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Abstract: For photonic applications, the inverse design method plays a critical role in the optimized
design of photonic devices. According to its two ingredients, inverse design in photonics can be
improved from two aspects: to find solutions to Maxwell’s equations more efficiently and to employ a
more suitable optimization scheme. Various optimization algorithms have been employed to handle
the optimization: the adjoint method (AM) has become the one of the most widely utilized ones
because of its low computational cost. With the rapid development of deep learning (DL) in recent
years, inverse design has also benefited from DL algorithms, leading to a new pattern of photon
inverse design. Unlike the AM, DL can be an efficient solver of Maxwell’s equations, as well as a nice
optimizer, or even both, in inverse design. In this review, we discuss the development of the AM and
DL algorithms in inverse design, and the advancements, advantages, and disadvantages of the AM
and DL algorithms in photon inverse design.
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1. Introduction

With inverse design methods, we can optimize the parameters of the integrated device,
obtain a specific structure of the device, or both. Among many well-established inverse
design methods, two methods of traditional inverse design originating from the research
group of the University of Utah and the research group of Stanford University [1,2] have
received much attention due to their high performance. In general, inverse design always
combines a mathematical model with an optimization algorithm: the former describes the
underlying physics, and the latter discovers the suitable shape or parameters, according to
the user-predefined target performance of the device.

According to its two ingredients, inverse design can be improved from two aspects: to
find solutions to Maxwell’s equations more efficiently and to employ a more suitable opti-
mization scheme. These two types of techniques can be utilized together, and inverse design
has already benefited from the rapid development of computational electromagnetic algo-
rithms for various applications. The most popular solvers for Maxwell’s equations include
the finite element method (FEM), the finite-difference time-domain (FDTD) method [3–6],
the method of moments (MoM) [7–9], and hybrid methods [10,11].

Due to traditional computational electromagnetic frameworks becoming mature and
the fast development of the various optimization algorithms, many improvements have
been developed in terms of the optimization process. Based on what type of optimiza-
tion scheme is employed, inverse design methods can be classified into gradient-based
algorithms and non-gradient ones [12].

Non-gradient algorithms are also known as gradient-free methods. The representative
methods belonging to the gradient-free scheme include evolutionary algorithms [13,14]
and search algorithms (including nonlinear search methods) [15]. Evolutionary algorithms
can be further divided into methods based on genetic algorithms (GA) [13,16], methods
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based on particle swarm optimization (PSO) [14,17], and hybrid methods tailored to spe-
cific problems [18]. GA, a typical heuristic approach, is widely used for its effectiveness,
simplicity, and intuitiveness [19]. Heuristic optimization relies on a somewhat limited
parameterization of the solution space and subsequent random testing of a large number of
parameter sets. PSO is an optimization algorithm based on swarm intelligence, which has
a strong global search ability. Except when employed alone, it is always hybridized with
other search algorithms to construct a more effective optimization algorithm: for example,
by mixing PSO with GA, faster and more accurate global optimization can be achieved. Due
to the high computational cost of solving Maxwell’s equations, these methods tend to only
work for targets with a few unknowns or with relatively simple geometries, as they require
testing of a large number of solutions to find a satisfactory optimization result [20]. Many
applications demand the sensitivity of some parameters along with acceptable optimization
results: in essence, the sensitivity is the gradients of the optimization objective function for
the given optimization parameters. Although the sensitivity can be calculated by sing the
method of finite difference (FD) approximation, the associated computational cost increases
in proportion to the product of the problem size and the number of design variables, which
quickly makes the computation prohibitive.

Gradient-based optimization is probably the most widely used technique in photonic
inverse design: in this scheme, the gradients of the objective function, relative to all
design parameters of the device, are calculated in each iteration; the design parameters
are then changed in the gradient direction to improve the performance of the device. The
AM [21,22] and the level set method [23–25] are two typical methods belonging to the
gradient-based optimization scheme. The level set algorithm is a numerical method based
on partial differential equations, which is used to describe the contour changes of an object
over a specified variable. At a high level, the major benefit offered by the level set is
that it provides a systematic way to organize design possibilities. The AM is one of the
most widely used algorithms in gradient-based photonic inverse design. Because the AM
can calculate the derivatives over all the design parameters and because it modifies the
parameters in proportion to the figure of merit (FOM) gradient using only forward and
adjoint simulations at each iteration, regardless of the number of design parameters [26,27],
it has been successfully applied to various photonic systems [27,28]. This is one of the major
reasons why the AM has been widely adopted for the topology or shape optimization of
photonics devices [28], where the number of design parameters can be very large to describe
complex free-form geometries. The traditional AM was recently extended to nonlinear
device modeling in the frequency domain [29]. Another attractive virtue of the AM is that
it can significantly reduce the computational cost of a sensitivity calculation [30,31].

Although inverse design methods, both gradient-based and non-gradient-based, have
achieved significant breakthroughs in developing new optical functions, they can encounter
the difficulty of a low efficiency because they inevitably call an electromagnetic solver
during the optimization: consequently, their computational costs become very high, as
the design parameters to be optimized increase. In addition, gradient-based methods
can easily fall into local optimal solutions, resulting in slow convergence. As a result,
the inverse design approach is hampered, and other algorithms need to be developed to
address these problems.

To solve the inherent difficulties of traditional inverse design methods, deep learning
(DL) and its variants have emerged as an alternative solution in recent years [32]. DL,
as a subset of machine learning (ML), has the potential to handle tricky high-degree-of-
freedom designs [33]. With the fast development of DL and its applications in various
fields, many DL networks, such as fully connected networks, convolutional networks,
generative networks, and recurrent neural networks, have been utilized in photonic inverse
design, and they have achieved remarkable results [34]: for example, predictive and
generative models based on data-driven methods have been developed for the analysis and
design of photonic crystals (PhC) [35]; in [36], a network to design free-form, all-dielectric
metasurface devices was proposed by combining the conditional generative adversarial
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network (CGAN) with the Wasserstein generative adversarial network (WGAN). However,
there are also many limitations when using DL in photon inverse designs, such as training
dataset problems and inverse design non-unique problems. In addition, different designs
may be produced with almost identical spectra, which may prevent correct optimization
from convergence.

