
and scattering.

To alleviate this limitation, strategies to increase the optical signal-to-noise ratio
(OSNR) or adapt to a noisy signal channel can be deployed. The utilization of a higher-
power light source [12] or a more sensitive photon receiver [13] can improve the system’s
signal-to-noise ratio (SNR), thereby facilitating longer transmission distances in water.
Nevertheless, the deployment of a high-power light source commonly results in a low mod-
ulation bandwidth, thereby constraining the overall transmission capacity. Additionally,
highly sensitive photonic receivers, such as single-photon avalanche diodes and photomul-
tiplier tubes, typically require exceedingly high driving voltages (ranging from ~100 V to
1000 V). Additionally, these sensitive photonic receivers are easily impacted by interference
from background noise. Therefore, UWOC systems commonly require a delicate balance
of the data rate and transmission distance. For example, in [14], a high-power optical
source was applied and enabled a 138-m 1-Mbps UWOC transmission. The authors in [13]
employed a high-sensitivity single-photon avalanche diode to achieve a 144-m 500-bps and
a 117-m 2-Mbps UWOC transmission. Meanwhile, ultra-high-speed UWOC systems were
demonstrated over shorter transmission distances. The authors in [15] proposed a 30-m
500-Mbps UWOC system, while the authors in [16] illustrated a 20-m 1.5-Gbps UWOC
transmission, the authors in [17] utilized a laser-based white-light source to enable a 2.3-m
8.7-Gbps UWOC transmission, and a 90-m 560-Mbps UWOC system was demonstrated
in [18]. Alternatively, the adoption of advanced signal processing algorithms in UWOC
systems has been shown to enhance the system’s adaptability to noise and attenuation
in UWOC channels with low OSNR, thus enabling a high operation bandwidth and an
optimal transmission rate [19–24].

In particular, channel equalization techniques to combat interference introduced by
linear or non-linear distortions are key to enable the correct re-construction of the trans-
mitted symbols at the receiver. Several different signal equalization algorithms have been
applied in UWOC systems to perform adaptive channel estimation in UWOC transmission
channels, including least mean squares [19], linear minimum mean squared error [20],
recursive least squares (RLS) [21], etc. In general, RLS has the best performance among
them for UWOC channel estimation as it can effectively improve the signal-to-noise ratio
by recursively updating the coefficients [25,26].

Beside these conventional equalization algorithms, with the fast advancement of
machine learning technologies in recent years, neural networks have been employed in
optical communication networks [22–24,27–30] to assist the signal processing and enhance
the system’s ability to resist both linear and non-linear distortion. For example, in [29],
an equalizer for an underwater visible light communication (UVLC) system was built by
training a convolution-enhanced long short-term memory (CE-LSTM) neural network to
approximate the correct mapping from delayed channel output to originally transmitted
symbols. It had comparable efficiency and performances compared with a conventional
Volterra-series-based equalizer and a general LSTM-based equalizer. Ref. [30] reported a
multilayer perceptron (MLP) artificial neural network (ANN) classifier which was adopted
as the equalizer to double the data rates in the visible light communications link. A
recurrent neural network (RNN) was proposed in [23]. RNNs have been demonstrated to
be superior to MLPs in learning non-linear mappings of arbitrary complexity in processing
the time-series data. However, training RNNs is a non-linear nonconvex optimization
problem. Stochastic gradient descent algorithms are computational demanding and prone
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to fall into local minima [31]. The exploding gradient problem can also cause unstable
training and prediction performance [32].

Echo state networks (ESNs) are a type of reservoir computing (RC) which was pro-
posed as an alternative, computationally efficient method to address these problems in
RNNs [33–37]. ESNs can predict and classify multivariate time series by exploiting a
sparsely connected hidden layer (the “reservoir”) to create a higher-dimension representa-
tion (embedding) of their input. Their computational efficiency stems from the fact that the
hidden layer is fixed, and only the weights of the connections between the hidden layer
and the output need to be trained. Since the error function is quadratic with respect to the
weights, the training does not suffer from vanishing/exploiting gradient problems.

