Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers
Abstract
:1. Introduction
2. Model and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goulielmakis, E.; Brabec, T. High harmonic generation in condensed matter. Nat. Photonics 2022, 16, 411–421. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Chew, A.; Han, S.; Li, J.; Wu, Y.; Wang, H.; Ghimire, S.; Chang, Z. Attosecond science based on high harmonic generation from gases and solids. Nat. Commun. 2020, 11, 2748. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.T.; Pathak, V.B.; Hojbota, C.I.; Mirzaie, M.; Pae, K.H.; Kim, C.M.; Yoon, J.W.; Sung, J.H.; Lee, S.K. Multi-GeV Laser Wakefield Electron Acceleration with PW Lasers. Appl. Sci. 2021, 11, 5831. [Google Scholar] [CrossRef]
- Houard, A.; Walch, P.; Produit, T.; Moreno, V.; Mahieu, B.; Sunjerga, A.; Herkommer, C.; Mostajabi, A.; Andral, U.; André, Y.-B.; et al. Laser-guided lightning. Nat. Photonics 2023, 17, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Higginson, A.; Wang, Y.; Chi, H.; Goffin, A.; Larkin, I.; Milchberg, H.M.; Rocca, J.J. Wake dynamics of air filaments generated by high-energy picosecond laser pulses at 1 kHz repetition rate. Opt. Lett. 2021, 46, 5449–5452. [Google Scholar] [CrossRef]
- Smith, D.; Ng, S.H.; Tang, A.; Katkus, T.; Moraru, D.; Juodkazis, S. Crystalline Flat Surface Recovered by High-Temperature Annealing after Laser Ablation. Photonics 2023, 10, 594. [Google Scholar] [CrossRef]
- Emelina, A.; Laryushin, I.; Romanov, A. Dynamics of Gas Ionization by Laser Pulses with Different Envelope Shapes. Photonics 2023, 10, 499. [Google Scholar] [CrossRef]
- Ma, T.; Mariscal, D.; Anirudh, R.; Bremer, T.; Djordjevic, B.Z.; Galvin, T.; Grace, E.; Herriot, S.; Jacobs, S.; Kailkhura, B.; et al. Accelerating the rate of discovery: Toward high-repetition-rate HED science. Plasma Phys. Control. Fusion 2021, 63, 104003. [Google Scholar] [CrossRef]
- Li, J.; Yu, H.; Li, D.; Wang, L.; Zhang, J.; Zhou, Q.; Lv, F.; Lu, X. Influence of Large-Aperture Output Wavefront Distribution on Focal Spot in High-Power Laser Facility. Photonics 2023, 10, 270. [Google Scholar] [CrossRef]
- Bagayev, S.N.; Trunov, V.I.; Pestryakov, E.V.; Leschenko, V.E.; Frolov, S.A.; Vasiliev, V.A. High-intensity femtosecond laser systems based on coherent combining of optical fields. Opt. Spectrosc. 2013, 115, 311–319. [Google Scholar] [CrossRef]
- Kuptsov, G.V.; Petrov, V.A.; Petrov, V.V.; Laptev, A.V.; Konovalova, A.O.; Kirpichnikov, A.V.; Pestryakov, E.V. Laser amplification in an Yb:YAG active mirror with a significant temperature gradient. Quantum Electron. 2021, 51, 679–682. [Google Scholar] [CrossRef]
- Zapata, L.E.; Pergament, M.; Schust, M.; Reuter, S.; Thesinga, J.; Zapata, C.; Kellert, M.; Demirbas, U.; Calendron, A.-L.; Liu, Y.; et al. One-joule 500-Hz cryogenic Yb:YAG laser driver of composite thin-disk design. Opt. Lett. 2022, 47, 6385–6388. [Google Scholar] [CrossRef]