The combination of DL with the AM can take advantage of both techniques and thus
alleviate their inherent limitations. For example, such a hybrid method was developed
in [37], where photon neural networks were efficiently trained in situ and the AM was
utilized to derive the photon simulation of the backpropagation algorithm. In [27], a hybrid
inverse design framework was proposed by combining adjoint optimization and automatic
ML with explainable AI, where ML and AI were designed to discover geometric features
that cause local minima. In [38], a hybrid design approach for electromagnetic devices
was developed by directly incorporating adjoint variable computation into the generative
neural network, which showed the positive effects arising from the combination of DL
and AM.

The rest of this review will be organized as follows. In Section 2, the AM for inverse
design is discussed. In Section 3, the DL-equipped inverse design is presented. In Section 4,
the hybrid AM and DL designs are reviewed. Finally, some concluding remarks are given
in Section 5.

2. AM for Inverse Design
2.1. AM

The AM can effectively calculate gradients and plays an important role in inverse
design for photonic applications. A very simple example of using the AM can be found
in [20], which visually illustrated the mathematical process in the context of electromag-
netism. Although the AM has been mainly applied to linear photonic devices [39–41], it
has indeed been extended to model nonlinear devices in the frequency domain [29]. In
particular, the method was used to design compact photonic switches in a Kerr nonlinear
material, where low-power and high-power pulses were routed in different directions [29].

A schematic outlining the process of applying the AM to both linear and nonlinear
cases is shown in Figure 1.

Figure 1. Illustration of the adjoint field computation for linear and nonlinear systems [29]. (a) The
field intensity at a measuring point determines the objective function of a linear system, which is
driven by a point source b. (b) When the measuring point acts as the source, the adjoint problem for
the linear system involves the same system but, in reverse, with the source located at the measuring
point. (c) The presence of Kerr nonlinearity (red) makes the system nonlinear. The electric fields are
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the solutions to an equation that captures this nonlinearity. (d) In the adjoint problem for the
nonlinear system, the Kerr medium is replaced by a linear region. This linear region represents a
dependency on the nonlinear fields and results in a set of linear equations for the adjoint field and its
complex conjugate.

2.1.1. Linear AM

Maxwell’s equations in terms of a linear system for an optical device naturally make
itself compatible with the AM [39–41]. The associated compart linear system can be written
as follows:

A · e = b (1)

Equation (1) is a compact form, where A is the system matrix, e represents the electric
field, and b is the excitation vector. Depending on the discretization method, matrix A
can be sparse or dense. In particular, it is sparse when the linear system is generated
using the FDTD [42] or the FEM [43] while it is dense when generated using the method of
moments (MoM) [44].

Without loss of generality, a general real-valued objective function L = L(e(Φ)) is
considered, where e is the solution vector of Equation (1) and Φ is the vector denoting
the design parameters associated with the system. In general, Φ can be any of the design
parameters, such as the parameters for the underlying passive structure, as well as those
for the active modulators such as the modulation strength or the modulation phases. For
example, Φ can be the system object’s dielectric constant or geometric parameters. The
goal of the AM is to compute the sensitivity ∂L(e(Φ))

∂Φ . Suppose that ϕ is one element in Φ;
what follows shows how to compute the sensitivity by computing ∂L(e(Φ))/∂ϕ,

∂L(e(Φ))

∂ϕ
=

∂L
∂e
· ∂e

∂ϕ
(2)

In general, L(e(ϕ)) is an explicit function of e. The term ∂L
∂e can be obtained analyti-

cally with negligible computational cost. The other term ∂e
∂ϕ can be computed by taking

derivatives on both sides of Equation (1) with respect to ϕ:

∂A
∂ϕ
· e + A · ∂e

∂ϕ
= 0 (3)

According to Equation (3), we have

∂e
∂ϕ

= −A−1 · ∂A
∂ϕ
· e (4)

By substituting Equation (4) into Equation (2), we obtain

∂L(e(ϕ))

∂ϕ
= −

(
∂L
∂e
·A−1

)
· ∂A

∂ϕ
· e = −eT

adj ·
∂A
∂ϕ
· e (5)

where T represents transposition and eadj can be written as

AT · eadj = −
(

∂L
∂e

)T

(6)

If A is an explicit function in terms of ϕ, ∂A
∂ϕ can also be analytically calculated with a

negligible cost. As a result, to evaluate the sensitivity using Equation (5), the solution of the
physical field e and its adjoint counterpart eadj would like to dominate the computational
cost of the whole optimization process. After these two fields are obtained, the sensitivity
of the photonic device concerning any number of parameters can be evaluated with a few
additional computational costs.
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2.1.2. Nonlinear AM

Although the AM was originally developed to handle linear systems, it has been
extended to nonlinear systems [29]. In [29], a set of parameters Φ were optimized that
optimize a real-valued objective function L = L(e, e∗, Φ), where L is, most generally, a
nonlinear function of its arguments and e∗ is the conjugation of e. Here, in nonlinear
problems, e is the solution to a nonlinear equation:

f(e, e∗, Φ) = 0 (7)

For example, Equation (7) may represent steady-state Maxwell’s equations with an
intensity-dependent permittivity distribution, where e is the electric field distribution. For
problems studied here, the natural choice is to take e and e∗ as independent parameters,
which is necessary for differentiation, as opposed to separately treating the real and imag-
inary parts of e [29,45]. The solution to Equation (7) may be found with any nonlinear
equation solver, such as the Newton–Raphson method [46].

