Generation of Second-Order Sideband through Nonlinear Magnetostrictive Interaction
Abstract
:1. Introduction
2. Physical Setup and Dynamical Equation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chumak, A.V.; Vasyuchka, V.I.; Serga, A.A.; Hillebrands, B. Magnon spintronics. Nat. Phys. 2015, 11, 453–461. [Google Scholar] [CrossRef]
- Soykal, O.O.; Flatte, M.E. Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 2010, 104, 077202. [Google Scholar] [CrossRef] [Green Version]
- Tabuchi, Y.; Ishino, S.; Ishikawa, T.; Yamazaki, R.; Usami, K.; Nakamura, Y. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 2014, 113, 083603. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zou, C.-L.; Jiang, L.; Tang, H.X. Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 2014, 113, 156401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Harder, M.; Chen, Y.P.; Fan, X.; Xiao, J.Q.; Hu, C.-M. Spin pumping in electrodynamically coupled magnon-photon systems. Phys. Rev. Lett. 2015, 114, 227201. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-P.; Zhang, G.-Q.; Zhang, D.; Li, T.-F.; Hu, C.-M.; You, J.Q. Bistability of cavity magnon-polaritons. Phys. Rev. Lett. 2018, 120, 057202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Wang, X.-M.; Li, T.-F.; Luo, X.-Q.; Wu, W.; Nori, F.; You, J.Q. Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. NPJ Quantum Inf. 2015, 1, 15014. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zou, C.-L.; Zhu, N.; Marquardt, F.; Jiang, L.; Tang, H.X. Magnon dark modes and gradient memory. Nat. Commun. 2015, 6, 8914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osada, A.; Hisatomi, R.; Noguchi, A.; Tabuchi, Y.; Yamazaki, R.; Usami, K.; Sadgrove, M.; Yalla, R.; Nomura, M.; Nakamura, Y. Cavity Optomagnonics with Spin-Orbit Coupled Photons. Phys. Rev. Lett. 2016, 116, 223601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusminskiy, S.V.; Tang, H.X.; Marquardt, F. Coupled spin-light dynamics in cavity optomagnonics. Phys. Rev. A 2016, 94, 033821. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhu, N.; Zou, C.-L.; Tang, H.X. Optomagnonic Whispering Gallery Microresonators. Phys. Rev. Lett. 2016, 117, 123605. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Rameshti, B.Z.; Blanter, Y.M.; Bauer, G.E.W. Optimal mode matching in cavity optomagnonics. Phys. Rev. B 2019, 99, 214423. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.-J.; Song, J. Nonreciprocal magnon laser. Opt. Lett. 2021, 46, 5276–5279. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Li, Y.-Q. Optomagnonic frequency combs. Photon. Res. 2022, 10, 2786–2793. [Google Scholar] [CrossRef]
- Fan, Z.; Zuo, X.; Qian, H.; Li, J. Proposal for optomagnonic teleportation and entanglement swapping. Photonics 2023, 10, 739. [Google Scholar] [CrossRef]
- Tabuchi, Y.; Ishino, S.; Noguchi, A.; Ishikawa, T.; Yamazaki, R.; Usami, K.; Nakamura, Y. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 2015, 349, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachance-Quirion, D.; Tabuchi, Y.; Ishino, S.; Noguchi, A.; Ishikawa, T.; Yamazaki, R.; Nakamura, Y. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet. Sci. Adv. 2017, 3, e1603150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.-X.; Xiong, H.; Wu, Y. Magnon blockade in a hybrid ferromagnet-superconductor quantum system. Phys. Rev. B 2019, 100, 134421. [Google Scholar] [CrossRef] [Green Version]
