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Abstract: This review deals with modern approaches to systematic research on molecular-kinetic
mechanisms of damage recognition and removal by pro- and eukaryotic enzymes of DNA base
excision repair. To this end, using DNA glycosylases from different structural families as an
example—as well as apurinic/apyrimidinic endonuclease, which differs structurally and catalytically
from DNA glycosylases—a comprehensive methodology is described in detail regarding studies on
the mechanisms of action of DNA repair enzymes in humans and in Escherichia coli. This methodology
is based on kinetic, thermodynamic, and mutational analyses of alterations in the conformation of
molecules of an enzyme and of DNA during their interaction in real time. The described techniques
can be used to analyze any protein–protein or protein–nucleic acid interactions.
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1. Introduction

The ability of proteins and nucleic acids to exist in different conformations is a unique
feature of biopolymers. Enzymatic processes involving these macromolecules, including
stages of substrate binding and catalytic reactions, are also accompanied by conformational
rearrangements. There is a direct relationship between the conformational dynamics of
interacting molecules and the functional activity and efficiency of enzymes.

Currently, the understanding of mechanisms underlying enzymatic reactions is mostly
based on static structural data from X-ray diffraction analysis and NMR spectroscopy,
steady-state kinetic data (which allow to compare the specificity of an enzyme for various
substrates and rates of their conversion), and structural analysis of the intermediates and
substrate conversion products.

Undoubtedly, structural-analysis techniques make a large contribution to the eluci-
dation of the nature of enzymatic catalysis, but they can provide information only about
a certain fixed state of an enzyme and substrate at a certain time point in an enzymatic
process, for example, within a catalytic complex. After the set of processes that must occur
for the formation of a catalytic complex is determined by structural analyses, the sequence
of these events remains completely unclear, as do the nature of the interactions at the initial
stages of substrate recognition, the nature of the stages that ensure enzyme specificity, and
the effective discrimination of the substrate from a “nonsubstrate”.

To answer these questions and understand the mechanisms of a specific enzyme–substrate
interaction, it is necessary to analyze conformational dynamics in the course of the interac-
tion. A substantial contribution to the understanding of the mechanisms behind a specific
enzyme–substrate interaction is made by studies on the pre-steady-state kinetics and
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thermodynamics of an enzymatic process with the registration of conformational transfor-
mations of the interacting molecules. Thus, the analysis of conformational dynamics, which
is an integral part of all approaches to the investigation of the mechanism of an enzyme’s
action, is an important and relevant field of modern research.

Enzymes of the base excision DNA repair system, namely DNA glycosylases and
apurinic/apyrimidinic (AP) endonucleases, have been used as examples of studying con-
formational dynamics in processes of specific recognition of a substrate. It is known that
cellular DNA, in the course of its functioning, is constantly exposed to various factors that
can cause damage. Oxidation, alkylation, deamination, hydrolysis of N-glycosidic bonds,
formation of breaks in the sugar-phosphate backbone, and cross-linking of DNA strands
are only a few of the processes leading to DNA lesions. To counteract the accumulation of
damage in DNA, every living organism has a specialized system for protecting DNA from
damage: the DNA repair system. There are five fundamental pathways responsible for the
repair of damaged DNA: nucleotide excision repair, base excision repair, correction of mis-
matched DNA bases, DNA repair during homologous recombination, and nonhomologous
recombination during joining DNA ends [1]. The base excision repair (BER) pathway is
one of the major pathways counteracting the genotoxic effects of nonbulky DNA lesions
frequently arising in the cellular genome [2–6]. The BER pathway is a multistep process
that can be reconstituted using a limited number of proteins, including a damage-specific
DNA glycosylase, AP endonuclease, DNA polymerase, and DNA ligase [7–9]. The results
of studies [10–15] suggest that DNA repair plays an important role in the development
of cancer. Today, it is still relevant to study the full functioning of DNA repair pathways
as well as the relationship between failures in these mechanisms and an increased risk of
developing certain diseases [16,17]. Taken together, enzymes of the repair system play an
important role in the maintenance of DNA integrity and perform a crucial function in the
physiology of any organism; therefore, they are a relevant subject of research.

