A Compact Fabry–Pérot Acoustic Sensor Based on Silicon Optical Waveguide Bragg Gratings
Abstract
:1. Introduction
2. Structural Design and Principle
2.1. Structural Design
2.2. Fabry–Pérot Cavity Based on Bragg Gratings
2.3. Principle of Acoustic Sensing Based on Evanescent Wave
3. Simulation and Analysis
3.1. Grating Period
3.2. Grating Pitch Quantity
3.3. Air Groove Depth
3.4. Acoustic Performance Analysis on OWG-FPC
3.5. Temperature Resistance Analysis of OWG-FPC
3.6. Preparation Process of OWG-FPC
- (a)
- A layer of SiO2 is grown on the silicon substrate, and a layer of germanium-doped SiO2 is grown on the silicon dioxide layer.
- (b)
- After the growth is completed, the entire structure is annealed at high temperatures of 900 °C–1100 °C for 35 h. A mask template is set on the germanium-doped SiO2 layer.
- (c)
- The excess germanium-doped SiO2 is etched off by reactive ion etching to form a straight optical waveguide in the SiO2 layer.
- (d)
- The SiO2 is grown on the SiO2 layer by plasma-enhanced chemical vapor deposition to form the upper cladding layer. After the reflux treatment at high temperature, the upper cladding layer and SiO2 layer coated the straight optical waveguide to form the optical waveguide substrate.
- (e)
- Set the mask template again, and the upper surface of the upper cladding layer is etched by reactive ion etching to form a micro air groove.
- (f)
- The depth of the micro air groove is less than the thickness of the upper cladding layer. The transmission fiber is then coupled at both ends of the straight optical waveguide. Finally, two Bragg gratings are formed by using the femtosecond laser inscription method.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Othonos, A. Fiber Bragg gratings. Rev. Sci. Instrum. 1997, 68, 4309–4341. [Google Scholar] [CrossRef] [Green Version]
- Nezam, U.; Guigen, L.; Qiwen, S.; Ming, H. Constant temperature operation of fiber-optic hot-wire anemometers. Opt. Lett. 2019, 44, 2578–2581. [Google Scholar] [CrossRef]
- Bell Graham, A. Upon the production and reproduction of sound by light. J. Soc. Telegr. Eng. 1880, 34, 404–426. [Google Scholar] [CrossRef]
- Bucaro, J.A. Fiber-optic hydrophone. J. Acoust. Soc. Am. 1977, 62, 1302–1304. [Google Scholar] [CrossRef]
- Culshaw, B.; Davies, D.; Kingsley, S.A. Acoustic sensitivity of optical-fibre waveguides. Electron. Lett. 1977, 13, 760–761. [Google Scholar] [CrossRef]
- Nelson, D.F.; Kleinman, D.A.; Wecht, K.W. Vibration-induced modulation of fiber guide transmission. Appl. Phys. Lett. 1977, 30, 94–96. [Google Scholar] [CrossRef]
- Bucaro, J.A.; Dardy, H.D.; Carome, E.F. Optical fiber acoustic sensor. Appl. Opt. 1977, 16, 1761–1762. [Google Scholar] [CrossRef]
- Garthe, D.A. Optical fiber microphone. Sens. Actuators A 1991, 26, 341–345. [Google Scholar] [CrossRef]
- Webb, D.J. An ocean model code for array processor computers. Comput. Geosci. 1996, 22, 569–578. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, N.; Yoshimura, K.; Takahashi, S.; Imamura, K. Development of an optical fiber hydrophone with fiber Bragg grating. Ultrasonics 2000, 38, 581–585. [Google Scholar] [CrossRef]
- Li, C.; Peng, X.B.; Zhang, H.; Wang, C.; Fan, S.C.; Cao, S.Q. A sensitivity-enhanced flexible acoustic sensor using side-polished fiber Bragg grating. Measurement 2018, 117, 252–257. [Google Scholar] [CrossRef]
