Spatial Spectral Characteristics of Partial Discharge with Different Electrode Models
Abstract
:1. Introduction
2. Methodologies
2.1. Spectral Characteristics of PD
2.2. Experiments and Methods
2.3. Simulation Models
3. Results and Discussion
3.1. Experimental Results
3.1.1. Corona Discharge
3.1.2. Breakdown Discharge
3.2. Simulation Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosle, N.; Muhamad, N.A.; Rohani, M.N.K.H.; Jamil, M.K.M. Partial Discharges Classification Methods in XLPE Cable: A Review. IEEE Access 2021, 9, 133258–133273. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, A.Q.; Hebner, R.E.; Montanari, G.C.; Feng, X. Characterization of Partial Discharges in High-Frequency Transformer Under PWM Pulses. IEEE Trans. Power Electron. 2022, 37, 11199–11208. [Google Scholar] [CrossRef]
- da Costa, I.B.V.; Weber, G.H.; Gomes, D.F.; Galvão, J.R.; da Silva, M.J.; Pipa, D.R.; Ozcáriz, A.; Zamarreño, C.R.; Martelli, C.; Cardozo da Silva, J.C. Electric discharge detection and localization using a distributed optical fiber vibration sensor. Opt. Fiber Technol. 2020, 58, 102266. [Google Scholar] [CrossRef]
- Stone, G.C. Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 891–904. [Google Scholar] [CrossRef]
- Ahmed, N.H.; Srinivas, N.N. On-line partial discharge detection in cables. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 181–188. [Google Scholar] [CrossRef]
- Brunt, R.J.V. Stochastic properties of partial-discharge phenomena. IEEE Trans. Electr. Insul. 1991, 26, 902–948. [Google Scholar] [CrossRef]
- Mason, J.H. Dielectric Deterioration due to Internal Discharges. Nature 1950, 165, 932. [Google Scholar] [CrossRef]
- Chen, G.J.; Xu, M.; Liu, T.T.; Ni, J.; Xie, D.; Zhang, Y.P. On-Line UHF Monitoring System of Partial Discharge for Electrical Equipment. Adv. Eng. Mater. 2013, 676, 306–311. [Google Scholar] [CrossRef]
- Koay, C.K.; Fock, K.M. Planning and design of a surgical intensive care unit in a new regional hospital. Ann. Acad. Med. Singap. 1998, 27, 448–452. [Google Scholar]
- Zhu, M.; Chen, G.; Xu, M.; Liu, T.; Xie, D.; Zhang, Y. Study on Monitoring System for Partial Discharge of Electrical Equipment. Telkomnika 2014, 12, 1053–1059. [Google Scholar] [CrossRef]
- Alrumayan, F.; Cotton, I.; Nelms, A. Partial Discharge Testing of Aerospace Electrical Systems. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 848–863. [Google Scholar] [CrossRef]
- Tang, J.; Wu, J.; Zhuo, R.; Xie, Y. Relationship Between VHF Signals and Discharge Magnitude of Partial Discharge from Needle Plate Electrode. High Volt. Eng. 2010, 36, 1083–1089. [Google Scholar]
- Ren, M.; Song, B.; Zhuang, T.; Yang, S. Optical partial discharge diagnostic in SF6 gas insulated system via multi-spectral detection. ISA Trans. 2018, 75, 247–257. [Google Scholar] [CrossRef]
- Yuan, Z.; Ye, Q.; Wang, Y.; Guo, Z. State Recognition of Surface Discharges by Visible Images and Machine Learning. IEEE Trans. Instrum. Meas. 2021, 70, 5004511. [Google Scholar] [CrossRef]
- Guo, Z.; Ye, Q.; Wang, Y.; Han, M. Study of the Development of Negative DC Corona Discharges on the Basis of Visible Digital Images. IEEE Trans. Plasma Sci. 2020, 48, 2509–2514. [Google Scholar] [CrossRef]
- Guo, Z.; Ye, Q.; Wang, Y.; Yuan, Z.; Wang, M. Colorimetric Method for Discharge Status Diagnostics Based on Optical Spectroscopy and Digital Images. IEEE Sens. J. 2020, 20, 9427–9436. [Google Scholar] [CrossRef]
- Riba, J.-R. Application of Image Sensors to Detect and Locate Electrical Discharges: A Review. Sensors 2022, 22, 5886. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Guo, Z.; Hu, J.; Ye, Q. Discharge status diagnosis based on chromaticity coordinates. Appl. Opt. 2021, 60, 4245–4250. [Google Scholar] [CrossRef]
- Xia, C.; Ren, M.; Chen, R.; Yu, J.; Li, C.; Chen, Y.; Wang, K.; Wang, S.; Dong, M. Multispectral Optical Partial Discharge Detection, Recognition, and Assessment. IEEE Trans. Instrum. Meas. 2022, 71, 7002911. [Google Scholar] [CrossRef]
- Guo, Q.; Xie, F.; Huang, X.; Zhang, C.; Li, M.; Yan, Y.; Wang, T.; Zheng, L. Different Electrodes Partial Discharge Detections via Fluorescent Fiber. In Proceedings of the Asia Communications and Photonics Conference 2021, Shanghai, China, 24–27 October 2021. [Google Scholar] [CrossRef]
- Wang, T.; Cheng, Y.; Xu, C.; Zheng, L.; Zhang, C.; Yan, Y.; Guo, Q.; Peng, G. YAG:Yb crystal fiber sensor for partial discharge. In Proceedings of the SPIE 12321, Advanced Sensor Systems and Applications XII, Online, 19 December 2022. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, X.; Cheng, Y.; Wang, T.; Zheng, L.; Xu, C.; Zhang, C.; Peng, G. Localization of Partial Discharge Using All-Fiber System Based on Crystal Fluorescent Fiber. IEEE Sens. J. 2022, 22, 21699–21705. [Google Scholar] [CrossRef]
