High-Speed Underwater Optical Wireless Communication with Advanced Signal Processing Methods Survey
Abstract
:1. Introduction
- 1.
- A brief introduction and summary of equalization principles.
- 2.
- A detailed review of NML equalization techniques in UOWC systems in recent years, including both linear equalizers and nonlinear equalizers.
- 3.
- A detailed review of ML techniques in UOWC systems, including both supervised learning and reinforcement learning schemes.
References | Year | Area of Focus |
---|---|---|
Hemani Kaushal et al. [8] | 2016 | • UOWC LOS, NLOS, and retro-reflector channels • Optical attenuation modeling • UOWC system design • Future scope |
Zhaoquan Zeng et al. [15] | 2017 | • UOWC LOS and NLOS channels • Optical attenuation and turbulence modeling • Theoretical modulation and coding • Practical implementations of UOWC |
Hassan M. Oubei et al. [19] | 2018 | • UOWC typical LOS and NLOS channels • Optical attenuation and turbulence modeling • Future challenge in transceiver technologies |
Callum T. Geldard et al. [20] | 2019 | • UOWC absorption and scattering modeling • Monte Carlo simulation discussion |
N. E. Miroshnikova et al. [21] | 2019 | • UOWC LOS and NLOS channels • Optical absorption and scattering modeling |
Nasir Saeed et al. [2] | 2019 | • UOWC potential channel architectures • Layer-by-layer network aspects • Localization • Future scope discussion |
T. R. Murgod et al. [16] | 2019 | • UOWC network architecture • Routing and localization algorithms introduction • Recent related work challenges discussion |
Chuyen T. Nguyen et al. [24] | 2020 | • UOWC-based Internet of Underwater Things network • Physical and MAC cross-layer analysis • Monte Carlo simulation analysis |
G. S. Spagnolo et al. [17] | 2020 | • UOWC optical attenuation modeling • UOWC transceiver technologies |
Shijie Zhu et al. [13] | 2020 | • UOWC recent theoretical summary • Recent experimental progress summary • Advanced modulation techniques • Challenges and perspectives |
SAH Mohsan et al. [18] | 2020 | • UOWC recent progress • Optical scattering and absorption challenges • Modulation technologies and channel coding |
PA Hoeher et al. [3] | 2021 | • UOWC in swarm robotics • Channel modeling fundamental • Physical layer transmission techniques • Data link layer aspects • Interference suppression • Realization aspects |
Y. Baykal et al. [23] | 2022 | • UOWC turbulence modeling • Turbulence mitigation techniques |
This survey | 2023 | • UOWC fundamental overview • Introduction of equalization principles • Recent UOWC work based on NML equalization • Recent ML equalization techniques in UOWC systems • DSP challenge discussions |
2. Overview of UOWC Systems
2.1. System Architecture
2.2. Signal Processing Techniques
3. Non-Machine Learning Equalization
3.1. Linear Equalizer
3.2. Nonlinear Equalizer
4. Machine Learning Applications in UOWC
4.1. Supervised Learning in UOWC Systems
4.2. Reinforcement Learning in UOWC Systems
5. Discussion and Future Scope
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Air | Air Free Space Channel |
AMP | Amplifier |
AODV | Ad Hoc on-Demand Distance Vector |
APD | Avalanche Photodiode |
APE | Analog Post-Equalizer |
AUV | Autonomous Underwater Vehicle |
BCE | Blind Channel Estimation |
BDNet | Blind Detection Network |
BER | Bit-Error-Rate |
Bubble | Bubble Water Channel |
CAP | Carrierless Amplitude and Phase |
CCD | Charge-Coupled Device |
Clear | Clear Ocean Channel |
CNN | Convolutional Neural Network |
Coastal | Coastal Water Channel |
DAC | Digital-to-Analog Converter |
DBMLP | Dual-Branch Multilayer Perceptron |
DFE | Decision-Feedback Equalizer |
DMT | Discrete Multi-Tone |
DNN | Deep Neural Network |
DSP | Digital Signal Processing |
FDE | Frequency Domain Equalizer |
FEC | Forward Error Correction |
FFE | Feedforward Equalizer |
FSO | Free-Space Optical |
GaN | Gallium Nitride |
GK | Gaussian Kernel-aided |
Harbor | Harbor Water Channel |
HG | Henyey–Greenstein |
IoUT | Internet of Underwater Things |
I-SC-FDM | Interleaved Single-Carrier Frequency Division Multiplexing |
ISI | Inter-Symbol Interference |
LD | Laser Diode |
LE | Linear Equalizers |
LED | Light-Emitting Diode |
LOS | Line-of-Sight |
MAC | Medium Access Control |
MARL | Multi-agent Reinforcement Learning |
MC | Monte Carlo |
MIMO | Multiple-Input Multiple-Output |
ML | Machine Learning |
MMSE | Minimum Mean Square Error |
MPE | Memory Polynomial Model-Based Equalizer |
MSE | Mean-Square Error |
NLE | Nonlinear Equalizers |
NLOS | Non-Line-of-Sight |
NML | Non-Machine Learning |
NP | Noise Prediction |
NRZ | No Return to Zero |
OAM-SK | Orbital Angular Momentum Shift Keying |
OBS | Optical Base Station |
OFDM | Orthogonal Frequency-Division Multiplexing |
OOK | On–Off Keying |
PAM | Pulse Amplitude Modulation |
PAT | Pointing Acquisition and Tracking |
PCVNN | Partitioned Equalizer Based on Complex-Valued Neural Network |
