High-Performance Normal-Incidence Ge/Si Meta-Structure Avalanche Photodetector
Abstract
:1. Introduction
2. Analysis of the Effect of Epitaxial Layers and Device Size on Speed Performance
2.1. Methods
2.2. Si-Multiplication Layer
2.3. Charge Layer
2.4. Absorption Layer
2.5. Size of Device
3. Design of Light-Absorption Enhancement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emmons, R. Avalanche-photodiode frequency response. J. Appl. Phys. 1967, 38, 3705–3714. [Google Scholar] [CrossRef]
- Teich, M.C.; Matsuo, K.; Saleh, B. Time and frequency response of the conventional avalanche photodiode. IEEE Trans. Electron Devices 1986, 33, 1511–1517. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.C. Evolution of low-noise avalanche photodetectors. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 1–11. [Google Scholar] [CrossRef]
- McIntyre, R. Factors affecting the ultimate capabilities of high speed avalanche photodiodes and a review of the state-of-the-art. In Proceedings of the 1973 International Electron Devices Meeting, Washington, DC, USA, 3–5 December 1973; IEEE: New York, NY, USA, 1973; pp. 213–216. [Google Scholar]
- Robbins, V.; Wang, T.; Brennan, K.; Hess, K.; Stillman, G. Electron and hole impact ionization coefficients in (100) and in (111) Si. J. Appl. Phys. 1985, 58, 4614–4617. [Google Scholar] [CrossRef]
- Yeom, K.; Hinckley, J.M.; Singh, J. Calculation of electron and hole impact ionization coefficients in SiGe alloys. J. Appl. Phys. 1996, 80, 6773–6782. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Gutierrez-Aitken, A.; Li, S.; Bhattacharya, P. Responsivity and impact ionization coefficients of Si/sub 1-x/Ge/sub x/photodiodes. IEEE Trans. Electron Devices 1996, 43, 977–981. [Google Scholar]
- Laforce, F. Low noise optical receiver using Si APD. In Proceedings of the Optical Components and Materials VI, SPIE, San Jose, CA, USA, 27–29 January 2009; pp. 293–304. [Google Scholar]
- Huang, M.; Cai, P.; Li, S.; Hou, G.; Zhang, N.; Su, T.-I.; Hong, C.-Y.; Pan, D. 56GHz waveguide Ge/Si avalanche photodiode. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; IEEE: New York, NY, USA, 2018; pp. 1–3. [Google Scholar]
- Kang, Y.; Liu, H.-D.; Morse, M.; Paniccia, M.J.; Zadka, M.; Litski, S.; Sarid, G.; Pauchard, A.; Kuo, Y.-H.; Chen, H.-W. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photonics 2009, 3, 59–63. [Google Scholar] [CrossRef]
- Campbell, J.C. Recent advances in avalanche photodiodes. J. Light. Technol. 2016, 34, 278–285. [Google Scholar] [CrossRef]
- Wang, B.; Mu, J. High-speed Si-Ge avalanche photodiodes. PhotoniX 2022, 3, 1–22. [Google Scholar] [CrossRef]
- Kang, Y.; Huang, Z.; Saado, Y.; Campbell, J.; Pauchard, A.; Bowers, J.; Paniccia, M. High performance Ge/Si avalanche photodiodes development in Intel. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 6–10 March 2011; Optical Society of America: Washington, DC, USA, 2011. [Google Scholar]
- Huang, M.; Li, S.; Cai, P.; Hou, G.; Su, T.-I.; Chen, W.; Hong, C.-Y.; Pan, D. Germanium on silicon avalanche photodiode. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–11. [Google Scholar] [CrossRef]
- Srinivasan, S.A.; Lambrecht, J.; Berciano, M.; Lardenois, S.; Absil, P.; Bauwelinck, J.; Yin, X.; Pantouvaki, M.; Van Campenhout, J. Highly sensitive 56 Gbps NRZ O-band BiCMOS-silicon photonics receiver using a Ge/Si avalanche photodiode. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; IEEE: New York, NY, USA, 2020; pp. 1–3. [Google Scholar]