The goal of the optimization is to optimize the objective function concerning the design
variables Φ. With that aim in mind, it is necessary to compute the sensitivity of L to each
element of Φ. Similar to Equation (2), the derivative of the objective function concerning a
single parameter ϕ can be derived as

dL
dϕ

=
∂L
∂ϕ

+
∂L
∂e
· de

dϕ
+

∂L
∂e∗
· de∗

dϕ
(8)

Equation (8) can be rewritten into the matrix form as

dL
dϕ

=
∂L
∂ϕ

+
[

∂L
∂e

∂L
∂e∗
]
·
[

de
dϕ
de∗
dϕ

]
(9)

The terms de
dϕ and de∗

dϕ can be obtained by differentiating Equation (7) as follows:

df
dϕ

=
∂f
∂ϕ

+
∂f
∂e
· de

dϕ
+

∂f
∂e∗
· de∗

dϕ
= 0 (10)

Combining Equation (10) with its complex conjugate yields[
∂f
∂e

∂f
∂e∗

∂f∗
∂e

∂f∗
∂e∗

]
·
[

de
dϕ
de∗
dϕ

]
= −

[
∂f
∂ϕ
∂f∗
∂ϕ

]
(11)

As a result, we can rewrite Equation (9) as

dL
dϕ

=
∂L
∂ϕ
−
[

∂L
∂e

∂L
∂e∗
]
·
[

∂f
∂e

∂f
∂e∗

∂f∗
∂e

∂f∗
∂e∗

]−1

·
[

∂f
∂ϕ
∂f∗
∂ϕ

]
(12)

In analogy with the linear case, we obtain the gradient dL
dϕ by solving an additional

linear system. To this end, a complex-valued adjoint field eadj is defined as the solution to

(∂f/∂e)T · eadj + (∂f∗/∂e)T · e∗adj = −(∂L/∂e)T (13)

where T represents transposition. The variable eadj and its conjugate can be computed by
solving the following system:[

∂f
∂e

∂f
∂e∗

∂f∗
∂e

∂f∗
∂e∗

]T

·
[

eadj
e∗adj

]
= −

[
∂L
∂eT
∂L

∂e∗T

]
(14)
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As can be seen, the adjoint problem, which is required to determine the derivative of
the objective function, is linear, even though the physical problem is nonlinear, as defined
by Equation (7). Finally, the gradient of the objective function can be written as

dL
dϕ

=
∂L
∂ϕ

+ 2<(eT
adj · ∂f/∂ϕ) (15)

where <(·) denotes taking the real part. In deriving Equation (14), we have used the fact
that both L(·) and ϕ are real [29]. In the case of multiple parameters Φ, we just need
to replace ∂f/∂ϕ with the matrix ∂f/∂Φ. The cost of computing the gradients ∂f/∂Φ

increases slowly with the number of elements in Φ since eadj only needs to be solved once
regardless of the number of parameters. This virtue makes large-scale, gradient-based
optimization possible.

2.2. Application of AM in Photonic Inverse Design

The AM can be integrated into gradient-based topology optimization, which aims
to distribute materials across a given design domain to reach a predefined performance
goal [47]. Although topology optimization was originally developed to solve mechanical
design problems, it is now widely employed in the fields of photonic crystals, waveguides,
resonators, filters, and plasma excitations in system design. In topology optimization, the
material density of each element or mesh point is a design variable by parameterizing the
geometry as elements like pixels. Consequently, the optimization is always featured by
a large number of design parameters and complete design freedom [48]. Such flexibility
during the design is often viewed as one of the great advantages of topology optimization.
In [47], the design domain was taken to be larger than in the original work to show that the
topology optimization can effectively utilize all available space. In [49], mechanical design
problems with more than a billion design variables proved that topology optimization in
any practical sense was able to provide unlimited design freedom.

In fact, the AM perfectly matches the topology optimization scheme because it can
offer sensitivity information at a low computational cost, which makes a large number
of design parameters possible or more efficient [50,51]. Due to this nice match, the AM
has been used for topology optimization in the context of mechanical engineering and
photonics engineering for decades [51–53]. In [50], the T-junction in the photonic crystal
waveguide was designed. A low-loss and broadband two-mode (de-)multiplexer, op-
timized via topology optimization with the AM and experimentally verified, has been
developed for (de-)multiplexing the fundamental and first-order transverse-electric modes
in a silicon photonic wire [54]. In [55], topology optimization is used with the AM for the
design of optical sub-wavelength gratings. Completely unexpected metasurface designs
for challenging multi-frequency, multi-angle problems, including designs for fully coupled
multi-layer structures with arbitrary per-layer patterns, can be computationally discovered
via topology optimization with the AM [56]. In [57], a design method based on topology
optimization is applied to optical waveguide devices.

Compared with other design methods, the AM can obtain the gradient of the objective
function relative to all design parameters through two full-field simulations [58]. This
optimization process is suitable for structures that simultaneously achieve various design
goals and have a large parameter space [59]. As a result, except for topological optimization,
the AM has also been widely applied to other types of photonic inverse design tasks, more
or less, along with different acceleration techniques. In [28], large metasurfaces were
optimized, where the AM is used to calculate the gradient of electric field strength relative
to all design parameters. In the optimization process, multipole expansion theory (MET)
was employed to accelerate the computation, which offered orders-of-magnitude-higher
efficiency than the FDTD-based optimization method did. In [60], a dual-wavelength
metastructure was optimized by the AM. It was shown that the proposed design method
was more efficient than the traditional one used in metasurface design. In [59], a tunable
mode converter filled with liquid crystals was designed using an inverse design framework
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based on the AM. In this work, the AM with multiple constraints was developed along
with a multi-objective function, which can be applied to any multi-state optics. The
original AM cannot be directly combined with the mode extension method because the
associated gradients cannot be as clearly defined as that in the finite difference method,
finite element time domain, or finite element method. To overcome this difficulty, automatic
differentiation techniques were employed to generalize the adjoint variable method to
arbitrary computational graphs [61].

It should be noted that, depending on the type of analysis, the additional computa-
tional cost per constraint sensitivity may range from a few percent for cases where extra
right-hand sides are generated for an already factorized system, to almost 100% for the
transient problem cases.

As discussed in Section 2.3, the AM is a local optimization method. In [62], to alleviate
this drawback, the AM was integrated with global optimization, i.e., particle swarms,
where a 6-times-improved angle and 6-times-improved efficiency were reached compared
with current state-of-the-art devices.