PD | Photodiode |
PIN PD | PIN Photodiode |
PMT | Photo-Multiplier Tube |
PPM | Pulse Position Modulation |
QAM | Quadrature Amplitude Modulation |
QDTR | Q-Learning-Based Delay Tolerant Routing |
RF | Radio Frequency |
RRC | Root Raised Cosine |
SARSA | State–Action–Reward–State–Action |
SiPM | Silicon Photo-Multipliers |
SNR | Signal-to-Noise Ratio |
SPAD | Single-Photon Avalanche Diode |
SPF | Scattering Phase Function |
STFT | Short Time Fourier Transformation |
SWI | Sparse Weight-Initiated |
Tap | Tap Water Channel |
TE | Triangular Exploration |
TFDNet | Time-Frequency Domains Deep Neural Network |
TL | Two Transfer Learning |
TPGE | Tunable Passive Gain Equalizer |
TTHG | Two-term Henyey–Greenstein |
Turbu | Turbulence Water Channel |
Turbid | Turbid Water Channel |
UAC | Underwater Acoustic Communication |
UAV | Unmanned Aerial Vehicle |
UM | Underwater Monitor |
UOT | Underwater Optical Turbulence |
UOWC | Underwater Optical Wireless Communication |
UWC | Underwater Wireless Communication |
VDFE | Volterra Series-Based Decision-Feedback Equalizer |
VE | Volterra Series-Based Equalizer |
ZF | Zero-Forcing |
References
- Woodruff, S.D.; Slutz, R.J.; Jenne, R.L.; Steurer, P.M. A comprehensive ocean-atmosphere data set. Bull. Am. Meteorol. Soc. 1987, 68, 1239–1250. [Google Scholar] [CrossRef]
- Saeed, N.; Celik, A.; Al-Naffouri, T.Y.; Alouini, M.S. Underwater optical wireless communications, networking, and localization: A survey. Ad Hoc Netw. 2019, 94, 101935. [Google Scholar] [CrossRef] [Green Version]
- Hoeher, P.A.; Sticklus, J.; Harlakin, A. Underwater optical wireless communications in swarm robotics: A tutorial. IEEE Commun. Surv. Tutor. 2021, 23, 2630–2659. [Google Scholar] [CrossRef]
- Sozer, E.; Stojanovic, M.; Proakis, J. Underwater acoustic networks. IEEE J. Ocean. Eng. 2000, 25, 72–83. [Google Scholar] [CrossRef]
- Kida, Y.; Deguchi, M.; Shimura, T. Experimental result for a high-rate underwater acoustic communication in deep sea for a manned submersible shinkai6500. J. Mar. Acoust. Soc. Jpn. 2018, 45, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Hodgkiss, W. Efficient use of bandwidth for underwater acoustic communication. J. Acoust. Soc. Am. 2013, 134, 905–908. [Google Scholar] [CrossRef] [Green Version]
- Akyildiz, I.F.; Pompili, D.; Melodia, T. Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Rev. 2004, 1, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Al-Shamma’a, A.I.; Shaw, A.; Saman, S. Propagation of electromagnetic waves at MHz frequencies through seawater. IEEE Trans. Antennas Propag. 2004, 52, 2843–2849. [Google Scholar] [CrossRef]
- Tian, P.; Liu, X.; Yi, S.; Huang, Y.; Zhang, S.; Zhou, X.; Hu, L.; Zheng, L.; Liu, R. High-speed underwater optical wireless communication using a blue GaN-based micro-LED. Opt. Express 2017, 25, 1193–1201. [Google Scholar] [CrossRef]
- Lee, C.; Zhang, C.; Cantore, M.; Farrell, R.M.; Oh, S.H.; Margalith, T.; Speck, J.S.; Nakamura, S.; Bowers, J.E.; DenBaars, S.P. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Opt. Express 2015, 23, 16232–16237. [Google Scholar] [CrossRef]
- Alghamdi, R.; Saeed, N.; Dahrouj, H.; Alouini, M.S.; Al-Naffouri, T.Y. Towards ultra-reliable low-latency underwater optical wireless communications. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), IEEE, Honolulu, HI, USA, 22–25 September 2019; pp. 1–6. [Google Scholar]
- Zhu, S.; Chen, X.; Liu, X.; Zhang, G.; Tian, P. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum Electron. 2020, 73, 100274. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X.; Lu, J.; Liu, X.; Shi, J.; Zheng, L.; Liu, R.; Zhou, X.; Tian, P. Toward long-distance underwater wireless optical communication based on a high-sensitivity single photon avalanche diode. IEEE Photonics J. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 2016, 19, 204–238. [Google Scholar] [CrossRef]
- Murgod, T.R.; Sundaram, S.M. Survey on underwater optical wireless communication: Perspectives and challenges. Indones. J. Electr. Eng. Comput. Sci. 2019, 13, 138–146. [Google Scholar] [CrossRef]
- Schirripa Spagnolo, G.; Cozzella, L.; Leccese, F. Underwater optical wireless communications: Overview. Sensors 2020, 20, 2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsan, S.A.H.; Hasan, M.M.; Mazinani, A.; Sadiq, M.A.; Akhtar, M.H.; Islam, A.; Rokia, L.S. A systematic review on practical considerations, recent advances and research challenges in underwater optical wireless communication. Int. J. Adv. Comput. Sci. Appl. 2020, 11. [Google Scholar] [CrossRef]
- Oubei, H.M.; Shen, C.; Kammoun, A.; Zedini, E.; Park, K.H.; Sun, X.; Liu, G.; Kang, C.H.; Ng, T.K.; Alouini, M.S.; et al. Light based underwater wireless communications. Jpn. J. Appl. Phys. 2018, 57, 08PA06. [Google Scholar] [CrossRef]
