The Optimization of a Segmented Cladding Fiber via the Response Surface Methodology Approach for a Large Mode Area
Abstract
:1. Introduction
2. Fiber Structure and Numerical Method
2.1. Structural Parameters in the Proposed SCF
2.2. Analysis Method
2.3. SM Operation Criteria
3. Optimization Method
3.1. Design Variables and Objective Function
3.2. Response Surface Methodology (RSM)
4. Results and Discussion
5. Optimization Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berdine, R.W.; Motes, R.A. Introduction to High Power Fiber Lasers, 1st ed.; Directed Energy Professional Society: Albuquerque, NM, USA, 2009. [Google Scholar]
- Jauregui, C.; Limpert, J.; Tünnermann, A. High power fiber lasers. Nat. Photonics 2013, 7, 861–867. [Google Scholar] [CrossRef]
- Nilsson, J.; Payne, D.N. High Power Fiber Lasers. Science 2011, 332, 921–922. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Zhai, Y.; Lu, B.; Chen, H. Single-Longitudinal Mode Ytterbium-Doped Fiber Laser with Ultra-Narrow Linewidth and High OSNR Using a Double-Ring Passive Subcavity. Photonics 2023, 10, 500. [Google Scholar] [CrossRef]
- Jauregui, C.; Eidam, T.; Otto, H.; Stutzki, F.; Jansen, F.; Limpert, J.; Tünnermann, A. Physical origin of mode instabilities in high-power fiber laser systems. Opt. Express 2012, 20, 12912–12925. [Google Scholar] [CrossRef]
- Hu, D.; Shum, P.; Lu, C.; Yu, X.; Wang, G.; Ren, G. Holey fiber design for single-polarization single-mode guidance. Appl. Opt. 2009, 48, 4038–4043. [Google Scholar] [CrossRef]
- Pournoury, M.; Kim, D. Optimized segmented cladding fiber for extreme large mode area using Latin Hypercube sampling. Opt. Commun. 2023, 542, 129593. [Google Scholar]
- Monro, T.; Richardson, D.; Broderick, N.; Bennett, P. Holey Optical Fibers: An Efficient Modal Model. J. Lightwave Technol. 1999, 17, 1093–1102. [Google Scholar] [CrossRef]
- Jung, C.H.; Cho, H.S.; Han, J.W.; Ashok, N.; Shin, W.J.; Ouh, C.H. Leaky channel fiber design for large mode area high power application at 1 micron. Fiber Lasers XV Technol. Syst. 2018, 10512, 497–502. [Google Scholar]
- Kumar, A.; Saini, T.; Naik, K.; Sinha, R. Large-mode-area single-polarization single-mode photonic crystal fiber: Design and analysis. Appl. Opt. 2016, 55, 4995–5000. [Google Scholar] [CrossRef]
- Knight, J.C. Photonic crystal fibers. Nature 2003, 424, 847–851. [Google Scholar] [CrossRef]
- Limpert, J.; Deguil-Robin, N.; Manek-Hönninger, I.; Salin, F.; Röser, F.; Liem, A.; Schreiber, T.; Nolte, S.; Zellmer, H.; Tünnermann, A.; et al. High-power rod-type photonic crystal fiber laser. Opt. Express 2015, 13, 1055–1058. [Google Scholar] [CrossRef]
- Pinto, A.M.R.; Lopez-Amo, M. All-fiber lasers through photonic crystal fibers. Nanophotonics 2013, 2, 355–368. [Google Scholar] [CrossRef]
- Sidharthan, R.; Lin, D.; Lim, K.J.; Li, H.; Lim, S.H.; Chang, C.J.; Seng, Y.M.; Chua, S.L.; Jung, Y.; Richardson, D.J.; et al. Ultra-low NA step-index large mode area Yb-doped fiber with a germanium doped cladding for high power pulse amplification. Opt. Lett. 2020, 45, 3828–3831. [Google Scholar] [CrossRef]
- Sidharthan, R.; Ji, J.; Lim, K.; Lim, S.; Li, H.; Lua, J.; Zhou, Y.; Tse, C.; Ho, D.; Seng, Y.; et al. Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding. Opt. Lett. 2018, 43, 5897–5900. [Google Scholar] [CrossRef]
- Savović, S.; Kovačević, M.S.; Drljača, B.; Simović, A.; Kuzmanović, L.; Djordjevich, A. Power flow in multimode step-index plastic photonic crystal fibers. Optik 2021, 247, 167868. [Google Scholar] [CrossRef]
- Pournoury, M.; Kim, D. Design and optimization of a double cladding octo-wing segmented cladding fiber using response surface methodology, In Proceedings of the 7th IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Seoul, South Korea, 7–10 March, 2023; pp. 1–3. [Google Scholar]