To further enhance the training and prediction performance of ESNs, a layered archi-
tecture, known as the deep echo state network (DeepESN), was proposed in 2017 [38]. It is
uniquely suited to handle temporal data due to its structured state space organization with
multi-timescale dynamics. This structure innately aligns with the compositional nature
of recurrent neural modules involved in temporal data processing. DeepESNs exhibit
an optimized effectiveness in layered recurrent neural networks [39,40]. The DeepESN
method has been improved and applied in multiple fields to solve different problems since
its proposal [39–43]. For medical diagnosis, DeepESN can be used as a new method for the
diagnosis of Parkinson’s Disease (PD) [44]. In [45], based on time series analysis, a serially
connected multi-reservoir echo state network (MR-ESN) is developed to conduct the pre-
diction of solar irradiance, which has the advantages of an ESN, such as high efficiency. In
short-term traffic prediction, the DeepESN is used to predict the future values of the traffic
parameters of interest accurately [46]. Despite the proven ability of DeepESNs’ ability to
address time-series data across various domains, their application in the realm of UWOC
remains unexplored.

In terms of ESN performance with different network configurations, compared to an
RNN, the weights of the hidden layer in the ESN are randomly initialized, and parts of the
hidden units hereby could be ineffective. A larger reservoir size makes finding a good set of
hidden units easier. However, the training may present a risk of overfitting if the reservoir
size is too large. Ref. [47] reported a trade-off between the size of the reservoir and/or the
number of training samples, due to the memory limit. Inheriting from ESNs, a DeepESN
can achieve superior performance with an optimally configured reservoir, as discussed
in [48–51]. DeepESNs with different reservoir configurations have been applied to several
datasets, including nonlinear autoregressive moving average (NAMA), and for predictions
pertaining to users’ locations, orientations, and base station associations, respectively [49].
However, these studies have addressed the DeepESNs’ performance with tens or hundreds
of reservoir units, which may necessitate a substantial amount of computational resources
for training and prediction tasks. Regrettably, UWOC systems are typically constrained
in terms of computational resources, especially for practical UWOC systems which are
constrained by spatial limitations and power consumption requirements.

In this paper, DeepESN is, for the first time, applied in optical communication signal
processing to minimize noise and distortion effects while enhancing the system tolerance to
low signal-to-noise ratio (SNR) in signals received from UWOC channels. We built a 40.5 m
error-free underwater transmission link at the date rate above 100 Mbps, where the system
employed both pulse-amplitude modulation (PAM) and quadrature amplitude modulation
using orthogonal frequency division multiplexing (QAM-OFDM) modulations [22]. Deep-
ESN was applied for signal processing in the system. The improvement of bit-error rate
(BER) is observed with the use of DeepESN. We also applied the recursive least squares
(RLS) filter [21,52] for the signal processing as the reference to compare the performances.
From the experimental results, the DeepESN exhibits a superior performance to improve
the system’s performance in the high-data-rate signal. We also compared the DeepESN to
the ESN and proposed a suggested DeepESN configuration when addressing the UWOC
signal. The range of the reservoir units’ number should be from one to three times the
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symbol’s oversampling factors. As a trade-off between the equalization performance and
training efficiency, a two- or three-layer DeepESN is recommended for UWOC systems.

2. Experiment Setup
2.1. Underwater Optical Wireless Communications System

Figure 1 illustrates the block diagram of the proposed UWOC system assisted by
DeepESN. 19-bit pseudorandom binary sequences (PRBSs) were generated as data source,
followed by the application of (229, 255) Reed–Solomon error correction (RSEC) to enable
error-free transmission. The error-free limit of the experimental system was approximately
BER = 10−3 [53]. Using intensity modulation/direct detection (IM/DD), the intensity
of the laser is directly modulated by the baseband pulse-amplitude modulation (PAM)
and DC-biased optical OFDM signal [22]. PAM signal could simplify the study on the
system’s transmission performance with different equalization methods and the selection
of DC-biased optical OFDM was a trade-off between the system’s stability and communica-
tion capacity.
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Figure 1. System configuration for deep echo state network (DeepESN)-assisted underwater wireless
optical communication.