- Geldard, C.T.; Thompson, J.; Popoola, W.O. An overview of underwater optical wireless channel modelling techniques. In Proceedings of the 2019 International Symposium on Electronics and Smart Devices (ISESD), IEEE, Badung, Indonesia, 8–9 October 2019; pp. 1–4. [Google Scholar]
- Miroshnikova, N.; Petruchin, G.; Sherbakov, A. Problems of underwater optical links modeling. In Proceedings of the 2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), IEEE, Russia, 1–3 July 2019; pp. 1–9. [Google Scholar]
- Liu, W.; Xu, Z.; Yang, L. SIMO detection schemes for underwater optical wireless communication under turbulence. Photonics Res. 2015, 3, 48–53. [Google Scholar] [CrossRef]
- Baykal, Y.; Ata, Y.; Gökçe, M.C. Underwater turbulence, its effects on optical wireless communication and imaging: A review. Opt. Laser Technol. 2022, 156, 108624. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Nguyen, M.T.; Mai, V.V. Underwater optical wireless communication-based IoUT networks: MAC performance analysis and improvement. Opt. Switch. Netw. 2020, 37, 100570. [Google Scholar] [CrossRef]
- Li, X.; Cheng, C.; Zhang, C.; Wei, Z.; Wang, L.; Fu, H.; Yang, Y. Net 4 Gb/s underwater optical wireless communication system over 2 m using a single-pixel GaN-based blue mini-LED and linear equalization. Opt. Lett. 2022, 47, 1976–1979. [Google Scholar] [CrossRef]
- Lu, H.H.; Li, C.Y.; Lin, H.H.; Tsai, W.S.; Chu, C.A.; Chen, B.R.; Wu, C.J. An 8 m/9.6 Gbps underwater wireless optical communication system. IEEE Photonics J. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Li, C.Y.; Lu, H.H.; Tsai, W.S.; Cheng, M.T.; Ho, C.M.; Wang, Y.C.; Yang, Z.Y.; Chen, D.Y. 16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques. Opt. Express 2017, 25, 11598–11605. [Google Scholar] [CrossRef]
- Lu, C.; Wang, J.; Li, S.; Xu, Z. 60 m/2.5 Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), IEEE, San Jose, CA, USA, 5–10 May 2019; pp. 1–2. [Google Scholar]
- Liu, A.; Zhang, R.; Lin, B.; Yin, H. Multi-degree-of-freedom for underwater optical wireless communication with improved transmission performance. J. Mar. Sci. Eng. 2022, 11, 48. [Google Scholar] [CrossRef]
- Yang, X.; Tong, Z.; Dai, Y.; Chen, X.; Zhang, H.; Zou, H.; Xu, J. 100 m full-duplex underwater wireless optical communication based on blue and green lasers and high sensitivity detectors. Opt. Commun. 2021, 498, 127261. [Google Scholar] [CrossRef]
- Alkhasraji, J.; Tsimenidis, C. Coded OFDM over short range underwater optical wireless channels using LED. In Proceedings of the Oceans 2017-Aberdeen, IEEE, Aberdeen, UK, 19–22 June 2017; pp. 1–7. [Google Scholar]
- Chauhan, D.S.; Kaur, G.; Kumar, D. Design of novel MIMO UOWC link using gamma—Gamma fading channel for IoUTs. Opt. Quantum Electron. 2022, 54, 512. [Google Scholar] [CrossRef]
- Bai, J.; Li, N.; Nie, J.; Liang, X. Power Optimization of UOWC-MIMO-OFDM System Based on PSO-WF Algorithm. J. Phys. Conf. Ser. 2023, 2476, 012075. [Google Scholar] [CrossRef]
- Huang, A.; Tao, L.; Jiang, Q. BER performance of underwater optical wireless MIMO communications with spatial modulation under weak turbulence. In Proceedings of the 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), IEEE, Kobe, Japan, 28–31 May 2018; pp. 1–5. [Google Scholar]
- Tsai, W.S.; Lu, H.H.; Wu, H.W.; Su, C.W.; Huang, Y.C. A 30 Gb/s PAM4 underwater wireless laser transmission system with optical beam reducer/expander. Sci. Rep. 2019, 9, 8605. [Google Scholar] [CrossRef] [Green Version]
- Tu, C.; Liu, W.; Jiang, W.; Xu, Z. First Demonstration of 1 Gb/s PAM4 Signal Transmission Over A 130 m Underwater Optical Wireless Communication Channel with Digital Equalization. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China (ICCC), IEEE, Xiamen, China, 28–30 July 2021; pp. 853–857. [Google Scholar]
- Tang, S.; Dong, Y.; Zhang, X. Impulse response modeling for underwater wireless optical communication links. IEEE Trans. Commun. 2013, 62, 226–234. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.; Li, S.; Xu, Z. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode. Optics Express 2019, 27, 12171–12181. [Google Scholar] [CrossRef] [PubMed]
- Hanson, F.; Radic, S. High bandwidth underwater optical communication. Appl. Opt. 2008, 47, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Oubei, H.M.; Li, C.; Park, K.H.; Ng, T.K.; Alouini, M.S.; Ooi, B.S. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. Opt. Express 2015, 23, 20743–20748. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, C.; Xu, Z. A cost-efficient real-time 25 Mb/s system for LED-UOWC: Design, channel coding, FPGA implementation, and characterization. J. Light. Technol. 2018, 36, 2627–2637. [Google Scholar] [CrossRef]
- Tsai, C.L.; Lu, Y.C.; Chang, S.H. InGaN LEDs fabricated with parallel-connected multi-pixel geometry for underwater optical communications. Opt. Laser Technol. 2019, 118, 69–74. [Google Scholar] [CrossRef]