Inherently, the conventional AM can be hardly applied to the inverse design of digital
devices because one cannot calculate the gradient of a digital pattern [63]. In [63], an
efficient inverse design of “digital” subwavelength nanophotonic devices was realized by
employing the AM, where a single-mode 3 dB power divider and a dual-mode demulti-
plexer were designed. Compared with the direct-binary search (DBS) brute-force method,
the AM can improve the design efficiency by nearly five times. And, the performance opti-
mization can reach approximately the same level. The digital AM is a hybrid of topology
optimization and the brute-force method, which improves the inverse design efficiency of
high-performance digital subwavelength nanophotonic devices.

Although the AM was originally developed in terms of linear problems, it is nowadays
indeed extended to nonlinear cases. For example, the AM equipped with topology opti-
mization was employed to design one-dimensional nonlinear nanophotonic structures [47],
where the third-order instantaneous Kerr material nonlinearity was considered. The strong
nonlinearity in topology optimization-based computational design problems makes it diffi-
cult to solve the system directly [64]. Therefore, the iterative approach is widely adopted.
In the iterative approach, the descent direction can be defined based on the adjoint deriva-
tive, where the state and adjoint variables are obtained by solving the partial differential
equations and corresponding adjoint equations, respectively.

2.3. Limitations of AM in Photon Inverse Design

Although the AM has been successfully applied to a variety of photonic systems for
optimization design, it is still limited by some inherent drawbacks. As it is known, the
AM is inherently a local optimization method since it heavily relies on gradient-based
information [65]. Thus, it shares the same drawbacks as the gradient-based methods. In
particular, the AM, more generally speaking, gradient-based optimization algorithms, is
susceptible to becoming stuck in local minimum valleys or saddle points because the design
space for electromagnetic structures is predominantly nonconvex [31,66,67]. A remedy is
to run the optimization process multiple times, typically by using random starting points.
With the remedy, a single optimization target can always be derived [68]. Of course, a nice
starting point can be selected if a region of high-performance devices is known in advance
to avoid multiple runs of the optimization process.

The AM is feasible for very large problems because the computation of the sensitivities
for an arbitrary number of design variables constitutes only a solution process of one extra
linear system. However, the storage of the gradient information for the whole optimization
process may become a main challenge. A remedy is to obtain the gradient information on
the fly instead of storing it [51]. Similar to other traditional inverse design methods, adjoint
topology optimization still has inherent drawbacks such as time-consuming numerical
calculations or simulation processes [69].
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The explicit computation of gradients in the AM is sometimes challenging for certain
photonics problems [70]. The applications of the AM can be affected by a set of constraints
that must be satisfied for specific engineering applications. For the associated optimizations,
spatial filters, thresholding steps, or additional merit function terms are often necessary.
For instance, the adjoint-based shape optimizations are mostly constrained to specific
geometries such as spherical or ellipsoidal Mie scatterers [71]. They rely on approximating
transmission coefficient gradients with polynomial proxy functions [72], approximating fi-
nite differences [73], or using methods like the level set method [20] or surface integrals over
scatterer boundaries [60]. These operations can disrupt gradient computation [26,65,74].
To make it worse, for general photonic devices, which have complex light–matter interac-
tions, their performance metrics and design parameters are often not well described by
analytical forms or proxy functions. Also, in the case of rigorous coupled-wave analysis
(RCWA) [75], the transmission and reflection properties of a structure depend on a global
scattering matrix with elements that are functions of the eigenmodes of each layer. While it
is possible to derive adjoint fields in RCWA, changing variables or scatterer geometries re-
quires additional derivation steps for different cases, leading to extra work when switching
parameterizations [70].

If the constraint is taken to be ‘hard’ and so must be satisfied at all stages of the
optimization procedure, we need to know both the value of the constraint function and its
linear sensitivity to the design variables. The latter requires an extra adjoint calculation.
The more hard constraints exist, the more extra adjoint calculations are required. This
type of constraint, therefore, undermines the computational cost benefits of the AM. If the
number of hard constraints becomes as large as the number of design variables, the benefit
can entirely be lost.

In [31], limitations of the discrete AM were discussed in the context of computational
fluid dynamics. Suppose the objective function has a least-squares form as

L(e(Φ)) =
1
2 ∑

n
(en(Φ)− En)

2 (16)

The gradient can be computed by

∂L
∂ϕ

= ∑
n

∂L
∂e
· ∂e

∂ϕ
(en(Φ)− En) (17)

The second-order derivative can be written as

∂2L
∂ϕi∂ϕj

≈∑
n
(

∂L
∂e

∂e
∂ϕi

)(
∂L
∂e

∂e
∂ϕj

) (18)

where it is assumed that en(Φ)− En is small. The direct linear approach described using
Equations (16)–(18) gives the approximate Hessian matrix, leading to very rapid conver-
gence for the optimization iteration. In contrast, the AM provides no information on the
Hessian, so optimization methods such as BFGS [76], which build up an approximation to
the Hessian, take more steps to converge than the direct linear approach for least-squares
applications. Of course, for the case with a large number of design variables, the AM may
still be more efficient, since the cost of each step is significantly higher when the sensitivities
are evaluated directly.

3. DL for Photonic Inverse Design

Although the inverse design methods including those combined with the AM have
been widely employed in photonic research, the process can still be time and compu-
tationally intensive [77] because, in each iterative step during the optimism, Maxwell’s
equations should be repeatedly solved in terms of a new set of parameters. Since fabrication
techniques allow for more complex three-dimensional designs, photonic designs can be
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more complex and the ranges of the search parameters become larger. The associated
optimization process becomes increasingly resource-intensive [78–80].

Inspired by the fast development of DL, people have combined the DL techniques
with inverse design [33,66,81–83]. At present, DL has been developed rapidly in the field
of photonic device inverse design, which can be more efficient than traditional iterative
optimization methods.

The interaction of nonlinear optics and DL domains has revealed great potential in
recent years [84], both for the understanding of physical systems, e.g., to speed up the
study of nonlinear pulse propagation [85] or to improve nonlinear effect compensation [86]
in fibers and for the development of photonic-based hardware to accelerate DL calculations
relying on third [87] or second [88]-order nonlinear effects.