In the PAM modulation case, the encoded bits were modulated with pulse-amplitude
modulation at data rates of 100, 125, and 167 Mbps, respectively. For QAM-OFDM, encoded
bits were first modulated with quadrature amplitude modulation (QAM), and the time-
domain OFDM signal was obtained by applying the inverse fast Fourier transformation
(IFFT) to the Hermitian symmetric QAM symbols following the DC-biased optical OFDM
scheme [22]. Data rates for QAM-OFDM were 100.38, 111.70, 121.21, and 130.68 Mbps.
A cyclic prefix (CP) was added to the OFDM signal to avoid intersymbol interference.
After signal modulation, a synchronization header was inserted into the signal frame, and
pre-distortion was applied to the modulated signal to minimize the impact of the nonlinear
response of the laser diode (LD). The encoded digital signal was converted to an analogy
signal using a 250-Msamples/s arbitrary waveform generator (AWG). A 520-nm (green)
laser was employed as the light source, and the analogy signal was internally modulated
onto the optical carrier. The wireless optical signal was then transmitted through a 40.5 m
underwater optical link established in a water tank.

At the receiver side, a single-pixel avalanche photodiode (APD) performed the con-
version of the signal from the optical domain into the electrical domain, followed by a
250-Msamples/s oscilloscope for analogy-to-digital conversion. DeepESN was first applied
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to learn and compensate for channel noise in the received digital signal prior to signal de-
modulation. The received PAM signal was directly demodulated. In the QAM-OFDM case,
the cyclic prefix and guard band were removed from the received signal before performing
QAM-OFDM demodulation. The BER was measured after RSES decoding.

In this system, an arbitrary waveform generator (RS PRO SDG6022X) was utilized
to generate the analogy signal. An OSRAM PLT5 520B, yielding an average output
power of approximately 16.5 dBm, served as the light source. A water tank, measur-
ing 225 cm × 80 cm × 60 cm, generated a 40.5 m optical path by generating multiple
reflections at both ends. The calculated attenuation of the UWOC channel was around
0.9 dB/m (with an attenuation coefficient of 0.207/m), approximating the conditions of clear
ocean water [1]. On the receiver side, a variable attenuator (Thorlabs LCC1620A/M) was
employed to attenuate the receiving power. This setup introduced a consistent power loss
of 9.23 dBm at the point of least attenuation across all results. Therefore, the actual received
power should be adjusted by adding this constant loss of 9.23 dBm to the observed results.
The photonic receiver employed was an APD430A(/M) with a responsivity of 12 A/W.
Analogy-to-digital conversion was performed using a Tektronix MDO32 oscilloscope.

2.2. Deep Echo State Network (DeepESN) Offline Training and Compensation

Figure 1 also presents the configuration of the DeepESN. To address the impact of noise
introduced by UWOC channels, DeepESN offline training and compensation (DeepESN
processing) were directly applied to the output signal from the oscilloscope. Digital data
were first converted to the training echo states ((X(t) ∈ RUL×1) and testing echo states
(X(t) ∈ RUL×1) at the time instance of t = 1, . . . , T for training states or t = T + 1, . . . , M
for testing states. Here, U is the number of reservoir units in each reservoir layer, L is the
number of reservoir layers, T is the length of the training states, and M is the total length
of the states.

For the ith (i = 1, . . . , L) reservoir layer, the matrix product of the input weight matrix
(W(1) ∈ RU×1 or W(i) ∈ RU×U) and training states (u(t) ∈ R1×1 or x(i)(t) ∈ RU×1) is fed
into each reservoir layer. The echo states are calculated by [38]:

1. For the first reservoir layer (i = 1):

x(1)(t) = D
(

u(t), x(1)(t− 1)
)

=
(

1− a(1)
)

x(1)(t− 1) + a(1)tanh
(

W(1)u(t) + Ŵ(1)x(1)(t− 1)
) (1)

2. For the rest of reservoir layers (i > 1):

x(i)(t) = D
(

x(i−1)(t), x(i)(t− 1)
)