- Han, B.; Zhao, W.; Zheng, Y.; Meng, J.; Wang, T.; Han, Y.; Wang, W.; Su, Y.; Duan, T.; Xie, X. Experimental demonstration of quasi-omni-directional transmitter for underwater wireless optical communication based on blue LED array and freeform lens. Opt. Commun. 2019, 434, 184–190. [Google Scholar] [CrossRef]
- Hu, S.; Mi, L.; Zhou, T.; Chen, W. 35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM. Opt. Express 2018, 26, 21685–21699. [Google Scholar] [CrossRef]
- Shen, J.; Wang, J.; Yu, C.; Chen, X.; Wu, J.; Zhao, M.; Qu, F.; Xu, Z.; Han, J.; Xu, J. Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output. Opt. Commun. 2019, 438, 78–82. [Google Scholar] [CrossRef]
- Cochenour, B.; Mullen, L.; Muth, J. A modulated pulse laser for underwater detection, ranging, imaging, and communications. In Proceedings of the Ocean Sensing and Monitoring IV. SPIE, Baltimore, MD, USA, 23–27 April 2012; Volume 8372, pp. 217–226. [Google Scholar]
- Wang, Z.; Dong, Y.; Zhang, X.; Tang, S. Adaptive modulation schemes for underwater wireless optical communication systems. In Proceedings of the 7th International Conference on Underwater Networks & Systems, Los Angeles, CA, USA, 5–6 November 2012; pp. 1–2. [Google Scholar]
- Kong, M.; Chen, Y.; Sarwar, R.; Sun, B.; Xu, Z.; Han, J.; Chen, J.; Qin, H.; Xu, J. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal. Opt. Express 2018, 26, 3087–3097. [Google Scholar] [CrossRef]
- Zhuang, B.; Li, C.; Wu, N.; Xu, Z. First demonstration of 400 Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer. In Proceedings of the 2017 Conference on Lasers and Electro-Optics (CLEO), IEEE, San Jose, CA, USA, 14–19 May 2017; pp. 1–2. [Google Scholar]
- Chi, N.; Zhao, Y.; Shi, M.; Zou, P.; Lu, X. Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system. Opt. Express 2018, 26, 26700–26712. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Lv, W.; Yu, C.; Wu, J.; Zhao, M.; Qu, F.; Xu, Z.; Han, J.; Xu, J. Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation. Opt. Commun. 2019, 451, 181–185. [Google Scholar] [CrossRef]
- Huang, X.H.; Li, C.Y.; Lu, H.H.; Su, C.W.; Wu, Y.R.; Wang, Z.H.; Chen, Y.N. 6-m/10-Gbps underwater wireless red-light laser transmission system. Opt. Eng. 2018, 57, 066110. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.C.; Chi, Y.C.; Wang, H.Y.; Tsai, C.T.; Lin, G.R. Blue laser diode enables underwater communication at 12.4 Gbps. Sci. Rep. 2017, 7, 40480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Liu, Y.; Shi, M.; Chen, H.; Chi, N. 3.075 Gb/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points. Opt. Eng. 2019, 58, 056117. [Google Scholar] [CrossRef]
- Li, J.; Wang, F.; Zhao, M.; Jiang, F.; Chi, N. Large-coverage underwater visible light communication system based on blue LED employing equal gain combining with integrated PIN array reception. Appl. Opt. 2019, 58, 383–388. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Jiang, F.; Chi, N. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception. Opt. Commun. 2018, 425, 106–112. [Google Scholar] [CrossRef]
- Zhang, Z.; Lai, Y.; Lv, J.; Liu, P.; Teng, D.; Wang, G.; Liu, L. Over 700 MHz–3 dB bandwidth UOWC system based on blue HV-LED with T-bridge pre-equalizer. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Arvanitakis, G.N.; Bian, R.; McKendry, J.J.; Cheng, C.; Xie, E.; He, X.; Yang, G.; Islim, M.S.; Purwita, A.A.; Gu, E.; et al. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays. IEEE Photonics J. 2019, 12, 1–10. [Google Scholar] [CrossRef]
- Hong, X.; Fei, C.; Zhang, G.; Du, J.; He, S. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit. Opt. Lett. 2019, 44, 558–561. [Google Scholar] [CrossRef]
- Li, C.Y.; Lu, H.H.; Tsai, W.S.; Wang, Z.H.; Hung, C.W.; Su, C.W.; Lu, Y.F. A 5 m/25 Gbps underwater wireless optical communication system. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Oubei, H.M.; Duran, J.R.; Janjua, B.; Wang, H.Y.; Tsai, C.T.; Chi, Y.C.; Ng, T.K.; Kuo, H.C.; He, J.H.; Alouini, M.S.; et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Opt. Express 2015, 23, 23302–23309. [Google Scholar] [CrossRef] [Green Version]
- Fei, C.; Hong, X.; Zhang, G.; Du, J.; Gong, Y.; Evans, J.; He, S. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization. Opt. Express 2018, 26, 34060–34069. [Google Scholar] [CrossRef]
- Chen, X.; Lyu, W.; Zhang, Z.; Zhao, J.; Xu, J. 56-m/3.31-Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction. Opt. Express 2020, 28, 23784–23795. [Google Scholar] [CrossRef]
- Fei, C.; Zhang, J.; Zhang, G.; Wu, Y.; Hong, X.; He, S. Demonstration of 15-M 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization. J. Light. Technol. 2018, 36, 728–734. [Google Scholar] [CrossRef]
- Pandey, P.; Agrawal, M. High speed and Long range underwater optical wireless communication. In Proceedings of the Global Oceans 2020: Singapore–US Gulf Coast, IEEE, Biloxi, MS, USA, 5–30 October 2020; pp. 1–10. [Google Scholar]