- Yuan, Y.; Tossoun, B.; Huang, Z.; Zeng, X.; Kurczveil, G.; Fiorentino, M.; Liang, D.; Beausoleil, R.G. Avalanche photodiodes on silicon photonics. J. Semicond. 2022, 43, 021301. [Google Scholar] [CrossRef]
- Xiang, Y.; Cao, H.; Liu, C.; Guo, J.; Dai, D. High-speed waveguide Ge/Si avalanche photodiode with a gain-bandwidth product of 615 GHz. Optica 2022, 9, 762–769. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Li, Y.; ZHi, Z.; Chen, B.; Hu, H.; Xie, Q.; Na, Q.; Li, X.; Guo, P. High-performance Cascaded surface-illuminated Ge-on-Si APD array. IEEE Electron Device Lett. 2022, 44, 205–208. [Google Scholar] [CrossRef]
- Potet, J.; Simon, G.; Gaillard, G.; Dessemond, C.; Saliou, F.; Gay, M.; Chanclou, P.; Thual, M. Uncooled High Speed Ge/Si Avalanche Photodiode for 50 Gbit/s-PON with 60 km Reach. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 7–9 March 2023; Optica Publishing Group: Washington, DC, USA, 2023. [Google Scholar]
- Wang, N.; Li, J.; Zhang, D.; Li, H.; Cheng, J.; Chen, W.; Mikhailov, V.; Inniss, D.; Chen, Y.; Duan, X. Real-Time 50Gb/s Upstream Transmission in TDM-PON with Class E1 Power Budget Using Ge/Si Avalanche Photodiode and Bismuth-Doped Fiber as Preamplifier. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; IEEE: New York, NY, USA, 2023; pp. 1–3. [Google Scholar]
- Shi, B.; Qi, F.; Cai, P.; Chen, X.; He, Z.; Duan, Y.; Hou, G.; Su, T.; Li, S.; Chen, W. 106 Gb/s normal-incidence Ge/Si avalanche photodiode with high sensitivity. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; IEEE: New York, NY, USA, 2020; pp. 1–3. [Google Scholar]
- Duan, N.; Liow, T.-Y.; Lim, A.E.-J.; Ding, L.; Lo, G. 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection. Opt. Express 2012, 20, 11031–11036. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Wada, K.; Liu, J.; Cannon, D.D.; Luan, H.-C.; Michel, J.; Kimerling, L.C. Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate. J. Appl. Phys. 2005, 98, 013501. [Google Scholar] [CrossRef]
- Liu, J.; Cannon, D.D.; Wada, K.; Ishikawa, Y.; Jongthammanurak, S.; Danielson, D.T.; Michel, J.; Kimerling, L.C. Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Appl. Phys. Lett. 2005, 87, 011110. [Google Scholar] [CrossRef]
- Sze, S.; Gibbons, G. Avalanche breakdown voltages of abrupt and linearly graded p-n junctions IN Ge, Si, GaAs, and GaP. Appl. Phys. Lett. 1966, 8, 111–113. [Google Scholar] [CrossRef]
- Becker, J.; Fretwurst, E.; Klanner, R. Measurements of charge carrier mobilities and drift velocity saturation in bulk silicon of < 1 1 1> and < 1 0 0> crystal orientation at high electric fields. Solid-State Electron. 2011, 56, 104–110. [Google Scholar]
- Chen, H.; Verheyen, P.; De Heyn, P.; Lepage, G.; De Coster, J.; Balakrishnan, S.; Absil, P.; Roelkens, G.; Van Campenhout, J. Dark current analysis in high-speed germanium pin waveguide photodetectors. J. Appl. Phys. 2016, 119, 213105. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Lv, Q.-Q.; Cui, R.; Yin, W.-H.; Yang, X.-H.; Han, Q. A low dark current mesa-type InGaAs/InAlAs avalanche photodiode. IEEE Photonics Technol. Lett. 2014, 27, 34–37. [Google Scholar] [CrossRef]
- Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kanté, B. Lasing action from photonic bound states in continuum. Nature 2017, 541, 196–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirose, K.; Liang, Y.; Kurosaka, Y.; Watanabe, A.; Sugiyama, T.; Noda, S. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 2014, 8, 406–411. [Google Scholar] [CrossRef]
- Yuan, S.; Wu, Y.; Dang, Z.; Zeng, C.; Qi, X.; Guo, G.; Ren, X.; Xia, J. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity. Phys. Rev. Lett. 2021, 127, 153901. [Google Scholar] [CrossRef]
- Xu, L.; Kamali, K.Z.; Huang, L.; Rahmani, M.; Smirnov, A.; Camacho-Morales, R.; Ma, Y.; Zhang, G.; Woolley, M.; Neshev, D. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators. Adv. Sci. 2019, 6, 1802119. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Smirnova, D.A.; Camacho-Morales, R.; Aoni, R.A.; Kamali, K.Z.; Cai, M.; Ying, C.; Zheng, Z.; Miroshnichenko, A.E.; Neshev, D.N. Enhanced four-wave mixing from multi-resonant silicon dimer-hole membrane metasurfaces. New J. Phys. 2022, 24, 035002. [Google Scholar] [CrossRef]
- Saadabad, R.M.; Huang, L.; Miroshnichenko, A.E. Polarization-independent perfect absorber enabled by quasibound states in the continuum. Phys. Rev. B 2021, 104, 235405. [Google Scholar] [CrossRef]
- Yu, J.; Ma, B.; Ouyang, A.; Ghosh, P.; Luo, H.; Pattanayak, A.; Kaur, S.; Qiu, M.; Belov, P.; Li, Q. Dielectric super-absorbing metasurfaces via PT symmetry breaking. Optica 2021, 8, 1290–1295. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.; Duan, J.; Zhou, C.; Liu, T.; Xiao, S. Perfect absorption in free-standing GaAs nanocylinder arrays by degenerate critical coupling. Opt. Mater. 2021, 121, 111558. [Google Scholar] [CrossRef]
- Tian, J.; Li, Q.; Belov, P.A.; Sinha, R.K.; Qian, W.; Qiu, M. High-Q all-dielectric metasurface: Super and suppressed optical absorption. ACS Photonics 2020, 7, 1436–1443. [Google Scholar] [CrossRef]
- Huang, L.; Li, G.; Gurarslan, A.; Yu, Y.; Kirste, R.; Guo, W.; Zhao, J.; Collazo, R.; Sitar, Z.; Parsons, G.N. Atomically thin MoS2 narrowband and broadband light superabsorbers. ACS Nano 2016, 10, 7493–7499. [Google Scholar] [CrossRef]
- Gansch, R.; Kalchmair, S.; Genevet, P.; Zederbauer, T.; Detz, H.; Andrews, A.M.; Schrenk, W.; Capasso, F.; Lončar, M.; Strasser, G. Measurement of bound states in the continuum by a detector embedded in a photonic crystal. Light Sci. Appl. 2016, 5, e16147. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, J.; Cheng, B.; Zheng, J.; Li, C.; Xue, C.; Wang, Q. Enhanced light trapping in Ge-on-Si-on-insulator photodetector by guided mode resonance effect. J. Appl. Phys. 2018, 124, 053101. [Google Scholar] [CrossRef]
- Song, J.; Yuan, S.; Cui, C.; Li, Y.; Zeng, C.; Xia, J. Photonic crystal enabled manipulation of optical and electric field in germanium avalanche photodetectors. Nanotechnology 2021, 32, 145201. [Google Scholar] [CrossRef]
- Saadabad, R.M.; Pauly, C.; Herschbach, N.; Neshev, D.N.; Hattori, H.T.; Miroshnichenko, A.E. Highly efficient near-infrared detector based on optically resonant dielectric nanodisks. Nanomaterials 2021, 11, 428. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yuan, S.; Cui, C.; Wang, Y.; Li, Z.; Wang, A.X.; Zeng, C.; Xia, J. High-efficiency and high-speed germanium photodetector enabled by multiresonant photonic crystal. Nanophotonics 2020, 10, 1081–1087. [Google Scholar] [CrossRef]