- Al-Hosiny, N.M.; El-Maaref, A.A.; El-Agmy, R.M. Mitigation of Thermal Effects in End Pumping of Nd:YAG and Composite YAG/Nd:YAG Laser Crystals, Modelling and Experiments. Tech. Phys. 2021, 66, 1341–1347. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Bai, D.; Zhao, J.; Li, J.; Ba, X.; Ge, L.; Pan, Y.; Zeng, H. Mode-Locked Composite YAG/Yb:YAG Ceramic Laser and High-Power Amplification. IEEE Photonics Technol. Lett. 2016, 28, 433–436. [Google Scholar] [CrossRef]
- Li, M.; Hu, H.; Gao, Q.; Wang, J.; Zhang, J.; Wu, Y.; Zhou, T.; Xu, L.; Tang, C.; Zhao, N.; et al. A 7.08-kW YAG/Nd:YAG/YAG Composite Ceramic Slab Laser with Dual Concentration Doping. IEEE Photonics J. 2017, 9, 1504010. [Google Scholar] [CrossRef]
- Toci, G.; Lapucci, A.; Ciofini, M.; Esposito, L.; Hostaša, J.; Gizzi, L.A.; Labate, L.; Ferrara, P.; Pirri, A.; Vannini, M. Laser and optical properties of Yb:YAG ceramics with layered doping distribution: Design, characterization and evaluation of different production processes. Proc. SPIE 2016, 9726, 97261P. [Google Scholar] [CrossRef]
- Kracht, D.; Wilhelm, R.; Frede, M.; Dupré, K.; Ackermann, L. 407 W End-pumped Multi-segmented Nd:YAG Laser. Opt. Express 2005, 13, 10140–10144. [Google Scholar] [CrossRef]
- Shen, Q.; Cui, X.-Y.; Yan, M.-C.; Eismann, U.; Yuan, T.; Zhang, W.-Z.; Peng, C.-Z.; Chen, Y.-A.; Pan, J.-W. 11-watt single-frequency 1342-nm laser based on multi-segmented Nd:YVO4 crystal. Opt. Express 2019, 27, 31913–31925. [Google Scholar] [CrossRef]
- Huang, Y.J.; Chen, Y.F. High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate. Opt. Express 2013, 21, 16063–16068. [Google Scholar] [CrossRef]
- Evangelatos, C.; Tsaknakis, G.; Bakopoulos, P.; Papadopoulos, D.; Avdikos, G.; Papayannis, A.; Tzeremes, G. Actively Q-Switched Multisegmented Nd:YAG Laser Pumped at 885 nm for Remote Sensing. IEEE Photonics Technol. Lett. 2014, 26, 1890–1893. [Google Scholar] [CrossRef]
- Jiang, C.; Huang, W.; He, Q.; He, J.; Zhu, S.; Yin, H.; Li, Z.; Chen, Z.; Dai, S. High-power diode-end-pumped 1314 nm laser based on the multi-segmented Nd:YLF crystal. Opt. Lett. 2023, 48, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Mason, P.D.; Fitton, M.; Lintern, A.; Banerjee, S.; Ertel, K.; Davenne, T.; Hill, J.; Blake, S.P.; Phillips, P.J.; Butcher, T.J.; et al. Scalable design for a high energy cryogenic gas cooled diode pumped laser amplifier. Appl. Opt. 2015, 54, 4227–4238. [Google Scholar] [CrossRef]
- Sekine, T.; Kurita, T.; Hatano, Y.; Muramatsu, Y.; Kurata, M.; Morita, T.; Watari, T.; Iguchi, T.; Yoshimura, R.; Tamaoki, Y.; et al. 253 J at 0.2 Hz, LD pumped cryogenic helium gas cooled Yb:YAG ceramics laser. Opt. Express 2022, 30, 44385–44394. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.-E.; Cheng, T.-Q.; Dou, R.-Q.; Zhang, Q.-L.; Jiang, H.-H. High-peak-power electro-optically Q-switched laser with a gradient-doped Nd:YAG crystal. Opt. Lett. 2021, 46, 5016–5018. [Google Scholar] [CrossRef]
- Botha, R.C.; Koen, W.; Esser, M.J.D.; Bollig, C.; Combrinck, W.L.; von Bergmann, H.M.; Strauss, H.J. High average power Q-switched 1314 nm two-crystal Nd:YLF laser. Opt. Lett. 2015, 40, 495–497. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, R.; Freiburg, D.; Frede, M.; Kracht, D. End-pumped Nd:YAG laser with a longitudinal hyperbolic dopant concentration profile. Opt. Express 2008, 16, 20106–20116. [Google Scholar] [CrossRef]