- Kaeib, F.; Alshawish, O.A.; Altayf, S.A.; Gamoudi, M.A. Designing and Analysis of Underwater Optical Wireless communication system. In Proceedings of the 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), IEEE, Sabratha, Libya, 23–25 May 2022; pp. 441–446. [Google Scholar]
- Pandey, P.; Matta, G.; Aggarwal, M. Performance comparisons between Avalanche and PIN photodetectors for use in underwater optical wireless communication systems. In Proceedings of the OCEANS 2021: San Diego–Porto, IEEE, San Diego, CA, USA, 20–23 September 2021; pp. 1–8. [Google Scholar]
- Mobley, C. Light and Water: Radiative Transfer in Natural Water; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Mobley, C.D.; Gentili, B.; Gordon, H.R.; Jin, Z.; Kattawar, G.W.; Morel, A.; Reinersman, P.; Stamnes, K.; Stavn, R.H. Comparison of numerical models for computing underwater light fields. Appl. Opt. 1993, 32, 7484–7504. [Google Scholar] [CrossRef] [Green Version]
- Duntley, S.Q. Light in the sea. JOSA 1963, 53, 214–233. [Google Scholar] [CrossRef]
- Haltrin, V.I. Chlorophyll-based model of seawater optical properties. Appl. Opt. (2004) 1999, 38, 6826–6832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, C.; Guo, Y.; Oubei, H.M.; Ng, T.K.; Liu, G.; Park, K.H.; Ho, K.T.; Alouini, M.S.; Ooi, B.S. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate. Opt. Express 2016, 24, 25502–25509. [Google Scholar] [CrossRef]
- Johnson, L.J.; Green, R.J.; Leeson, M.S. Underwater optical wireless communications: Depth dependent variations in attenuation. Appl. Opt. 2013, 52, 7867–7873. [Google Scholar] [CrossRef] [Green Version]
- Yap, Y.; Jasman, F.; Marcus, T. Impact of chlorophyll concentration on underwater optical wireless communications. In Proceedings of the 2018 7th International Conference on Computer and Communication Engineering (ICCCE), IEEE, Kuala Lumpur, Malaysia, 19–20 September 2018; pp. 1–6. [Google Scholar]
- Liu, W.; Zou, D.; Xu, Z.; Yu, J. Non-line-of-sight scattering channel modeling for underwater optical wireless communication. In Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), IEEE, Shenyang, China, 8–12 June 2015; pp. 1265–1268. [Google Scholar]
- Chen, D.; Wang, J.; Li, S.; Xu, Z. Effects of air bubbles on underwater optical wireless communication. Chin. Opt. Lett. 2019, 17, 100008. [Google Scholar] [CrossRef]
- Shin, M.; Park, K.H.; Alouini, M.S. Statistical modeling of the impact of underwater bubbles on an optical wireless channel. IEEE Open J. Commun. Soc. 2020, 1, 808–818. [Google Scholar] [CrossRef]
- Oubei, H.M.; ElAfandy, R.T.; Park, K.H.; Ng, T.K.; Alouini, M.S.; Ooi, B.S. Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.S.; Li, C.Y.; Lu, H.H.; Lu, Y.F.; Tu, S.C.; Huang, Y.C. 256 Gb/s four-channel SDM-based PAM4 FSO-UWOC convergent system. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Fang, C.; Li, S.; Wang, K. Accurate Underwater Optical Wireless Communication Model With Both Line-of-Sight and Non-Line-of-Sight Channels. IEEE Photonics J. 2022, 14, 1–12. [Google Scholar] [CrossRef]
- Mahapatra, S.K.; Varshney, S.K. Performance of the Reed-Solomon-coded underwater optical wireless communication system with orientation-based solar light noise. JOSA A 2022, 39, 1236–1245. [Google Scholar] [CrossRef]
- Fang, C.; Li, S.; Wang, K. Accurate underwater optical wireless communication (UOWC) channel model. In Proceedings of the Asia Communications and Photonics Conference. Optical Society of America, Shanghai, China, 24–27 October 2021; pp. T4A–143. [Google Scholar]
- Huang, Y.F.; Tsai, C.T.; Chi, Y.C.; Huang, D.W.; Lin, G.R. Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission. J. Light. Technol. 2017, 36, 1739–1745. [Google Scholar] [CrossRef]
- Hu, F.; Li, G.; Zou, P.; Hu, J.; Chen, S.; Liu, Q.; Zhang, J.; Jiang, F.; Wang, S.; Chi, N. 20.09-Gbit/s underwater WDM-VLC transmission based on a single Si/GaAs-substrate multichromatic LED array chip. In Proceedings of the 2020 Optical fiber Communications Conference and Exhibition (OFC), IEEE, San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Zhou, Y.; Zhu, X.; Hu, F.; Shi, J.; Wang, F.; Zou, P.; Liu, J.; Jiang, F.; Chi, N. Common-anode LED on a Si substrate for beyond 15 Gbit/s underwater visible light communication. Photonics Res. 2019, 7, 1019–1029. [Google Scholar] [CrossRef]
- Chen, Y.; Kong, M.; Ali, T.; Wang, J.; Sarwar, R.; Han, J.; Guo, C.; Sun, B.; Deng, N.; Xu, J. 26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode. Opt. Express 2017, 25, 14760–14765. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yi, S.; Zhou, X.; Fang, Z.; Qiu, Z.J.; Hu, L.; Cong, C.; Zheng, L.; Liu, R.; Tian, P. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation. Opt. Express 2017, 25, 27937–27947. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.L.; Lu, Y.C.; Yu, C.M.; Chen, Y.J. Epitaxial growth of InGaN multiple-quantum-well LEDs with improved characteristics and their application in underwater optical wireless communications. IEEE Trans. Electron Devices 2018, 65, 4346–4352. [Google Scholar] [CrossRef]