Figure 2 shows some DL networks applied to photonic inverse design. DL networks
are featured by their capability in capturing and modeling highly nonlinear data relation-
ships. A typical DL architecture is a multilayer stack of simple modules, all (or most)
of which are subject to learning, and many of which compute non-linear input–output
mappings [89]. With multiple non-linear layers, a DL network can effectively predict non-
linear optical (NLO) phenomena such as a photonic device (NLO crystal) or a photonic
technique (two-photon excitation microscopy). Therefore, DL can mimic nonlinear physics-
based relationships, e.g., those between photonic-system geometries and their electromag-
netic responses; they provide a fresh perspective on the forward and inverse problems.

(1) (2) (3)

(4) (5) (6)

Figure 2. Photon inverse design and DL networks. (1) Schematic illustration of a neural network:
(a) A single neuron calculates a weighted sum of inputs and adds a bias term, followed by a nonlinear
activation function. (b) A fully connected, multiple-layered neural network. (c) Schematic of neural
network training [90]. (2) Schematic of a convolution neural network (CNN) architecture and an
equivalent implementation of a photonics CNN [91]. (3) Conditional GANs facilitate image-to-image
translation of photonic features [35]. (4) Merging DNN to optimization algorithms [12]. (5) Diagram of
the ANNs applied in the inverse design and performance optimization problems [92]. (6) Comparison
of tandem network and iterative DNN: (a) Architecture of the tandem network. (b) Architecture of
iterative DNN [93].

When applied to the inverse design, DL can be used as an efficient solver to provide a
fast solution to Maxwell’s equations. To this end, DL models are trained with nonlinear
activation functions and backpropagation to intelligently learn nonlinear relationships
between input parameters and output electric fields. The well-trained neural models,
including DL ones, always offer the possibility of finding solutions outside the boundaries
of the training data. That is, the models can transfer knowledge, an approach of the
Maxwell’s equations known as “transfer learning” [94], which is generally not available in
the traditional electromagnetic solvers.

The DL models can also be a nice optimizer for the inverse design, especially for high-
dimensional systems. As discussed previously, the AM is inherently a local optimization
scheme that suffers from the lack of global information. According to the successful
applications of DL in various fields, DL can be more robust than the AM in recovering global
information. Additionally, in the absence of prior knowledge of the parameter landscape,
many problems become difficult to be optimized as the number of parameters increases.
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However, DL can overcome this difficulty to some extent due to its nice generalizability
after the neural networks are well trained.

3.1. DL Networks Applied to Photonic Inverse Design

Deep neural networks are often built on top of fully connected networks (FCNs)
and convolutional neural networks (CNNs). FCNs can be viewed as the most primitive
type of neural networks, which are composed of multiple layers of neurons, each being
connected to all other ones on the adjacent layer. The fully connected nature offers FCNs
the ability to simulate complex transformations. The computation between two adjacent
layers can be mathematically described by a matrix–vector product or its tensor counterpart.
Suppose that the number of neurons is N for the two adjacent layers, and the computational
complexity of the associated layers reaches O(N2). The high complexity prevents FCN
in practice from having a large number of layers and neurons. CNNs are an improved
alternative to FCNs where the time-consuming matrix–vector operations (or its tensor
counterpart) are replaced with the convolution operations. The invariance of the translation
of the input tensor in CNNs enhances the ability of the networks to capture features from
image/audio data with strong spatial/temporal correlation. When it comes to sequential
data, recurrent neural networks (RNNs) [95] become the most commonly used models,
which can be unambiguously generalized to sequentially connected neurons.

3.1.1. Fully Connected Networks (FCNs)

In [92], the plasmonic waveguide-coupled with cavities structure (PWCCS) was op-
timized by employing a FCN, as shown in Figure 3. The effectiveness of the FCN in
optimizing the PWCCS was verified via the selection of Fano resonance derived from
PWCCS and plasmon-induced transparency effects. In this work, the genetic algorithm was
employed to design network structures and to guide the selection of hyperparameters for
the FCN. Such an approach not only enables the high-precision inverse design of PWCCS
but also optimizes some key performance indicators of the transmission spectrum. In [96],
the inverse design of the edge state of the curved wave topology was realized via FCNs. In
this work, two neural networks were constructed for the forward and backward predictions
of bandgap width and geometric parameters. The dataset used to train a feed-forward
artificial neural network was generated using the plane wave expansion method (PWE)
with a sweeping of the arrangement radii.

Figure 3. Diagram of the ANNs applied in the inverse design and performance optimization
problems [92].

3.1.2. Convolutional Neural Networks (CNNs)

As it is known, CNNs can capture the local correlation of spatial information in the
input data. This property is highly desired in photonics applications as the devices are
always represented by high-dimensional spatial data. Consequently, CNNs and their
improved variations have attracted many researchers who applied them to the solution of
inverse design problems. For example, it has been proved that CNNs had the potential to
solve the problem of the inverse design of thin film metamaterials, probing the parameter
space of a given material and thickness library globally, which can be difficult and expensive
for traditional methods [97]. The full generalization ability of neural networks, especially
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CNNs, to generate systems with the desired spectral response to accommodate various
input design parameters has been revealed.

In [98], the CNN was employed to be an inverse design tool to achieve high numerical
accuracy in plasma element surfaces, which proved that the CNN was an excellent tool for
the design. More specifically, the CNNs are capable of identifying peaks and troughs of the
spectrum at the expense of low computational cost. Key geometric parameters can reach
an accuracy as high as ±8 nm. In this work, the comparison of CNNs and FCNs shows that
CNNs had higher generalization capabilities. Additionally, it has been demonstrated that
batch normalization can improve the performance of CNNs.