- Steinfeld, J. Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy, 2nd ed.; Courier Corporation: New York, NY, USA, 2012; pp. 262–285. [Google Scholar]
- Herzberg, G.; Herzberg, L. Rotation-Vibration Spectra of Diatomic and Simple Polyatomic Molecules with Long Absorbing PathsXI. The Spectrum of Carbon Dioxide (CO2) below 1.25μ*. J. Opt. Soc. Am. 1953, 43, 1037–1044. [Google Scholar] [CrossRef]
- Kozioł, M.; Boczar, T.; Nagi, Ł. Identification of electrical discharge forms, generated in insulating oil, using the optical spectrophotometry method. IET Sci. Meas. Technol. 2019, 13, 416–425. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, X.; Jiang, J. Tip to plane Corona discharge spectroscopic analysis. Spectrosc. Spect. Anal. 2003, 23, 955–957. [Google Scholar]
- Riba, J.-R. Spectrum of Corona Discharges and Electric Arcs in Air under Aeronautical Pressure Conditions. Aerospace 2022, 9, 524. [Google Scholar] [CrossRef]
- Nagi, Ł.; Kozioł, M.; Zygarlicki, J. Comparative Analysis of Optical Radiation Emitted by Electric Arc Generated at AC and DC Voltage. Energies 2020, 13, 5137. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Li, K.; Han, D.; Qiu, Z.; Zhang, G. Emission Spectrum Analysis of Two Typical Partial Discharge Forms Under High Frequency Square Wave Voltages. IEEE Access 2020, 8, 219946–219954. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, P.; Guo, F.; Qie, X.; Ouyang, Y.; Zhang, Y. The spectra and temperature of cloud lightning discharge channel. Sci. China Ser. D 2009, 52, 907–912. [Google Scholar] [CrossRef]
- Kalynova, G.; Kalynov, Y.; Savilov, A. Prospects for the Implementation of an Intense Source of Ultraviolet Radiation Based on a Gas-Discharge Plasma in a Quasi-Optical Cavity Excited by a Pulse of Terahertz Radiation. Photonics 2023, 10, 440. [Google Scholar] [CrossRef]
- Suchard, S.N.; Melzer, J.E. Spectroscopic Data: Volume 2 Homonuclear Diatomic Molecules, 2nd ed.; Springer Science & Business Media: Berlin, Germany, 2013; pp. 435–463. [Google Scholar]
- Choi, J.H.; Lee, T.I.; Han, I.; Baik, H.K.; Song, K.M.; Lim, Y.S.; Lee, E.S. Investigation of the transition between glow and streamer discharges in atmospheric air. Plasma Sources Sci. Technol. 2006, 15, 416. [Google Scholar] [CrossRef]
- Šimek, M. Optical diagnostics of streamer discharges in atmospheric gases. J. Phys. D 2014, 47, 463001. [Google Scholar] [CrossRef]
- Li, C.; Ebert, U.; Hundsdorfer, W. Spatially hybrid computations for streamer discharges with generic features of pulled fronts: I. Planar fronts. J. Comput. Phys. 2010, 229, 200–220. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing; Wiley: New York, NY, USA, 2005; pp. 535–569. [Google Scholar] [CrossRef] [Green Version]
- Callender, G.; Golosnoy, I.O.; Rapisarda, P.; Lewin, P.L. Critical analysis of partial discharge dynamics in air filled spherical voids. J. Phys. D 2018, 51, 125601. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.T.; Hebner, R.E.; Kelley, E.F. Simulating mode transitions during breakdown in liquids. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 682–691. [Google Scholar] [CrossRef] [Green Version]
Name | Typical Parameter |
---|---|
Resolution/nm | 1.2 |
Spectral response range/nm | 195 to 1000 |
Peak quantum efficiency | 90% |
Detector | Back-thinned, TE Cooled, 1024 × 58 element CCD array |
Integration time/s | 8 × 10−3 to 3600 |
Signal-to-noise ratio | 1000:1 (Single acquisition) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Cheng, Y.; Xu, C.; Li, H.; Cheng, J.; Peng, G.; Guo, Q. Spatial Spectral Characteristics of Partial Discharge with Different Electrode Models. Photonics 2023, 10, 788. https://doi.org/10.3390/photonics10070788
Wang T, Cheng Y, Xu C, Li H, Cheng J, Peng G, Guo Q. Spatial Spectral Characteristics of Partial Discharge with Different Electrode Models. Photonics. 2023; 10(7):788. https://doi.org/10.3390/photonics10070788
Chicago/Turabian StyleWang, Taiqi, Yongkang Cheng, Chao Xu, Haoyu Li, Jiayao Cheng, Gangding Peng, and Qiang Guo. 2023. "Spatial Spectral Characteristics of Partial Discharge with Different Electrode Models" Photonics 10, no. 7: 788. https://doi.org/10.3390/photonics10070788
APA StyleWang, T., Cheng, Y., Xu, C., Li, H., Cheng, J., Peng, G., & Guo, Q. (2023). Spatial Spectral Characteristics of Partial Discharge with Different Electrode Models. Photonics, 10(7), 788. https://doi.org/10.3390/photonics10070788