- Cossu, G.; Sturniolo, A.; Messa, A.; Scaradozzi, D.; Ciaramella, E. Full-fledged 10Base-T ethernet underwater optical wireless communication system. IEEE J. Sel. Areas Commun. 2017, 36, 194–202. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, H.; Zhang, Y.; Song, J. Experimental demonstration of LED based underwater wireless optical communication. In Proceedings of the 2017 4th International Conference on Information Science and Control Engineering (ICISCE), IEEE, Changsha, China, 21–23 July 2017; pp. 1501–1504. [Google Scholar]
- Hamza, T.; Khalighi, M.A.; Bourennane, S.; Léon, P.; Opderbecke, J. Investigation of solar noise impact on the performance of underwater wireless optical communication links. Opt. Express 2016, 24, 25832–25845. [Google Scholar] [CrossRef] [Green Version]
- Xing, F.; Yin, H. Performance Analysis for Underwater Cooperative Optical Wireless Communications in the Presence of Solar Radiation Noise. In Proceedings of the 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), IEEE, Dalian, China, 20–22 September 2019; pp. 1–6. [Google Scholar]
- Xing, F.; Yin, H.; Ji, X.; Leung, V.C.M. Joint Relay Selection and Power Allocation for Underwater Cooperative Optical Wireless Networks. IEEE Trans. Wirel. Commun. 2020, 19, 251–264. [Google Scholar] [CrossRef]
- Alley, D.; Mullen, L.; Laux, A. Compact, dual-wavelength, non-line-of-sight (nlos) underwater imager. In Proceedings of the OCEANS’11 MTS/IEEE KONA, IEEE, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–5. [Google Scholar]
- Sun, X.; Kong, M.; Alkhazragi, O.; Shen, C.; Ooi, E.N.; Zhang, X.; Buttner, U.; Ng, T.K.; Ooi, B.S. Non-line-of-sight methodology for high-speed wireless optical communication in highly turbid water. Opt. Commun. 2020, 461, 125264. [Google Scholar] [CrossRef]
- Sun, X.; Cai, W.; Alkhazragi, O.; Ooi, E.N.; He, H.; Chaaban, A.; Shen, C.; Oubei, H.M.; Khan, M.Z.M.; Ng, T.K.; et al. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication. Opt. Express 2018, 26, 12870–12877. [Google Scholar] [CrossRef]
- Haltrin, V.I. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater. Appl. Opt. 2002, 41, 1022–1028. [Google Scholar] [CrossRef]
- Toublanc, D. Henyey–Greenstein and Mie phase functions in Monte Carlo radiative transfer computations. Appl. Opt. 1996, 35, 3270–3274. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.; Khalighi, M.A.; Bourennane, S.; Léon, P.; Rigaud, V. Monte-Carlo-based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 2013, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Choi, J.H.; Kang, M.; Ghassemlooy, Z.; Kim, D.; Lim, S.K.; Kang, T.G.; Lee, C.G. A MATLAB-based simulation program for indoor visible light communication system. In Proceedings of the 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), IEEE, Newcastle Upon Tyne, UK, 21–23 July 2010; pp. 537–541. [Google Scholar]
- Fang, C.; Li, S.; Wang, K. Investigation of wavy surface impact on non-line-of-sight underwater optical wireless communication. In Proceedings of the 2022 IEEE Photonics Conference (IPC), IEEE, Vancouver, BC, Canada, 13–17 November 2022; pp. 1–2. [Google Scholar]
- Tao, L.; Hongming, Z.; Jian, S. Distribution of Arriving Angle of Signal in Underwater Scattering Channel. Chin. J. Lasers 2018, 45, 306003. [Google Scholar]
- Jaruwatanadilok, S. Underwater Wireless Optical Communication Channel Modeling and Performance Evaluation using Vector Radiative Transfer Theory. IEEE J. Sel. Areas Commun. 2008, 26, 1620–1627. [Google Scholar] [CrossRef]
- Sait, M.; Trichili, A.; Alkhazragi, O.; Alshaibaini, S.; Ng, T.K.; Alouini, M.S.; Ooi, B.S. Dual-wavelength luminescent fibers receiver for wide field-of-view, Gb/s underwater optical wireless communication. Opt. Express 2021, 29, 38014–38026. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, M. Joint Blind Channel Estimation, Channel Equalization, and Data Detection for Underwater Visible Light Communication Systems. IEEE Wirel. Commun. Lett. 2021, 10, 2664–2668. [Google Scholar] [CrossRef]
- Li, Y.; Liang, H.; Gao, C.; Miao, M.; Li, X. Temporal dispersion compensation for turbid underwater optical wireless communication links. Opt. Commun. 2019, 435, 355–361. [Google Scholar] [CrossRef]
- Mahmutoglu, Y.; Turk, K.; Tugcu, E. Particle swarm optimization algorithm based decision feedback equalizer for underwater acoustic communication. In Proceedings of the 2016 39th International Conference on Telecommunications and Signal Processing (TSP), IEEE, Vienna, Austria, 27–29 June 2016; pp. 153–156. [Google Scholar]
- Pinho, V.M.; Chaves, R.S.; Campos, M.L. On Equalization Performance in Underwater Acoustic Communication. In Proceedings of the XXXVI Simpósio Brasileiro de Telecomunicaçoes e Processamento de Sinais, SBrT, Campina Grande, Brazil, 16–19 September 2018. [Google Scholar]