- Azrakantsyan, M.; Albach, D.; Ananyan, N.; Gevorgyan, V.; Chanteloup, J.-C. Yb3+:YAG crystal growth with controlled doping distribution. Opt. Mater. Express 2012, 2, 20–30. [Google Scholar] [CrossRef]
- Wei, M.; Cheng, T.; Dou, R.; Zhang, Q.; Jiang, H. Superior performance of a 2 kHz pulse Nd:YAG laser based on a gradient-doped crystal. Photonics Res. 2021, 9, 1191–1196. [Google Scholar] [CrossRef]
- Wang, Y.; Chi, H.; Baumgarten, C.; Dehne, K.; Meadows, A.R.; Davenport, A.; Murray, G.; Reagan, B.A.; Menoni, C.S.; Rocca, J.J. 1.1 J Yb:YAG picosecond laser at 1 kHz repetition rate. Opt. Lett. 2020, 45, 6615–6618. [Google Scholar] [CrossRef]
- Herkommer, C.; Krötz, P.; Jung, R.; Klingebiel, S.; Wandt, C.; Bessing, R.; Walch, P.; Produit, T.; Michel, K.; Bauer, D.; et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research. Opt. Express 2020, 28, 30164–30173. [Google Scholar] [CrossRef]
- Nubbemeyer, T.; Kaumanns, M.; Ueffing, M.; Gorjan, M.; Alismail, A.; Fattahi, H.; Brons, J.; Pronin, O.; Barros, H.G.; Major, Z.; et al. 1 kW, 200 mJ picosecond thin-disk laser system. Opt. Lett. 2017, 42, 1381–1384. [Google Scholar] [CrossRef]
- Ogino, J.; Tokita, S.; Kitajima, S.; Yoshida, H.; Li, Z.; Motokoshi, S.; Morio, N.; Tsubakimoto, K.; Fujioka, K.; Kodama, R.; et al. 10-J, 100-Hz conduction-cooled active-mirror laser. Opt. Contin. 2022, 1, 1270–1277. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Beisel, N.F.; Galashov, E.N.; Mandrik, E.M.; Molokeev, M.S.; Yelisseyev, A.P.; Yusuf, A.A.; Xia, Z. Pressure-stimulated synthesis and luminescence properties of microcrystalline (Lu,Y)3Al5O12:Ce3+ garnet phosphors. ACS Appl. Mater. Interfaces 2015, 7, 26235–26243. [Google Scholar] [CrossRef]
- Ji, H.; Wang, L.; Molokeev, M.S.; Hirosaki, N.; Xie, R.; Huang, Z.; Xia, Z.; ten Kate, O.M.; Liu, L.; Atuchin, V.V. Structure evolution and photoluminescence of Lu3(Al,Mg)2(Al,Si)3O12:Ce3+ phosphors: New yellow-color converters for blue LED-driven solid state lighting. J. Mater. Chem. C 2016, 4, 6855–6863. [Google Scholar] [CrossRef] [Green Version]
- Galashov, E.N.; Atuchin, V.V.; Gavrilova, T.A.; Korolkov, I.V.; Mandrik, Y.M.; Yelisseyev, A.P.; Xia, Z. Synthesis of Y3Al5O12:Ce3+ phosphor in the Y2O3–Al metal–CeO2 ternary system. J. Mater. Sci. 2017, 52, 13033–13039. [Google Scholar] [CrossRef]
- Slimi, S.; Jambunathan, V.; Pan, M.; Wang, Y.; Chen, W.; Loiko, P.; Solé, R.M.; Aguiló, M.; Díaz, F.; Smrz, M.; et al. Cryogenic laser operation of a “mixed” Yb:LuYAG garnet crystal. Appl. Phys. B 2023, 129, 57. [Google Scholar] [CrossRef]
- Vistorskaja, D.; Laurikenas, A.; Montejo de Luna, A.; Zarkov, A.; Pazylbek, S.; Kareiva, A. Sol-Gel Synthesis and Characterization of Novel Y3−xMxAl5−yVyO12 (M—Na, K) Garnet-Type Compounds. Inorganics 2023, 11, 58. [Google Scholar] [CrossRef]