=
(

1− a(i)
)

x(i)(t− 1) + a(i)tanh
(

W(i)x(i−1)(t) + Ŵ(i)x(i)(t− 1)
) (2)

where D represents the echo states calculation function, tanh signifies the element-wise

application of the hyperbolic tangent, and Ŵ(i) ∈ RU×U denotes the recurrent weight
matrix. The parameter a(i) refers to the leaky rate updating speed of the weight matrix
in the reservoir layer and is related to the speed of reservoir dynamics in response to
the input [40]. The output weight matrix Wout ∈ R1×UL is obtained using the singular
value decomposition (SVD) method. Equation (3) calculates the testing results utilizing the
trained weight matrix [38].

y(t) = WoutX(t) (3)

In the experiment, the DeepESN has 10 reservoir units in each layer and two layers in
total. This is one of the optimized setups of the DeepESN in UWOC systems, which will be
discussed in the later sections.
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2.3. Deep Echo State Network (DeepESN) Performance Study

DeepESN requires a large reservoir size (U) to adequately train the randomly ini-
tialized weights of its hidden layers. The network performance with different reservoir
configurations has been investigated based on datasets from both simulations and practical
applications [48,49]. The general conclusion is that a higher U improves the prediction per-
formance of DeepESN, while an excessively large U may lead to substantial computational
resource consumption and overfitting. Thus, reservoir configuration should be studied for
different applications.

As a layered RNN architecture, DeepESN retains more information from previous
inputs with a larger number of U. When the UWOC signal is fed into the DeepESN, U
determines the number of previous samples used for predicting and equalizing noise
or distortion in subsequent samples. In accordance with traditional equalization meth-
ods (e.g., RLS), equalizing communication signals typically requires a few prior symbols
as references. For digital-to-analogy conversion, each symbol is composed of several
samples (Nsps). Consequently, value changes in adjacent samples are attributed to either
noise/distortion in the UWOC channel or variations in symbols. If the reservoir size of
the DeepESN is equal to an integer (m = 1, 2, 3, etc.) multiplied by Nsps, the network is
expected to achieve optimal prediction performance.

U = mNsps (4)

where
Nsps =

Sampling Rate o f ADC
Symbol Rate

(5)

Meanwhile, DeepESN will be at the risk of overfitting if m is too large.

3. Experiment Results

The time-domain characteristics of the 167 Mbps PAM signal, both with and without
DeepESN processing, are depicted in Figure 2a,b. These eye diagrams illustrate the tem-
poral properties of the PAM signal and effectively highlight the improvements brought
about by DeepESN processing. Additionally, Figure 2c presents the received waveform
of the 100 Mbps OFDM signal. The labels “RAW”, “DESN”, and “Tx” correspond to the
raw signal (no signal processing), signal post DeepESN processing, and transmitted signal
(reference signal), respectively.
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square error (MSE) of RAW and DESN signals were 0.0095 and 0.0042, respectively.

3.1. PAM Modulation

In Figure 2a,b, the DESN symbols exhibit a clearer eye pattern compared to the RAW
symbols. The Q factor for DESN symbols visibly surpasses that of the RAW symbols,
indicating an optimal decision point of the PAM symbols. This observation implies that the
BER could be improved through DeepESN processing. Figure 3a shows the BER curves
for PAM4 signal processed by different equalization methods: RAW for raw signal (no
signal processing), RLS for RLS equalization, and DESN for DeepESN equalization. With
250-Msamples/s signal generation/acquisition, the PAM4 signal oversampling factors are
five samples per symbol (SPS) for 100 Mbps, 4 SPS for 125 Mbps, and 3 SPS for 167 Mbps.
To observe the improvement of the system’s transmission performance, BER curves without
equalization (RAW signals) and with RLS are plotted alongside BER curves processed by
DeepESN (DeepESN signals).