- Babita, H.; Rastogi, V.; Kumar, A. Segmented cladding fiber design for femtosecond laser pulse delivery at 1550-nm and 1064-nm wavelengths. In Proceedings of the 17th Opto-Electronics and Communications Conference, Busan, Republic of Korea, 2–6 July 2012; pp. 359–360. [Google Scholar]
- Pournoury, M.; Han, S.-R.; Ghasemi, M.; Lee, H.; Kim, D.; Oh, K. Silica segmented cladding fiber design and its fabrication using a powder-in-tube technique. J. Light. Technol. 2021, 39, 7251–7258. [Google Scholar] [CrossRef]
- Pournoury, M.; Lee, Y.S.; Kim, D.; Oh, K. Granulated Silica Segmented Cladding Fiber for Optical Communication. In Proceedings of the Opto-Electronics and Communications Conference (OECC), Hong Kong, China, 3–7 July 2021. [Google Scholar]
- Rastogi, V.; Chiang, K.S. Analysis of the segmented cladding fiber by the radial effective-index method. J. Opt. Soc. Amer. B 2004, 21, 258–265. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, W.; She, Y.; Du, H.; Tu, S. A Large Mode Area Parabolic-Profile Core Fiber with Modified Segmented in Cladding. Photonics 2022, 9, 783. [Google Scholar] [CrossRef]
- Aleshkina, S.S.; Likhachev, M.E.; Lipatov, D.S.; Medvedkov, O.I.; Bobkov, K.K.; Bubnov, M.M.; Guryanov, A.N. 5.5 W monolitic single-mode fiber laser and amplifier operating near 976 nm. Fiber Lasers XIII Technol. Syst. Appl. 2016, 9728, 265–272. [Google Scholar]
- Millo, A.; Naeh, I.; Katzir, A. Single-Mode Segmented Cladding Fibers for the Middle Infrared. J. Light. Technol. 2007, 25, 2115–2121. [Google Scholar] [CrossRef]
- Duan, J.; Teng, C.; Han, K.; Yu, M.; Wu, W.; Zhang, Q.; Chiang, K.S. Fabrication of segmented cladding fiber by bicomponent spinning. Polym. Eng. Sci. 2009, 49, 1865–1870. [Google Scholar] [CrossRef]
- Yeung, A.; Chiang, K.S.; Rastogi, V.; Chu, P.L.; Peng, G.D. Experimental demonstration of single-mode operation of large-core segmented cladding fiber. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 23–27 February 2004. [Google Scholar]
- Yeung, A.; Chu, P.L.; Peng, G.D.; Chiang, K.S.; Liu, Q. Design and fabrication of polymer cross fiber for large-core single-mode operation. J. Light. Technol. 2009, 27, 101–107. [Google Scholar] [CrossRef]
- Hooda, B.; Pal, A.; Rastogi, V.; Sen, R.; Gandhi, J.; Kobelke, J. Segmented cladding fiber fabricated in silica-based glass. Opt. Eng. 2015, 54, 075103. [Google Scholar] [CrossRef]
- Pournoury, M.; Kim, D. Bend-resistant octo-wing silica segmented cladding fiber with high index rings. Results Phys. 2022, 36, 105423. [Google Scholar] [CrossRef]
- Ballato, J.; Snitze, E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications. Appl. Opt. 1995, 34, 6848–6854. [Google Scholar] [CrossRef]
- Zamiri, A.; You, S.J.; Chung, J.T. Large Eddy Simulation in the Optimization of Laidback Fan-Shaped Hole Geometry to Enhance Film-Cooling Performance. Int. J. Heat Mass Transf. 2020, 158, 120014. [Google Scholar] [CrossRef]
- Pournoury, M.; Moon, D.S.; Oh, K. Ultra-low loss fiber with segmented-core and depressed inner cladding. In Proceedings of the Asia Communications and Photonics Conference, Hong Kong, China, 19–23 November 2015. [Google Scholar]
- Koshiba, M. Optical Waveguide Theory by the Finite Element Method. In IEICE Transactions on Electronics; Springer: Dordrecht, The Netherlands, 2014; Volume E97-C, pp. 625–635. [Google Scholar]
- Dautov, R.Z.; Karchevskii, E.M. Numerical Modeling of Optical Fibers Using the Finite Element Method and an Exact Non-reflecting Boundary Condition. Comput. Methods Appl. Math. 2018, 18, 581–601. [Google Scholar] [CrossRef]