3.1.3. Recurrent Neural Networks (RNNs)

RNNs tackle problems associated with sequential data such as sentences and audio
signals. The network receives sequential data one at a time and incrementally generates
new data series. It was demonstrated in [99] that, for photonic design, RNNs were suitable
to model optical signals or spectra in the time domain with a specific line shape originating
from various modes of resonance. In [100], RNNs were implemented to analyze optical
signals and to equalize noise in high-speed fiber transmission. In [77], RNNs were utilized
to find the correlation within 2D cross-sectional images of plasmonic structures, where
the results showed that the network was able to predict the absorption spectra from the
given input structural images. It was revealed in [101] that the performance of RNNs can
be enhanced by adopting advanced varieties of RNNs, such as Long Short-Term Memory
(LSTM) [102] and gated recurrent unit (GRU). In [103], traditional neural networks, RNNs
with LSTM and an RNN with GRU were used to construct the inverse design of MPF. As
indicated by the results in [103], according to the training results, it was found that GRU-
based RNNs were the most effective in predicting frequency response with the highest
accuracy. The study in [104] demonstrated that, in combination with CNNs, RNNs were
also utilized to enhance the approximation of the optical responses of nanostructures that
are illustrated in images. As revealed in [99], network systems hybridizing CNNs and
RNNs present a promising method for modeling and designing photonic devices with
unconventional spatiotemporal properties of light.

3.1.4. Deep Neural Networks (DNNs)

A DNN is a network where the number of hidden layers is much greater than 1. The
DNNs can be divided into discriminant neural networks and generative ones. In this
subsection, we focus on the discriminant DNNs and delay the discussion on the generative
ones in the following Section 3.1.5.

As pointed out in [105], neural networks can be used in two different ways. The
first method takes the configuration of the device to be designed including the structural
parameter (such as the geometrical shape of a nanostructure) as the input and the pre-
dicted electromagnetic response of the device (such as transmission spectra or differential
scattering cross-section) as the output. These neural networks can be used to replace the
computationally expensive electromagnetic simulations in the optimization loop, greatly
reducing the design time. In [105], the DNNs belonging to this method were denoted
by forward-modeling networks because they compute electromagnetic response from the
device. Essentially, a forward-modeling DNN is an electromagnetic solver. The second
type of neural network, named after inverse-design networks, takes the electromagnetic
response as the input and directly outputs the configuration of the device. The inverse-
design networks act as an inverse operator that converts the electromagnetic response to
the configuration of the device. However, one significant difficulty in training inverse-
design DNNs arises from a fundamental property of the inverse scattering problem: the
same electromagnetic response can be produced using many different designs. Different
from the previous remedy to this difficulty where the training dataset was divided into
distinct groups, where there was a unique design within each group corresponding to each
response, the approach of cascading an inverse-design network with forward modeling
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was proposed in [105]. The obtained network was named the tandem DNN. Numerical
experiments in [105] indicated that the tandem DNNs can be trained by datasets containing
nonunique electromagnetic scattering instances.

In [93], the so-called iterative DNN was proposed, where trained weights of the
forward modeling network [105] were fixed and gradient-descent methods based on back-
propagation were employed. The iterative DNN and tandem DNNs were compared
in terms of the transmission spectrum design of bow nanoantennas, where the results
demonstrated that the two types of DNN architectures reached comparable performance.

In [106], three models were investigated for designing nanophotonic power splitters
with multiple splitting ratios. The first model employed the DNN as a forward-modeling
network to predict the spectral response (SPEC) given hole vectors (HV). The second
one utilized the DNN as an inverse-design network to construct HV given a target SPEC.
The third one was based on a stochastic generative model which implicitly integrated
forward and inverse-design networks. In addition, a bidirectional network consisting of the
forward and inverse-design networks was proposed [107]. The forward-modeling network
was trained subsequently to the inverse-design network, which was used to predict the
geometry from the transmission spectrum.

In [108], DNN models were used as both the electromagnetic solvers and the optimizer.
By building the DNN with an FDTD solver, the proposed method can be used to efficiently
design a silicon photonic grating coupler, one of the fundamental silicon photonic devices
with a wavelength-sensitive optical response.

To facilitate multi-tasks inverse design, a topology optimization method based on the
DNN in the low-dimensional Fourier domain was proposed in [109]. The DNN took target
optical responses as inputs and predicted low-frequency Fourier components, which were
then utilized to reconstruct device geometries. By removing high-frequency components
for reduced design degrees of freedom (DoFs), the minimal features were controlled and
the training was sped up. In [110], a forward-modeling DNN was paired with evolutionary
algorithms, where the DNN was used only for preselection and initialization. The method
utilizes a global evolutionary search within the forward model space and leverages the
huge parallelism of modern GPUs for fast inversion.

A well-organized tutorial was given in [111], where the process of deep inverse
learning applied to AEM problems was given in a step-by-step approach. In [111], common
pitfalls of training and evaluation of DL models were discussed and a case study of the
inverse design of a GaSb thermophotovoltaic cell was given.

3.1.5. Deep Generative Models

Generative models generally seek to learn the statistical distribution of data samples
rather than the mapping from input to output data. In this respect, they can be viewed as
the complement techniques of the conventional optimization and inverse design [35]. In
generative models, the joint distribution of the input and output is employed to optimize
a certain objective in a probabilistically generative manner instead of determining the
conditional distribution and thus decision boundaries.

Generative adversarial networks (GANs) are the typical deep generative models
built using generators and discriminators, which have been used for the design and opti-
mization of dielectric and metallic metasurfaces due to their ability to generate massive
nanostructures efficiently [112,113].

In [114], a conditional deep CGAN was employed as an inverse-design network, which
was trained on colored images encoded with a range of material and structural parameters.
It was demonstrated that, in response to target absorption spectra, the CGAN can identify
an effective metasurface in terms of its class, material properties, and overall shape. In [115],
a meta-heuristic optimization framework, along with a resistant autoencoder (AE), was
designed and demonstrated to greatly improve the optimization search efficiency for
meta-device configurations featuring complex topologies.
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In [36], a network combining the CGAN with the WGAN was proposed to design free-
form, all-dielectric metasurface devices. This work indicated that the proposed approach
stabilized the training process and gave the network the ability to handle synthetic meta-
surface design problems. It also demonstrated in this work that GAN-based approaches
were the preferred solution to multifunctional inverse design problems.

In [12], research was conducted on inverse models that utilize unsupervised generative
neural networks to exploit the benefits of not requiring training data samples. However,
time-consuming electromagnetic solvers must be integrated into the generative neural
networks to guarantee compliance with the laws of physics. After training, unsupervised
generative neural networks can also generate new geometric parameters based on the
optical response of the target without the need for any electromagnetic solver [12].