It can be observed that, in all cases, the BER curves reached the error-free limit
as the received power gradually increased. The BER curves without equalization and
with RLS (RLS signals) experienced over 3.89 dB of power penalty when the data rate
increased from 100 Mbps to 167 Mbps. As the received power increased from −27.5 dBm to
−20 dBm, the RLS processed signals consistently performed better than the RAW signals.
The RLS processed signal’s BER curves reached the error-free limit at received powers
(P) of −25.2 dBm, −22.5 dBm, and −21.4 dBm for 100 Mbps, 125 Mbps, and 167 Mbps,
respectively. Due to the system’s nonlinear frequency response (lower response for higher
frequency signals), the power penalty in RLS signals followed the trend observed in most
communication systems. Figure 3a reveals a trend in BER curves: lower-data-rate signals
reach its error floor more readily than those with higher data rates when they use the same
equalization conditions. Furthermore, given a fixed data rate, DeepESN signals reach their
error floor prior to both RAW and RLS signals. Additionally, this observation suggests that
DeepESN signals exhibit better performance than RAW and RLS signals as they require
less power to achieve error-free transmission.

In contrast, DeepESN signals exhibited an exceptional performance that overcomes
hardware limitations and provides improved BER for higher-data-rate signals. The BER
curves of DeepESN-processed signals reached 10−3 when P = −21 dBm for 100 Mbps,
P = −21.8 dBm for 125 Mbps, and P = −22.5 dBm for 167 Mbps. This trend shows that
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the DeepESN-processed signals performed significantly better at higher transmission
rates. Higher-data-rate signals achieved better performance despite being limited by the
hardware’s bandwidth response.
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error-free limit for both PAM and OFDM is displayed.

This phenomenon is also evidenced in the power-saving plot at the right of Figure 3a.
This plot illustrates the difference in received power (power saving) when the BER curves
reach the error-free limit under different data rates and equalization conditions. Compared
to the RAW signal at 167 Mbps, all other cases achieve a certain power saving, up to
4.92 dBm, to attain error-free transmission. For the RAW and RLS signals, their power
saving decreases with the growth of the data rate. In contrast, the power saving of DeepESN
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signals dramatically increases from 0.56 dBm to 2.16 dBm when the data rate rises from
100 Mbps to 167 Mbps.

3.2. QAM-OFDM Modulation

In the QAM-OFDM modulation experiment, the length of the CP was 8, and there
were 3060 IFFT blocks in a data frame. The number of used subcarriers varied from 53 to 69
for different data rates, and the number of IFFT points was set at 256. Figure 3b presents the
BER curves without signal processing (RAW), with RLS (RLS), and with DeepESN (DESN).

The DESN waveform in Figure 2 demonstrates a better match with the Tx waveform
than the RAW waveform. Given the lower mean square error (MSE) for the DESN sig-
nals compared to the RAW signals, this suggests that DeepESN processing could also
enhance the BER for the OFDM signal. From Figure 3b, it is observed that higher-data-
rate signals suffer from a larger power penalty across all speeds and signal processing
cases, with the power penalty exceeding 4.6 dB between 100 Mbps and 130 Mbps. Signals
processed by DeepESN do not exhibit the abnormal performance observed in the PAM
modulation case. The BER curves for the signal without equalization reached the error-free
limit at the received power (P) of −20.2 dBm, −19.6 dBm, −18.1 dBm, and −17 dBm for
100 Mbps, 110 Mbps, 120 Mbps, and 130 Mbps, respectively. For all transmission rates,
the signals processed by DeepESN and RLS outperformed the signal without any process-
ing. DeepESN-assisted signals consistently showed better performance compared to the
RLS method across all transmission rate cases at the same received power. For DeepESN-
assisted signals with different transmission rates, the processed signal demonstrated better
performance at the same received power when the transmission rate was lower.

The power-saving plot for the OFDM signals reveals a trend of power savings decrease
for higher-data-rate signals in all equalization methods. Meanwhile, DeepESN signals
consistently exhibit the highest power savings at each data rate. The power saving of
DeepESN signal declines from 5.6 dBm at 100 Mbps to 3.3 dBm at 130 Mbps, referring to
the RAW signal. It is worth noting that the difference of power savings between the RLS
signal and DeepESN signal expands from 0.11 dBm at 100 Mbps to 0.65 dBm at 130 Mbps
data rate.