- Song, H. Bidirectional equalization for underwater acoustic communication. J. Acoust. Soc. Am. 2012, 131, EL342–EL347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Wang, Y.; Kandeepan, S.; Wang, K. Machine learning applications for short reach optical communication. Photonics 2022, 9, 30. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, P.; Chi, N. 3.2 Gbps underwater visible light communication system utilizing dual-branch multi-layer perceptron based post-equalizer. Opt. Commun. 2020, 460, 125197. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.; Hu, F.; Chi, N. Nonlinear resilient learning method based on joint time-frequency image analysis in underwater visible light communication. IEEE Photonics J. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Chen, H.; Niu, W.; Zhao, Y.; Zhang, J.; Chi, N.; Li, Z. Adaptive deep-learning equalizer based on constellation partitioning scheme with reduced computational complexity in UVLC system. Opt. Express 2021, 29, 21773–21782. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, S.; Chi, N. Transfer Learning–Based Artificial Neural Networks Post-Equalizers for Underwater Visible Light Communication. Front. Commun. Netw. 2021, 2, 658330. [Google Scholar] [CrossRef]
- Du, Z.; Ge, W.; Cai, C.; Wang, H.; Song, G.; Xiong, J.; Li, Y.; Zhang, Z.; Xu, J. 90-m/660-Mbps Underwater Wireless Optical Communication Enabled by Interleaved Single-Carrier FDM Scheme Combined with Sparse Weight-Initiated DNN Equalizer. J. Light. Technol. 2023. [Google Scholar] [CrossRef]
- Cui, X.; Yin, X.; Chang, H.; Liao, H.; Chen, X.; Xin, X.; Wang, Y. Experimental study of machine-learning-based orbital angular momentum shift keying decoders in optical underwater channels. Opt. Commun. 2019, 452, 116–123. [Google Scholar] [CrossRef]
- Avramov-Zamurovic, S.; Nelson, C.; Esposito, J.M. Effects of underwater optical turbulence on light carrying orbital angular momentum and its classification using machine learning. J. Mod. Opt. 2021, 68, 1041–1053. [Google Scholar] [CrossRef]
- Romdhane, I.; Kaddoum, G. A Reinforcement-Learning-Based Beam Adaptation for Underwater Optical Wireless Communications. IEEE Internet Things J. 2022, 9, 20270–20281. [Google Scholar] [CrossRef]
- Weng, Y.; Pajarinen, J.; Akrour, R.; Matsuda, T.; Peters, J.; Maki, T. Reinforcement learning based underwater wireless optical communication alignment for autonomous underwater vehicles. IEEE J. Ocean. Eng. 2022, 47, 1231–1245. [Google Scholar] [CrossRef]
- Wang, J.; Luo, H.; Ruby, R.; Liu, J.; Guo, K.; Wu, K. Reliable Water-Air Direct Wireless Communication: Kalman Filter-Assisted Deep Reinforcement Learning Approach. In Proceedings of the 2022 IEEE 47th Conference on Local Computer Networks (LCN), IEEE, Edmonton, AB, Canada, 26–29 September 2022; pp. 233–238. [Google Scholar]
- Li, X.; Hu, X.; Li, W.; Hu, H. A multi-agent reinforcement learning routing protocol for underwater optical sensor networks. In Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC), IEEE, Shanghai, China, 20–24 May 2019; pp. 1–7. [Google Scholar]
- Li, X.; Hu, X.; Zhang, R.; Yang, L. Routing protocol design for underwater optical wireless sensor networks: A multiagent reinforcement learning approach. IEEE Internet Things J. 2020, 7, 9805–9818. [Google Scholar] [CrossRef]
- Khalighi, M.; Akhouayri, H.; Hranilovic, S. SiPM-based Underwater Wireless Optical Communication Using Pulse-Amplitude Modulation. IEEE J. Ocean. Eng. 2020, 45, 1611–1621. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, B.; Wang, P.; Xu, Z.; Yang, Q.; Yu, S. Generation and transmission of 745 Mb/s ofdm signal using a single commercial blue LED and an analog post-equalizer for underwater optical wireless communications. In Proceedings of the 2016 Asia Communications and Photonics Conference (ACP), IEEE, Wuhan, China, 2–5 November 2016; pp. 1–3. [Google Scholar]
- Cheng, C.; Li, X.; Yang, Y. Net 4.12 Gb/s UOWC System over 2 m Using a Single-Pixel Blue Mini-LED and a Simplified Third-Order Volterra Equalizer. In Signal Processing in Photonic Communications; Optica Publishing Group: Maastricht, The Netherlands, 2022; p. SpTh3H–5. [Google Scholar]
- Yu, M.; Geldard, C.T.; Popoola, W.O. Comparison of CAP and OFDM Modulation for LED-based Underwater Optical Wireless Communications. In Proceedings of the 2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), IEEE, Graz, Austria, 12–14 July 2022; pp. 1–6. [Google Scholar]
- Yang, H.; Yan, Q.; Wang, M.; Wang, Y.; Li, P.; Wang, W. Synchronous Clock Recovery of Photon-Counting Underwater Optical Wireless Communication Based on Deep Learning. Photonics 2022, 9, 884. [Google Scholar] [CrossRef]
- Chi, N.; Jia, J.; Hu, F.; Zhao, Y.; Zou, P. Challenges and prospects of machine learning in visible light communication. J. Commun. Inf. Netw. 2020, 5, 302–309. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, T.; Qin, G.; Chi, N. Applications of Machine Learning in Visible Light Communication. In Proceedings of the 2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS), IEEE, Shenzhen, China, 6–8 December 2021; pp. 198–201. [Google Scholar]