3.2. Limitations of DL in Photon Inverse Design

Although DL is attractive in inverse design photonics, there are still limitations with
DL algorithms. These limitations include the DoFs, the local minimum, the difficulty in
preparing the DL training dataset, the nonunique solutions, and difficulties associated
with generalization.

3.2.1. Degrees of Freedom

In topological optimization, the number of DoFs can be very large, which always
makes the DL very hard to train. The relationship between geometric parameters and
optical performance is very similar to the mathematical non-deterministic polynomial
difficulty (NP difficulty) problem [116] and very hard to define using explicit functions. As
shown in Figure 4 from [12], the designer extracts the geometric parameter x from a device
structure, such as an empirical structure, the QR code one, or an irregular one.

Figure 4. Schematic of DNN-assisted silicon photonic device design approach [12].

What ML method can be employed in inverse design is related to the DoFs of the
photonic structure. For the case with a relatively small number DoFs, many DL networks
can be employed in the inverse design. However, the DoFs continue to grow to thousands
or more, and the huge dimension of the optimization space prohibits methods that require
large amounts of data or a lot of simulation iterations. In this case, the generative models,
such as GANs and VAEs, can be leveraged to reduce the dimensionality of the design
structure and optical response [33,117].

Additionally, the DoFs of photonic devices could potentially impact the NLO phe-
nomenon. For example, due to the varying interlayer interactions associated with different
twist angles, the twisting DoFs have been widely applied to engineer the bands of van
der Waals layered structures. In that work, the twist-angle-dependent second-harmonic
generation (SHG) from twisted bilayer graphene samples was demonstrated along with
their correlation with the evolving hybrid band structure [118]. Nonlinear optics will
probably be increasingly important since people can reach a better understanding of the
underlying physics although the design involves many DOFs, i.e., many photonic DOFs,
such as spatial modes, frequencies, and polarizations, and many design parameters, such as
the space- and time-dependent distributions of refractive index and loss/gain in photonic
structures [119]. Furthermore, reconfigurable control of many modal DOFs can be achieved
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with spatial light modulators or digital micromirror devices, which are now available with
resolutions (i.e., number of pixels) close to 107 [119]. In general, the number of design DOFs
routinely available to optical scientists and engineers now exceeds the technology from
past decades by 3 to 5 orders of magnitude [119].

3.2.2. Training Dataset

DL often requires large and high-quality training datasets, which are generally unavail-
able in practice. The large amount of data required for DL could not be readily available and
is usually created using simulation methods such as RCWA, FEM, and FDTD, which are
time- and computation-expensive [33,90,120]. In [35], a dataset of 20,000 two-dimensional
photonic crystal unit cells and their associated band structures was built, enabling the train-
ing of supervised learning models. Using these datasets, a high-accuracy CNN for band
structure prediction was demonstrated, with orders-of-magnitude speedup compared with
conventional theory-driven solvers. In [107], a DNN was trained using a dataset composed
of 15,000 randomly generated device layouts containing eight geometrical parameters.
In [121], to train a forward network model for prediction of electromagnetic response, a
dataset of 90,000 samples was generated using S4 software (version 2) [122], where the
lattice constant was set between 50 nm and 150 nm and the maximum thickness of each
dielectric was limited to 150 nm.

An effective way is to co-construct large datasets of various optical designs with the
efforts of the optical community [33,123] by avoiding the repeated generation of simulation
data. To use generative models instead of real datasets is also a nice alternative [32].
Another solution is to develop networks suitable for small training datasets. In [27],
an approach based on explainable artificial intelligence was developed for the inverse
design, demonstrating that their method works equally well on smaller datasets. In [124],
an efficient tandem neural network with a backpropagation optimization strategy was
developed to design one-dimensional photonic crystals with specific bandgaps using a
small dataset.

In [125], methods to generate datasets with high quality were discussed to overcome
the problem arising from the lack of training data. The optimization algorithm in [126]
to generate training data may perform less efficiently as it is time-consuming for the case
of many free parameters. The concept of iterative training data generation has emerged
as the remedy, which allows the neural network to learn from previous mistakes and
to significantly improve its performance on specific design tasks. However, iterative
procedures can be computationally expensive since data generation is slow and the network
may need to be re-trained several times on increasing amounts of training samples [115].
The solution is to reduce the amount of re-training by accelerating convergence by assessing
the quality and uncertainty of the ANN output from multiple predictions. In addition,
transfer learning has also been applied in nano-optics problems to enhance the performance
of the ANN when the available data are limited [127].

3.2.3. Nonuniqueness Problem

Since different designs may produce almost identical spectra, this may prevent ML
algorithms from converging correctly. Many researchers have developed various solutions
to this problem. In [77,121], a method adding forward modeling networks to the inverse
design DNN architecture was employed, which can be viewed as one of the most common
ways to overcome the nonunique problem. In [128], an approach modeling the design pa-
rameters as multimodal probability distributions rather than discrete values was proposed,
which can also overcome the nonunique problems. In [129], a physics-based preprocessing
step to solve the size mismatch problem and to improve spectral generalizability was
proposed. Numerical experiments in this work indicated that the proposed approach
can provide accurate prediction capabilities outside the training spectrum. In [124], an
algorithm called adaptive batch normalization was proposed, which was a simple and
effective method that accelerates the convergence speed of many neural networks.
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3.2.4. Local Minimum

Similar to the AM, DL also to some extent relies on gradient information to carry out
the optimization. Thus, DL inverse design can also suffer from local minimum problems.
In [130], an approach to overcome the local minimum problem was proposed by construct-
ing a combined loss function that also fits the Fourier representation of the target function.
Physically, the Fourier representation contains information about the target function’s
oscillatory behavior, which corresponds directly to specific parameters in the input space
for many resonant photonic components. In [33], the generative models were incorporated
into traditional optimization algorithms to help avoid local minimum problems. Because
generative models are essentially transforming raw data into another representation, the
local minimum problem in the original parameter space may be eliminated, which can
alleviate the local minimum problem if optimized in a sparse representation. In [131],
deep generative neural networks based on global optimization networks (GLOnets) were
configured to perform categorical global optimization of photonic devices. This work
showed that, compared with traditional algorithms, GLOnets can find the global optimal
several orders of magnitude faster.