- Zhang, F.X.; Wang, C.; Zhang, X.L.; Jiang, S.D.; Ni, J.S.; Peng, G.D. High-sensitivity FBG microphone with static pressure equalization and optimized response. Chin. Opt. Lett. 2019, 17, 010601. [Google Scholar] [CrossRef]
- Xu, J.; Wang, A.; Cooper, K.L.; Wang, X. Miniature all-silica fiber optic pressure and acoustic sensors. Opt. Lett. 2005, 30, 3269–3271. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Jiang, X.; Yu, Q. Diaphragm-based extrinsic Fabry-Pérot interferometric optical fiber pressure sensor. In Proceedings of the SPIE—The International Society for Optical Engineering, Dalian, China, 31 December 2010; Volume 7656. [Google Scholar] [CrossRef]
- Ma, J.; Xuan, H.F.; Ho, H.L.; Jin, W.; Yang, Y.H.; Fan, S.C. Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm. IEEE Photonics Technol. Lett. 2013, 25, 932–935. [Google Scholar] [CrossRef]
- Xu, F.; Shi, J.; Gong, K.; Li, H.; Hui, R.; Yu, B. Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm. Opt. Lett. 2014, 39, 2838–2840. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Yu, Y.; Jin, W. Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias. Opt. Express 2015, 23, 29268–29278. [Google Scholar] [CrossRef]
- Bandutunga, C.P.; Fleddermann, R.; Gray, M.B.; Close, J.D.; Chow, J.H. All-optical low noise fiber Bragg grating microphone. Appl. Opt. 2016, 55, 5570–5574. [Google Scholar] [CrossRef]
- Ni, W.J.; Lu, P.; Fu, X.; Zhang, W.; Shum, P.P.; Sun, H.D.; Yang, C.Y.; Liu, D.M.; Zhang, J.S. Ultrathin graphene diaphragm-based extrinsic Fabry-Pérot interferometer for ultra-wideband fiber optic acoustic sensing. Opt. Express 2018, 26, 20758–20767. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, W.; Cui, P.; Ma, Y.A. High sensitivity fiber laser microphone. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018. [Google Scholar]
- Qi, X.; Wang, S.; Jiang, J.; Liu, K.; Liu, T. Study on the sensitization effect of flywheel-like diaphragm on fiber-optic Fabry-Pérot acoustic sensor. IEEE Access 2020, 8, 99286–99293. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, P.; Ni, W.J.; Xiong, W.Z.; Liu, D.M.; Zhang, J.S. Gold-diaphragm based Fabry-Pérot ultrasonic sensor for partial discharge detection and localization. IEEE Photonics J. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Ballard, N.; Paz-Soldan, D.; Kung, P.; Loock, H.P. Musical instrument recordings made with a fiber Fabry-Pérot cavity: Photonic guitar pickup. Appl. Opt. 2010, 49, 2198–2203. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Nie, F.; Zhang, P.; Zhao, B.; Li, B. Optical fiber acoustic sensors. Opto-Electron. Eng. 2018, 45, 180050. [Google Scholar] [CrossRef]
- Zhao, X.; Bai, J.; Zheng, Y.; Chen, J.; Wu, L.; Gao, X.; Li, Z.; Zhang, J.; Xue, C. Research on high-temperature characteristics of a miniature Fabry–Pérot cavity acoustic sensor. Opt. Express 2022, 30, 26609–26619. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Jin, L.; Li, J.; Ran, Y.; Guan, B.O. Microfiber interferometric acoustic transducers. Opt. Express 2014, 22, 8126–8135. [Google Scholar] [CrossRef]
- Gao, X.X.; Cui, J.M.; Ai, M.Z.; Huang, Y.F.; Guo, G.C. An acoustic sensor based on active fiber Fabry–Pérot microcavities. Sensors 2020, 20, 5760. [Google Scholar] [CrossRef]