- Kawano, K.; Kitoh, T. Finite-Element Methods Introduction to Optical Waveguide Analysis, 1st ed.; Wiley: New York, NY, USA, 2001; pp. 59–68. [Google Scholar]
- Pournoury, M.; Moon, D.S.; Oh, K. Low scattering loss fiber with segmented-core and depressed inner cladding structure. Opt. Commun. 2014, 317, 13–17. [Google Scholar] [CrossRef]
- Velamuri, A.V.; Patel, K.; Sharma, I.; Gupta, S.S.; Gaikwad, S.; Krishnamurthy, P.K. Investigation of Planar and Helical Bend Losses in Single- and Few-Mode Optical Fibers. J. Lightwave Technol. 2019, 37, 3544–3556. [Google Scholar] [CrossRef]
- Guo, Z.; Pei, L.; Ning, T.; Zheng, J.G.; Li, J.; Wang, J. Resonant-ring assisted large mode area segmented cladding fiber with high-index rings in core. Opt. Commun. 2021, 495, 127049. [Google Scholar]
- Dong, L.; Peng, X.; Li, J. Leakage channel optical fibers with large effective area. J. Opt. Soc. Am. B 2007, 24, 1689–1697. [Google Scholar] [CrossRef]
- Fisher, S.R.A. The Design of Experiments, 9th ed.; Hafner Publishing Company: New York, NY, USA, 1971. [Google Scholar]
- Box, G.E.P.; Behnken, D.W. Some new three level designs for the study of quantitative variables. J. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology, 2nd ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
Design Variable | Lower Bound | Upper Bound |
---|---|---|
Ring Thickness, µm (t) | 0.45 | 0.7 |
Doped Rod Refractive Index Difference (Δn) | 0.003 | 0.0036 |
Refractive Index Differences of Rings (Δnr) | 0.0055 | 0.0065 |
Case | Ring Thickness, µm (t) | Refractive Index Differences of Doped Rods (Δn) | Refractive Index Differences of Rings (Δnr) | Confinement Loss, LP11, dB/m | EMA, µm2 |
---|---|---|---|---|---|
1 | 0.450 | 0.0030 | 0.0060 | 4.42 | 624 |
2 | 0.700 | 0.0033 | 0.0055 | 6.64 | 588 |
3 | 0.450 | 0.0036 | 0.0060 | 5.49 | 481 |
4 | 0.450 | 0.0033 | 0.0065 | 2.88 | 603 |
5 | 0.575 | 0.0030 | 0.0055 | 5.74 | 631 |
6 | 0.575 | 0.0033 | 0.0060 | 3.78 | 614 |
7 | 0.700 | 0.0033 | 0.0065 | 1.01 | 807 |
8 | 0.575 | 0.0030 | 0.0065 | 0.911 | 821 |
9 | 0.450 | 0.0033 | 0.0055 | 9.09 | 491 |
10 | 0.575 | 0.0036 | 0.0065 | 2.46 | 601 |
11 | 0.700 | 0.0036 | 0.0060 | 2.00 | 678 |
12 | 0.575 | 0.0036 | 0.0055 | 8.24 | 471 |
13 | 0.700 | 0.0030 | 0.0060 | 1.50 | 830 |
Opt. | |
---|---|
Ring Thickness, µm (t) | 0.7 |
Refractive Index Differences of Doped Rods (Δn) | 0.003 |
Refractive Index Differences of Rings (Δnr) | 0.0055 |
EMA, µm2 | 706 |
Leakage loss of LP11, dB/m | 5.08 |
LP01 Loss, dB/m | LP11 Loss, dB/m | Mode Area, µm2 | |
---|---|---|---|
Ref. [19] | 0.49 | 16.8 | 231 |
Proposed | 8×10-3 | 5 | 706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pournoury, M.; Zamiri, A.; Ghasemi, M.; Kim, D. The Optimization of a Segmented Cladding Fiber via the Response Surface Methodology Approach for a Large Mode Area. Photonics 2023, 10, 935. https://doi.org/10.3390/photonics10080935
Pournoury M, Zamiri A, Ghasemi M, Kim D. The Optimization of a Segmented Cladding Fiber via the Response Surface Methodology Approach for a Large Mode Area. Photonics. 2023; 10(8):935. https://doi.org/10.3390/photonics10080935
Chicago/Turabian StylePournoury, Marzieh, Ali Zamiri, Marjan Ghasemi, and Donghyun Kim. 2023. "The Optimization of a Segmented Cladding Fiber via the Response Surface Methodology Approach for a Large Mode Area" Photonics 10, no. 8: 935. https://doi.org/10.3390/photonics10080935
APA StylePournoury, M., Zamiri, A., Ghasemi, M., & Kim, D. (2023). The Optimization of a Segmented Cladding Fiber via the Response Surface Methodology Approach for a Large Mode Area. Photonics, 10(8), 935. https://doi.org/10.3390/photonics10080935