3.2.5. Generalization Ability

The lack of generalization can also limit DL in inverse design [132]. DL is like a black
box, making it challenging to understand and interpret its results and reliability, especially
when dealing with imperfect datasets or data generated by adversarial methods. Due to
the challenges of validating and replicating DL results, a set of community-wide recom-
mendations in biology for DL reporting and validation (data, optimization, model, and
evaluation) was recently published. The given recommendations help to handle questions
that need to be addressed when reporting DL results and are also largely applicable to the
fields of optics and photonics [91].

3.2.6. Problem of Rerunning

When the optimization goal is modified, a new inverse optimization process needs to
be rerun, maybe from scratch. Since a single run of traditional inverse design optimization
is always time- and computation-expensive as it may require hundreds of rounds of
simulations, rerunning will consume a large amount of computing resources [77]. Moreover,
when the optimization goal is modified, it is necessary to recreate the dataset if DL is
employed, which is large in amount and not readily available. In the AM, the change of
optimization goal requires additional derivation steps for different cases, leading to extra
work when switching parameterizations [70].

4. Hybridization of AM and DL For Inverse Design

The use of DL can overcome some limitations of the AM, and vice versa. Many
recent efforts have been made to hybrid DL with the AM [132]. It was demonstrated
that adjoint optimizations are capable of achieving state-of-the-art performance and are
orders of magnitude more computationally efficient than alternative optimization methods,
including DL [133–135]. As pointed out in Section 2.3, the AM is local in nature and
therefore limited by corresponding limitations. The hybridization of DL with the AM can
overcome this problem to some extent [27]. As shown in Figure 5 from [27], an inverse
design framework was proposed by combining adjoint optimization, automatic ML, and
explainable artificial intelligence.

Redefining adjoint-based optimization as training that generates neural networks is
often applied to physical systems that can take advantage of gradients to improve perfor-
mance where training is performed by calculating the forward and adjoint electromagnetic
simulations of outputted devices [38]. Recently, GANs and adversarial autoencoders
(AAEs) have been coupled with adjoint topology optimization techniques for optimizing
the diffractive dielectric gratings [38,115,136]. It has been previously shown that integrating
the AAE network with a conventional adjoint topology optimization formalism can result
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in a speedup of approximately 4900 times for thermal emitter optimization as opposed to
utilizing the conventional topology optimization method [120]. In [136], robustness against
geometric erosion and dilation was achieved for the devices by conducting 30 adjoint-based
topology optimization iterations on the 50 most effective GAN-generated devices. As
demonstrated in [63], GANs and VAEs can achieve complex topologies by using image-
based representations, and utilizing the AM can be an effective way of enhancing their
performance. Additionally, generative models trained on physically informed loss or using
the AM during training can also be improved by subsequent optimization-based refine-
ment steps [137]. In [38], a network based on a conditional generative neural network
and the AM was developed, which is capable of producing ensembles of highly efficient
topology-optimized metasurfaces operating across a range of parameters.

In [37], a method for performing backpropagation in an ANN based on a photonic
circuit was proposed, where the AM was used to derive the photonic of the backpropa-
gation algorithm. In [138], a framework named DeepAdjoint was proposed. As a gen-
eral, open-source, multi-objective “all-in-one” global photonics inverse design application
framework, the method in ML optimization pipelines is made simpler and improved by
hybridizing pre-trained deep generative networks with the AM. The framework employs
GANs as an inverse-design network, which can predict device class, material proper-
ties (such as refractive index and Drude plasma frequency), and the nanoscale geomet-
ric structuring (such as planar topology and layer thickness) of metal–insulator–metal
metasurfaces simultaneously.

Figure 5. Photonic inverse design with the AM and ML [27].

In [139], the so-called neural-adjoint (NA) was developed. NA trains a neural network
to approximate the input–output relationship and then, starting from different random
locations, uses gradient descent towards locally optimal values with the AM. In [140], the
NA inverse design method was studied for the inverse design of all-dielectric metasurfaces.
The NA method is an effective method for predicting the high-dimensional total dielectric
metasurface geometry required to generate the desired infrared absorption spectrum, even
without any specialized knowledge in the field.

In [141], a recurrent neural AM based on NA was proposed. The results indicate that the
proposed method is efficient in designing optical multilayer films for specific spectrum filters.
In general, the hybridization of the AM and DL has been proven beneficial in handling
photonic nonlinear phenomena. For example, the NLO phenomenon was more properly
handled by techniques like Conditional GLOnets [38], which employed physics-driven
gradients to iteratively enhance the nonlinear mapping between inputs and device layout,
akin to the optimization process based on the AM.

5. Conclusions

The AM is now widely employed in the fields of photonic crystals, waveguides, res-
onators, filters, and plasma excitations in system design. Compared with other design
methods, the AM can obtain the gradient of the objective function relative to all design
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DoFs through two full-field simulations, which makes it suitable for structures that si-
multaneously achieve various design goals and have a large parameter space. Except for
topological optimization, the AM has been applied to many other types of inverse design
tasks of photons, maybe with different acceleration techniques. It is also extended to solve
nonlinear optimization problems. DL technology plays an important role in optical reverse
design, which can significantly reduce simulation time; improve efficiency and accuracy;
and is of great significance for the design, manufacturing, and application of optical devices.
Different from the AM, DL can be an efficient solver of Maxwell’s equations as well as
a nice optimizer. This makes DL techniques more widely employable in inverse design
tasks. However, both the AM and DL have their own drawbacks. The AM is inherently
a local optimization method since it heavily relies on gradient-based information. The
optimization can suffer from becoming stuck in local minimum valleys or saddle points.
The memory usage of the AM can also prevent it from very large problems. At the same
time, DL may encounter the problems of local minima, difficulty in obtaining training
datasets, the existence of non-unique solutions, and troubles in generalization. Fortunately,
some of the difficulties can be solved or alleviated by combining DL with the AM.
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