- Wu, S.N.; Xie, L.J.; Lin, H.G.; Tan, Q.; Chen, X.L.; He, S.L. Fiber acoustic sensor with stable operating-point based on a photo-thermal cavity. IEEE Sens. J. 2022, 22, 1321–1326. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Zhou, M.; He, J.; Liao, C.; Wang, Y. Recent advance in hollow-core fiber high-temperature and high-pressure sensing technology. Chin. Opt. Lett. 2021, 19, 070601. [Google Scholar] [CrossRef]
- Rao, Y.J. Recent progress in applications of in-fibre Bragg grating sensors. Opt. Lasers Eng. 1999, 31, 297–324. [Google Scholar] [CrossRef]
- Morey, W.W.; Meltz, G.; Glenn, W.H. Fibre optic Bragg grating sensors. Proc. SPIE 1990, 1169, 98–107. [Google Scholar]
- Udd, E. Fiber optic smart structures. Proc. IEEE 1996, 84, 884–894. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, Y.; Chen, J.; Wu, L.; Xue, C. Full investigation of frequency locking loop model for high-Q Fabry-Pérot cavity acoustic sensor. Opt. Laser Technol. 2021, 139, 106976. [Google Scholar] [CrossRef]
- Mechel, F.P. Revision of the kirchhoff-rayleigh-theory of sound propagation in visco-thermal air. Part II: Evaluation of sound fields in flat capillaries. Acta Acust. United Acust. 2007, 93, 675–705. [Google Scholar]
- Klemm, K.; Pieszynski, K.; Rozniakowski, K. Examination of air density fluctuations with the aid of laser beam. Opt. Appl. 2007, 37, 219–228. [Google Scholar]
- Ryan, W.; Felipe, G.; Akobuije, C.; Gurpreet, K.; Gulati, M. Direct measurement of radiation pressure and circulating power inside a passive optical cavity. Opt. Express 2018, 26, 23492–23506. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Kong, W.; Chen, F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: A concise review and recent advances. Adv. Photonics 2022, 4, 29. [Google Scholar] [CrossRef]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef] [Green Version]
- Gross, S.; Withford, M.J. Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications. Nanophotonics 2015, 4, 332–352. [Google Scholar] [CrossRef] [Green Version]
Type | Sensing Structure | Sensitivity | Suitable for High Temperature | Ref. |
---|---|---|---|---|
Vibrating membrane structures | Mach–Zehnder interferometer | 0.1 Pa | No | [7] |
Nano-silver film probe | 160 nm/Pa | No | [16] | |
Copper diaphragm | 30 μPa/Hz | No | [20] | |
No membranous structure | FP fiber | 80 mV/Pa | No | [24] |
Miniature membraneless optical fiber | 491.2 mV/Pa | 200 °C | [25] | |
Silicon optical waveguide Fabry–Pérot cavity | 0.4 nm/Pa | 800 °C | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Cao, S.; Zheng, Y.; Bai, J. A Compact Fabry–Pérot Acoustic Sensor Based on Silicon Optical Waveguide Bragg Gratings. Photonics 2023, 10, 861. https://doi.org/10.3390/photonics10080861
Gao X, Cao S, Zheng Y, Bai J. A Compact Fabry–Pérot Acoustic Sensor Based on Silicon Optical Waveguide Bragg Gratings. Photonics. 2023; 10(8):861. https://doi.org/10.3390/photonics10080861
Chicago/Turabian StyleGao, Xiaoyu, Shengjie Cao, Yongqiu Zheng, and Jiandong Bai. 2023. "A Compact Fabry–Pérot Acoustic Sensor Based on Silicon Optical Waveguide Bragg Gratings" Photonics 10, no. 8: 861. https://doi.org/10.3390/photonics10080861
APA StyleGao, X., Cao, S., Zheng, Y., & Bai, J. (2023). A Compact Fabry–Pérot Acoustic Sensor Based on Silicon Optical Waveguide Bragg Gratings. Photonics, 10(8), 861. https://doi.org/10.3390/photonics10080861