Acoustic Systems | Radio Frequency Systems | Optical Wireless Systems | |
---|---|---|---|
Attenuation | Low | High | Moderate |
Distance | Long (tens of kilometers) | Short (tens of meters) | Limited (hundreds of meters) |
Carrier Frequency | Low (10 Hz–1 MHz) | Moderate (30 Hz–300 MHz) | High ( Hz– Hz) |
Bandwidth | Narrow (kHz) | Moderate (MHz) | Broad (MHz–GHz) |
Data Rate | Low (kbps) | Moderate (Mbps) | High (Gbps) |
Power Consumption | High | High | Low |
Transmission Latency | High (1500 m/s physical propagation speed of sound wave) | Low ( m/s physical propagation speed of electromagnetic wave) | Low ( m/s physical propagation speed of optical wave) |
Performance-limiting factors | Temperature, hydrostatic pressure, and the chemistry of water | Conductivity and permitivity | Absorption, scattering, turbidity, marine life blocking, and beam shaping |
Ocean Water Type | a | b | c |
---|---|---|---|
Clear ocean | 0.114 | 0.037 | 0.151 |
Coastal ocean | 0.179 | 0.220 | 0.339 |
Turbid harbor | 0.366 | 1.829 | 2.195 |
Year | Bit Rate (bps) | Distance | Optical Source | Receiver | Transmission Power | Modulation Scheme | Equalizer | Refs. |
---|---|---|---|---|---|---|---|---|
2013 | 1 G | 40 m Coastal | 532 nm LED | PD | ∼50 W | OOK | ZF-LE | [37] |
2017 | 1 M | 3 m Tap | 532 nm LED | SPAD | N/A | OFDM-QAM | MMSE-FDE | [31] |
2019 | 256 G | 50 m Air 5 m Turbid | Red LD | APD | ∼500 W | PAM4 | FDE | [79] |
2019 | 30 G | 12.5 m Tap 2.5 m Harb | 488 nm LD | APD | ∼20 mW | PAM4 | FDE | [35] |
2020 | 20 M 50 M | 28 m Tap 10 m Tap | 470 nm LED | SiPM | ∼600 mW | PAM | FDE | [123] |
2020 | 3.31 G | 56 m Tap | 520 nm LD | APD | ∼50 mW | OFDM | FDE-NP | [63] |
2021 | 1 G | 1 m Tap | 377 nm LD 405 nm LD | 2APDs | ∼70 mW to 120 mW | NRZ-OOK | ZF-LE | [104] |
2022 | 4 G | 2 m Tap | 484 nm LED | APD | ∼1 mW | PAM4 | FFE | [25] |
Year | Bit Rate (bps) | Distance | Optical Source | Receiver | Transmission Power | Modulation Scheme | Equalizer | Refs. |
---|---|---|---|---|---|---|---|---|
2016 | 9.6 G | 8 m Tap | 405 nm LD | PD | ∼30 mW | 16-QAM-OFDM | TPGE | [26] |
2016 | 745 M | 2 m Tap | 448 nm LED | APD | ∼184.5 mW | OFDM-QAM | APE | [124] |
2017 | 16 G | 10 m Tap | 488 nm LD | PD | ∼20 mW | PAM4 | DFE | [27] |
2018 | 16.6 G | 55 m Tap | 450 nm LD | PIN PD | ∼120 mW | OFDM-QAM | VE | [62] |
2018 | 7.33 G | 15 m Tap | 450 nm LD | APD | ∼20 mW | DMT | VE | [64] |
2019 | 2.5 G | 60 m Tap | 450 nm LD | APD | ∼50.2 mW | NRZ-OOK | VE | [28] |
2019 | 500 M | 100 m Tap | 520 nm LD | APD | ∼7.25 mW | NRZ-OOK | VE | [38] |
2019 | 500 M | 1 m Bubble | 520 nm LD | APD | ∼25 mW | 16PPM | VE | [76] |
2021 | 200 M | 100 m Tap | 450 nm LD 520 nm LD | PMT | ∼700 mW | RRC-OOK | MPE | [30] |
2022 | 4.12 G | 2 m Tap | 484 nm LED | APD | ∼ 1 mW | PAM4 | VE | [125] |
2022 | 200 M | 1.5 m Tap | Blue LED | PD | ∼0.4 mW | CAP OFDM | VDFE | [126] |
Year | Bit Rate (bps) | Distance | Optical Source | Receiver | Transmitter Power | Modulation Scheme | ML Algorithm | Refs. |
---|---|---|---|---|---|---|---|---|
2018 | 1.5 G | 1.2 m Tap | 457 nm LED | PIN PD | N/A | PAM8 | GK-DNN | [50] |
2019 | N/A | 1 m Turbid | 532 nm LD | CCD | ∼20 mW | N/A | CNN | [116] |
2020 | 3.2 G | 1.2 m Tap | Blue LED | PIN PD | N/A | 64-QAM | DBMLP | [111] |
2020 | N/A | 1.2 m Tap | Blue LED | PIN PD | N/A | 64-QAM | TFDNet | [112] |
2021 | N/A | 4.3 m Turbu | 632.8 nm LD | Camera | ∼2 mW | N/A | CNN | [117] |
2021 | 2.85 G | 1.2 m Tap | Blue LED | PIN PD | N/A | 64-QAM | PCVNN | [113] |
2021 | N/A | 30 m Coastal | Blue LED | PD | N/A | QAM | BDNet | [105] |
2021 | 3.1 G | 1.2 m Tap | Blue LED | PIN PD | ∼100 mW | 64-QAM | TL-DBMLPs | [114] |
2022 | 1 M | 1.5 m Tap | 450 nm LED | SPAD | ∼ 1 W | OOK | DNN | [127] |
2023 | 660 M | 90 m Tap | 450 nm LD | PMT | ∼188.8 mW | I-SC-FDM | SWI-DNN | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, C.; Li, S.; Wang, Y.; Wang, K. High-Speed Underwater Optical Wireless Communication with Advanced Signal Processing Methods Survey. Photonics 2023, 10, 811. https://doi.org/10.3390/photonics10070811
Fang C, Li S, Wang Y, Wang K. High-Speed Underwater Optical Wireless Communication with Advanced Signal Processing Methods Survey. Photonics. 2023; 10(7):811. https://doi.org/10.3390/photonics10070811
Chicago/Turabian StyleFang, Chengwei, Shuo Li, Yinong Wang, and Ke Wang. 2023. "High-Speed Underwater Optical Wireless Communication with Advanced Signal Processing Methods Survey" Photonics 10, no. 7: 811. https://doi.org/10.3390/photonics10070811
APA StyleFang, C., Li, S., Wang, Y., & Wang, K. (2023). High-Speed Underwater Optical Wireless Communication with Advanced Signal Processing Methods Survey. Photonics, 10(7), 811. https://doi.org/10.3390/photonics10070811