- Chen, D.; March, S.D.; Jones, A.H.; Shen, Y.; Dadey, A.A.; Sun, K.; McArthur, J.A.; Skipper, A.M.; Xue, X.; Guo, B.; et al. Photon-trapping-enhanced avalanche photodiodes for mid-infrared applications. Nat. Photonics 2023, 17, 594–600. [Google Scholar] [CrossRef]
- Kaelberer, T.; Fedotov, V.; Papasimakis, N.; Tsai, D.; Zheludev, N. Toroidal dipolar response in a metamaterial. Science 2010, 330, 1510–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, C.; Yuan, S.; Qiu, X.; Zhu, L.; Wang, Y.; Li, Y.; Song, J.; Huang, Q.; Zeng, C.; Xia, J. Light emission driven by magnetic and electric toroidal dipole resonances in a silicon metasurface. Nanoscale 2019, 11, 14446–14454. [Google Scholar] [CrossRef]
- Fu, T.; Zhou, Z.; Wang, D.; Yang, T.; Li, H.; Chen, Y. Electromagnetically induced transparency based on magnetic toroidal mode of dielectric reverse-symmetric spiral metasurfaces. New J. Phys. 2022, 24, 033024. [Google Scholar] [CrossRef]
- Li, S.-Q.; Crozier, K.B. Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole. Phys. Rev. B 2018, 97, 245423. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, L.-M.; Liu, A.Q.; Nieto-Vesperinas, M.; Zhu, T.; Hassanfiroozi, A.; Liu, J.; Zhang, H.; Tsai, D.P.; Li, H. Superhybrid Mode-Enhanced Optical Torques on Mie-Resonant Particles. Nano Lett. 2022, 22, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
Parameters | Units | Electron | Hole |
---|---|---|---|
Saturated velocity of Si | cm/s | 1.05 × 107 | 9.3 × 106 |
Impact coefficient A of Si | cm−1 | 3.8 × 106 | 2.25 × 107 |
Impact coefficient B of Si | V/cm | 1.75 × 106 | 3.26 × 106 |
Saturated velocity of Ge | cm/s | 6 × 106 | 6 × 106 |
Impact coefficient A of Ge | cm−1 | 5.9 × 105 | 2.6 × 105 |
Impact coefficient B of Ge | V/cm | 7.9 × 105 | 7.1 × 105 |
Device Type | Thickness of Epitaxial Layer (nm) | 3 dB Frequency Response (GHz) at Different Gain | ||||||
---|---|---|---|---|---|---|---|---|
p+ Layer | i-Ge | p−-Si (5 × 1017 cm−3) | i-Si | n+ Layer | M = 2 | M = 5 | M = 10 | |
pin-Si APD | 75 | \ | \ | 120 | 100 | 88 | 54 | 32 |
75 | \ | \ | 250 | 100 | 78 | 40 | 22 | |
75 | \ | \ | 500 | 100 | 52 | 28 | 14 | |
SACM Ge/Si APD | 75 | 200 | 50 | 120 | 100 | 60 | 51 | 39 |
75 | 300 | 50 | 120 | 100 | 44 | 39 | 33 | |
75 | 400 | 50 | 120 | 100 | 34 | 31 | 27 |
Diameter of Top Mesa (μm) | Maximum Optical-Absorption Efficiency at 1550 nm | 3 dB Frequency Response (GHz) at Different Gain | ||||
---|---|---|---|---|---|---|
M = 2 | M = 5 | M = 10 | M = 20 | M = 30 | ||
10 | 54.3% | 36.5 | 34 | 30 | 22 | 16 |
12 | 64.2% | 34.5 | 33 | 29 | 20 | 15 |
14 | 64.6% | 29.5 | 28 | 25.5 | 19.5 | 14.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Bin, S.; Zhou, C.; Qin, B. High-Performance Normal-Incidence Ge/Si Meta-Structure Avalanche Photodetector. Photonics 2023, 10, 780. https://doi.org/10.3390/photonics10070780
Song J, Bin S, Zhou C, Qin B. High-Performance Normal-Incidence Ge/Si Meta-Structure Avalanche Photodetector. Photonics. 2023; 10(7):780. https://doi.org/10.3390/photonics10070780
Chicago/Turabian StyleSong, Jinwen, Shangwu Bin, Chaobiao Zhou, and Binyi Qin. 2023. "High-Performance Normal-Incidence Ge/Si Meta-Structure Avalanche Photodetector" Photonics 10, no. 7: 780. https://doi.org/10.3390/photonics10070780
APA StyleSong, J., Bin, S., Zhou, C., & Qin, B. (2023). High-Performance Normal-Incidence Ge/Si Meta-Structure Avalanche Photodetector. Photonics, 10(7), 780. https://doi.org/10.3390/photonics10070780