3.3. The Performance Study of the Reservoir Size (U)

To verify the theoretical conclusions drawn in Section 2.3, the UWOC system perfor-
mance with different DeepESN reservoir configurations is studied here. To simplify the
study, the PAM signal is chosen as the objective in this section, and the receiving optical
power range is from −20.24 dBm to −21.36 dBm. According to the UWOC system configu-
ration stated in Section 2.1, Nsps is equal to 5, 4, and 3 for the data rates of 100, 125, and
167 Mbps, respectively. Consequently, in the study of DeepESN configuration, the range of
U is from 1 to 20, including at least four PAM symbols in each reservoir.

The system performance against different receiving powers and varying numbers of
reservoir units is shown in Figure 4. In line with the trend exhibited in Section 3.2, Figure 4a
supports the conclusion that higher-data-rate signals receive a better improvement on
transmission performance from DeepESN processing. In the floor range (U > 8), the BER
decreases by approximately 0.2 dB and 0.4 dB between 100 and 125 Mbps cases and 125
and 167 Mbps cases, respectively.

Based on Equation (4), to achieve good training performance, the size of the reservoir
must cover the samples that form one or more symbol(s). BERs reach the floor when U is
no less than a certain value, which is 5 for 100 Mbps, 4 for 125 Mbps, and 3 for 167 Mbps,
corresponding to Nsps (m = 1) in the received signal at each data rate. Before BERs reach
the floor (m < 1), the considerably high value of BERs indicates the poor prediction
performance of DeepESN due to insufficient training.

In the floor range, BERs experience a further decline when 2 ≤ m ≤ 3, such as U = 8
and 12 for 125-Mbps signal (Nsps = 4). This decline is slighter than that in the range of
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m < 1, but DeepESN achieves better training. If U keep increasing, fluctuation is observed
in all cases (where m ≥ 4), indicating that overfitting happens in this range.
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reservoir with different data rates. (b) The BER curves of DeepESN (DESN) and ESN for different
data-rate signals at the receiving power of −20.05 dBm.

For the sake of comparison, a conventional ESN was also applied at the receiving
power of −20.05 dBm and a data rate of 100 Mbps, as shown in Figure 4a. This follows the
trend stated for DeepESN previously. The curve reaches the error floor when U = 5, but
there is a 1.8 dB BER gap between the DeepESN and ESN results.

3.4. The Performance Study of the Number of Recurrent Layers (L) and Timing Cost

Figure 5 depicts the BER and calculation time for different numbers of recurrent layers
(L) and units (U). U was fixed at 10 for the layer’s curves, while the unit’s curves were
plotted at L = 2. To clearly display DeepESN performance, the 100 Mbps and −20.05 dBm
signal case was selected for this part. The calculation time represents the time consumed
for DeepESN training and equalization based on the Python compiler installed on a com-
puter with an “IntelI CITM) i5-1235U” processor and 16.0 gigabytes of random-access
memory (RAM).
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As the value of L increases from 1 to 9, the BER experiences a slight decrease from
1.03 × 10−3 to 4.89 × 10−4. However, the calculation time exhibits linear growth with a
coefficient of approximately 4 s per layer. The calculation time increases rapidly when U
rises to 3, but the increment afterward is relatively slow. It is worth noting that DeepESN
degrades to ESN when L = 1. Thus, the improvement in DeepESN’s equalization perfor-
mance can be observed in this plot. However, deeper network configurations demand a
larger amount of computational resources.

4. Discussion
4.1. DeepESN Processing for PAM and QAM-OFDM Signal

The unusual behaviour of DeepESN processing performance for PAM signals can
be attributed to the fact that higher-data-rate PAM signals, compared to lower-data-rate
cases, feed more symbols to DeepESN with a fixed number of training states. From an
optical communications perspective, after analogy-to-digital conversion, higher-data-rate
signals have a lower oversampling factor; thus, they provide more symbols for DeepESN
training. For instance, for a training period of 2 milliseconds, a 100 Mbps PAM signal could
provide 100,000 symbols, while a 167 Mbps signal provides approximately 167,000 symbols
for DeepESN training. Additionally, in a slow time-varying channel, there is less change
between x(i)(t− 1) and x(i)(t) in higher-data-rate signals, allowing DeepESN to better learn
and adapt to the slow time-varying factors in UWOC channels. Consequently, DeepESN
can offer improved signal processing performance due to its inherent properties of state
dynamics in layered recurrent neural architectures.