- Dubov, V.; Gogoleva, M.; Saifutyarov, R.; Kucherov, O.; Korzhik, M.; Kuznetsova, D.; Komendo, I.; Sokolov, P. Micro-Nonuniformity of the Luminescence Parameters in Compositionally Disordered GYAGG:Ce Ceramics. Photonics 2023, 10, 54. [Google Scholar] [CrossRef]
- Sui, Y.; Yuan, M.; Bai, Z.; Fan, Z. Recent Development of High-Energy Short-Pulse Lasers with Cryogenically Cooled Yb:YAG. Appl. Sci. 2022, 12, 3711. [Google Scholar] [CrossRef]
- Dong, J.; Bass, M.; Mao, Y.; Deng, P.; Gan, F. Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet. J. Opt. Soc. Am. B 2003, 20, 1975–1979. [Google Scholar] [CrossRef]
- Aggarwal, R.L.; Ripin, D.J.; Ochoa, J.R.; Fan, T.Y. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range. J. Appl. Phys. 2005, 98, 103514. [Google Scholar] [CrossRef]
- Tamer, I.; Keppler, S.; Hornung, M.; Körner, J.; Hein, J.; Kaluza, M.C. Spatio-Temporal Characterization of Pump-Induced Wavefront Aberrations in Yb3 + -Doped Materials. Laser Photonics Rev. 2018, 12, 1700211. [Google Scholar] [CrossRef] [Green Version]
- Antipov, O.L.; Anashkina, E.A.; Fedorova, K.A. Electronic and thermal lensing in diode end-pumped Yb:YAG laser rods and discs. Quantum Electron. 2009, 39, 1131–1136. [Google Scholar] [CrossRef]
- Kuptsov, G.V.; Konovalova, A.O.; Petrov, V.A.; Laptev, A.V.; Atuchin, V.V.; Petrov, V.V. Laser Method for Studying Temperature Distribution within Yb:YAG Active Elements. Photonics 2022, 9, 805. [Google Scholar] [CrossRef]
- Petrov, V.V.; Kuptsov, G.V.; Petrov, V.A.; Laptev, A.V.; Kirpichnikov, A.V.; Pestryakov, E.V. Optimisation of a multidisc cryogenic amplifier for a high-intensity, high-repetition-rate laser system. Quantum Electron. 2018, 48, 358–362. [Google Scholar] [CrossRef]
- Petrov, V.A.; Kuptsov, G.V.; Petrov, V.V.; Laptev, A.V.; Stroganova, E.V. Development of laser elements with non-linear distribution of active ions. In Proceedings of the 2022 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 20–24 June 2022. [Google Scholar] [CrossRef]
- Galutskiy, V.V.; Vatlina, M.I.; Stroganova, E.V. Growth of single crystal with a gradient of concentration of impurities by the Czochralski method using additional liquid charging. J. Cryst. Growth 2009, 311, 1190–1194. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, V.A.; Kuptsov, G.V.; Kuptsova, A.O.; Atuchin, V.V.; Stroganova, E.V.; Petrov, V.V. Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers. Photonics 2023, 10, 849. https://doi.org/10.3390/photonics10070849
Petrov VA, Kuptsov GV, Kuptsova AO, Atuchin VV, Stroganova EV, Petrov VV. Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers. Photonics. 2023; 10(7):849. https://doi.org/10.3390/photonics10070849
Chicago/Turabian StylePetrov, Vladimir A., Gleb V. Kuptsov, Alyona O. Kuptsova, Victor V. Atuchin, Elena V. Stroganova, and Victor V. Petrov. 2023. "Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers" Photonics 10, no. 7: 849. https://doi.org/10.3390/photonics10070849
APA StylePetrov, V. A., Kuptsov, G. V., Kuptsova, A. O., Atuchin, V. V., Stroganova, E. V., & Petrov, V. V. (2023). Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers. Photonics, 10(7), 849. https://doi.org/10.3390/photonics10070849