- Spencer, E.G.; LeCraw, R.C. Magnetoacoustic resonance in yttrium iron garnet. Phys. Rev. Lett. 1958, 1, 241–243. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, C.-L.; Jiang, L.; Tang, H.X. Cavity magnomechanics. Sci. Adv. 2016, 2, 1501286. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhu, S.-Y. Entangling two magnon modes via magnetostrictive interaction. New J. Phys. 2019, 21, 085001. [Google Scholar] [CrossRef]
- Xu, G.-T.; Zhang, M.; Wang, Z.-Y.; Wang, Y.; Liu, Y.-X.; Shen, Z.; Guo, G.-C.; Dong, C.-H. Ringing spectroscopy in the magnomechanical system. Fundam. Res. 2023, 3, 45–49. [Google Scholar] [CrossRef]
- Li, J.; Gröblacher, S. Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics. Quantum Sci. Technol. 2021, 6, 024005. [Google Scholar] [CrossRef]
- Potts, C.A.; Varga, E.; Bittencourt, V.A.S.V.; Kusminskiy, S.V.; Davis, J.P. Dynamical backaction magnomechanics. Phys. Rev. X 2021, 11, 031053. [Google Scholar] [CrossRef]
- Li, J.; Zhu, S.-Y.; Agarwal, G.S. Magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 2018, 121, 203601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Shen, H.; Li, J. Magnetostrictively induced stationary entanglement between two microwave fields. Phys. Rev. Lett. 2020, 124, 213604. [Google Scholar] [CrossRef]
- Fan, Z.-Y.; Qiu, L.; Gröblacher, S.; Li, J. Microwave-optics entanglement via cavity optomagnomechanics. arXiv 2022, arXiv:2208.10703. [Google Scholar]
- Shen, R.-C.; Li, J.; Fan, Z.-Y.; Wang, Y.-P.; You, J.Q. Mechanical bistability in Kerr-modified cavity magnomechanics. Phys. Rev. Lett. 2022, 129, 123601. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.-Y.; Liu, W.; Xiao, Y.-F. Nonreciprocal phonon laser in a spinning microwave magnomechanical system. Phys. Rev. A 2021, 103, 053501. [Google Scholar] [CrossRef]
- Yang, Z.-B.; Liu, J.-S.; Zhu, A.-D.; Liu, H.-Y.; Yang, R.-C. Nonreciprocal transmission and nonreciprocal entanglement in a spinning microwave magnomechanical system. Ann. Phys. 2020, 532, 2000196. [Google Scholar] [CrossRef]
- Kong, C.; Liu, J.; Xiong, H. Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect. Front. Phys. 2023, 18, 12501. [Google Scholar] [CrossRef]
- Wang, X.; Huang, K.-W.; Xiong, H. Nonreciprocal sideband responses in a spinning microwave magnomechanical system. Opt. Express 2023, 31, 5492–5506. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.-P.; You, J.Q.; Zhu, S.-Y. Squeezing microwaves by magnetostriction. Natl. Sci. Rev. 2023, 10, nwac247. [Google Scholar] [CrossRef]
- Xiong, H. Magnonic frequency combs based on the resonantly enhanced magnetostrictive effect. Fundam. Res. 2023, 3, 8–14. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Peng, J.; Xiong, H. Generation of magnonic frequency combs via a two-tone microwave drive. Phys. Rev. A 2023, 107, 053708. [Google Scholar] [CrossRef]
- Xu, G.-T.; Zhang, M.; Wang, Y.; Shen, Z.; Guo, G.-C.; Dong, C.-H. Magnonic frequency comb in the magnomechanical resonator. arXiv 2023, arXiv:2306.07985. [Google Scholar]
- Zhao, J.; Liu, Y.; Wu, L.; Duan, C.-K.; Liu, Y.-X.; Du, J. Observation of anti-PT-symmetry phase transition in the magnon-cavity-magnon coupled system. Phys. Rev. Appl. 2020, 13, 014053. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liu, Z.-X.; Kong, C.; Xiong, H.; Wu, Y. Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system. Opt. Express 2018, 26, 20248–20257. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Jia, X.; Lu, X.-H.; Xiong, H. PT-symmetric magnon laser in cavity optomagnonics. Phys. Rev. A 2022, 105, 053705. [Google Scholar] [CrossRef]