In contrast, this phenomenon was not observed for OFDM signals. This can be
explained by the fact that an OFDM symbol is composed of a CP and a block of IFFT
output, with each OFDM symbol occupying 264 samples. As a result, the number of
reservoir units was insufficient to cover the entire OFDM symbol. Furthermore, QAM-
OFDM modulation accommodates input data at different data rates by utilizing a varying
number of subcarriers while maintaining the same OFDM symbol rate. Consequently,
the reservoir units always cover the same portion of the OFDM symbol in different data
rates. Although DeepESN processing cannot encompass an entire OFDM symbol, the
enhancement in system resilience against signal deterioration with increasing data rates is
evident in the power-saving plot in Figure 3b.
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4.2. The Study of DeepESN Configurations on the UWOC System

To achieve optimal performance with DeepESN processing, the number of reservoir
units must be large enough to cover the samples in one or two symbols to avoid insufficient
training. However, overfitting occurs when the number of covered symbols is equal to or
greater than four. The recommended size for each reservoir in a DeepESN ranges from Nsps
to 3Nsps, with 2Nsps serving as a compromise between insufficient training, overfitting, and
calculation time. DeepESN offers superior signal equalization capabilities compared to
conventional ESNs.

This characteristic of DeepESN also clarifies why it provides the greatest improvement
in signal quality for the 167 Mbps PAM signal rather than the 100 and 125 Mbps PAM
signals, as previously discussed. In the transmission experiment, the size of the reservoir
was fixed at 10 units per layer. The average number of symbols that the reservoir units can
cover is 3.33 for 167 Mbps, 2.5 for 125 Mbps, and 2 for 100 Mbps signals. The 167 Mbps
signal hereby received the best training and compensation. This observation explains
why only PAM cases experience significant signal quality improvement through DeepESN
processing.

Adding more reservoir layers slightly enhances the effectiveness of DeepESN pro-
cessing but it sacrifices the efficiency of the network. In a communication system, time
consumption is a crucial aspect for evaluation as well, and it requires the DSP process to
operate as rapidly as possible. As a result, there is a trade-off between DeepESNs’ perfor-
mance and efficiency. Considering the minimal decline in BER provided by configurations
with more reservoir layers after L = 3, the suggested number of layers for DeepESN
application in UWOC systems is two or three.

5. Conclusions

For the first time, the deep echo state network (DeepESN) was implemented in an
optical wireless communication system to improve the system’s performance for PAM and
QAM-OFDM modulations. The optical signal was transmitted and received through a
40.5 m underwater channel in the experiment. The results confirm the feasibility of applying
DeepESN to UWOC systems. DeepESN processing significantly improved the system’s
ability to reconstruct signals transmitted using both PAM and QAM-OFDM modulations,
enabling power savings for the UWOC system to achieve the error-free limit. In most cases,
particularly for higher-data-rate signals, DeepESN-processed signals exhibited lower BER
compared to RLS-processed signals. This finding also validated DeepESN’s properties
in state dynamics of layered recurrent neural architectures in handling temporal data in
optical communications.

This paper also investigated the training and equalization performance of DeepESN
with different configurations. In line with the conclusion that the number of reservoir
units determines the network’s training performance from previous work, this paper
emphasized the importance of selecting the appropriate number of reservoir units to avoid
insufficient training and overfitting. It is recommended to set the number of reservoir
units between one and three times the symbol’s oversampling factors. In terms of reservoir
layers, DeepESN outperforms the ESN, which only contains a single reservoir layer. Signal
quality can be improved with deeper DeepESN, but increasing reservoir layers inevitably
raises the calculation time. To achieve efficient and effective DSP in a UWOC system, a
trade-off between equalization performance and training efficiency is essential. A two- or
three-layer network is practical for general UWOC systems.

Future studies for DeepESN’s application in UWOC systems could include addressing
the slow time-varying distortions, such as turbulence and bubbles, which significantly
impact the performance of UWOC systems. DeepESN could be a potential candidate to
mitigate the effects of these distortions. In addition, other ESN configurations, such as
parallel ESN, reported in Ref. [42], could also be applied for signal processing in UWOC.
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