- Zhang, G.-Q.; Chen, Z.; Xu, D.; Shammah, N.; Liao, M.; Li, T.-F.; Tong, L.; Zhu, S.-Y.; Nori, F.; You, J.Q. Exceptional point and cross-relaxation effect in a hybrid quantum system. PRX Quantum 2021, 2, 020307. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Li, X.H.; Wu, Y.Y.; Sun, Z.Y. Magnon chaos in PT-symmetric cavity magnomechanics. IEEE Photon. J. 2019, 11, 5300108. [Google Scholar] [CrossRef]
- Huai, S.-N.; Liu, Y.-L.; Zhang, J.; Yang, L.; Liu, Y.-X. Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system. Phys. Rev. A 2019, 99, 043803. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.-X.; Zhang, H.; Zhang, Q.; Jing, H. Exceptional-point-engineered cavity magnomechanics. Phys. Rev. A 2021, 103, 063708. [Google Scholar] [CrossRef]
- Holstein, T.; Primakoff, H. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 1940, 58, 1098. [Google Scholar] [CrossRef]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Wu, Y. Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev. 2018, 5, 031305. [Google Scholar] [CrossRef]
- Gardiner, C.W.; Zoller, P. Quantum Noise; Springer: Berlin, Germany, 2000. [Google Scholar]
- Walls, D.F.; Milburn, G.J. Quantum Optics; Springer: Berlin, Germany, 1994. [Google Scholar]
- Wang, B.; Lu, X.-H.; Jia, X.; Xiong, H. Coherent stimulated amplification of the skyrmion breathing. Chaos Solitons Fractals 2023, 171, 113484. [Google Scholar] [CrossRef]
- Xiong, H.; Si, L.-G.; Zheng, A.-S.; Yang, X.; Wu, Y. Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A 2012, 86, 013815. [Google Scholar] [CrossRef] [Green Version]
- Ruzicka, B.A.; Werake, L.K.; Xu, G.; Khurgin, J.B.; Sherman, E.Y.; Wu, J.Z.; Zhao, H. Second-harmonic generation induced by electric currents in GaAs. Phys. Rev. Lett. 2012, 108, 077403. [Google Scholar] [CrossRef] [Green Version]
- Velotta, R.; Hay, N.; Mason, M.B.; Castillejo, M.; Marangos, J.P. High-order harmonic generation in laser-aligned molecules. Phys. Rev. A 2002, 65, 053805. [Google Scholar]
- Chen, H.-J. Multiple-Fano-resonance-induced fast and slow light in the hybrid nanomechanical-resonator system. Phys. Rev. A 2021, 104, 013708. [Google Scholar] [CrossRef]
- Chen, H.-J. The fast–slow light transitions induced by Fano resonance in multiple nanomechanical resonators. Opt. Laser Technol. 2023, 161, 109242. [Google Scholar] [CrossRef]
- Yang, Q.; Yan, R.; Fan, C.; Chen, H.; Liu, F.; Liu, S. A magneto-mechanical strongly coupled model for giant magnetostrictive force sensor. IEEE Trans. Magn. 2007, 43, 1437–1440. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kwon, Y.E. Review of magnetostrictive patch transducers and applications in ultrasonic nondestructive testing of waveguides. Ultrasonics 2015, 62, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Zhu, Y.; Ling, J.; Feng, Z. Theoretical modeling and experimental evaluation of a magnetostrictive actuator with radial-nested stacked configuration. Nonlinear Dyn. 2022, 109, 1277–1293. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wang, B.; Xiong, H. Generation of Second-Order Sideband through Nonlinear Magnetostrictive Interaction. Photonics 2023, 10, 886. https://doi.org/10.3390/photonics10080886
Yang L, Wang B, Xiong H. Generation of Second-Order Sideband through Nonlinear Magnetostrictive Interaction. Photonics. 2023; 10(8):886. https://doi.org/10.3390/photonics10080886
Chicago/Turabian StyleYang, Lei, Bao Wang, and Hao Xiong. 2023. "Generation of Second-Order Sideband through Nonlinear Magnetostrictive Interaction" Photonics 10, no. 8: 886. https://doi.org/10.3390/photonics10080886
APA StyleYang, L., Wang, B., & Xiong, H. (2023). Generation of Second-Order Sideband through Nonlinear Magnetostrictive Interaction. Photonics, 10(8), 886. https://doi.org/10.3390/photonics10080886