2. General Principles of Investigation into Conformational Dynamics in Real Time

The analysis of the conformational mobility of the structure of an enzyme and a
substrate during their interaction is a difficult and nontrivial task that requires a wide
range of research methods and diverse approaches. It is interesting to reflect upon the
perceived popularity of fast kinetic techniques and their functional evolution with time.
In the 1920s, the so-called “flow method” was developed, which allows one to monitor
the course of reactions that take place in hundredths of a second. The essence of flow
methods is that the reaction is initiated by the fast mixing of the reagents under flow
conditions. It should be noted that initially, flow methods have significant limitations
in terms of detection type, model system availability, volumes of reactants and their
concentrations, lack of mathematical apparatus for computational analysis of the kinetic
traces, etc. However, over the years, these mixing methods, especially the stopped-flow
variant, were improved by minimization of reactant concentration owing to an increase
in the sensitivity of fluorescence detection. Progress in the technology of purification of
any target enzyme in the required quantities using laboratory cell-producers and designed
expression vectors, the possibility of creating chemically complex synthetic substrates and
ligands, the creation of new bright and microenvironmentally sensitive fluorescent dyes, as
well as many other achievements of modern molecular biology, led to the development of
fast kinetic techniques up to the highest level in the field of understanding the molecular
mechanisms of the enzyme’s action.

Fluorescence spectroscopy is widely used to study enzyme–substrate interactions [18,19].
Conformational transformations of proteins have been registered by means of changes
in their intrinsic fluorescence from tryptophan residues. Tryptophan is the most fluores-
cent amino acid, and approximately 90% of all protein fluorescence is typically due to its
presence. Another fluorescent amino acid, tyrosine, contributes to the emission spectrum
only when it is found in large excess over tryptophan in the protein under study. Tryp-
tophan fluorescence is very sensitive to the polarity of its environment and is quenched
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by various molecules, including DNA. The spectral maxima of a protein’s fluorescence
emission depend on the immediate environment of tryptophan residues in the polypeptide
molecule. For instance, a shift to a shorter-wavelength region is interpreted as a conse-
quence of the shielding of tryptophan residues from the aqueous phase. On the other hand,
denaturation causes a shift to a longer wavelength in the fluorescence emission spectrum
and approximately the same maximum in the emission spectra of all proteins. The position
of a maximum in a fluorescence spectrum changes if tryptophan residues participate in
an interaction, and this effect makes it possible to monitor the process of DNA–protein
binding [20–22]. Nonetheless, one must keep in mind that most proteins contain several
Trp residues with different environments, and therefore the spectral properties of these
residues may differ. Accordingly, the data obtained by registration of changes in fluo-
rescence intensity of Trp residues, in the general case, enable an investigator to draw a
conclusion about the overall conformational dynamics of an enzyme.

Conformational transitions in nucleic acids can be detected using fluorescent analogs
of heterocyclic bases (Figure 1a) [23–28]. The fluorescence of most of these analogs is
quenched by neighboring bases, and the efficiency of this quenching depends on the
nature of the neighboring bases and on the DNA conformation. 2-Aminopurine (aPu)
has found the largest number of applications in the research field of enzyme–substrate
interactions [20,21,29–33]. Compared with free aPu, the fluorescence intensity of aPu within
DNA is lower due to stacking with adjacent bases. Aside from aPu, cytosine analogs are also
widely used, for example, pyrrolocytosine (CPy) [34–37] and 1,3-diaza-2-oxophenoxazine
(tCO) [38–44]. CPy fluorescence is quenched within a double-stranded DNA structure as
compared with a single-stranded structure [45,46]. Additionally, a set of new fluorophores
have been employed and tested, for example, naphtho [1,2,3-cd]indol-6(2H)-one [47] and
3-hydroxychromone [35,48–50]. Thus, the use of substrates containing fluorescent analogs
of nitrogenous bases helps to register conformational changes in DNA substrates during
the assembly of an enzyme–substrate complex.
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Another way to study conformational transitions in DNA that we have used in our
research is the fluorescence resonance energy transfer (FRET) method, which makes it pos-
sible to record changes in the distance between fluorescence donor and acceptor residues
located in different parts of a biomolecule [51–56]. In this context, pairs of fluorescent dyes
can be located at (1) different ends (labelled by 5′ sides of complementary strands) or (2) on
one side (labelled by 5′ and 3′ sides of complementary strands) of a DNA substrate, thereby
enabling effective registration of processes that lead to a change in the distance between
the dyes. Furthermore, the former approach makes it possible to efficiently record DNA
bending during the formation of a complex with the enzyme, whereas the latter arrange-
ment of dyes is more sensitive to the catalytic stage and subsequent dissociation of the
enzyme–product complex, and this process extends the distance between the fluorescence
donor and acceptor.

An integral part of kinetic research with fluorescent detection has been the choice
of the most sensitive model system of DNA substrates, in which a fluorescent group can
be located on the 5′ or 3′ side of a lesion or in the complementary strand opposite the
damage. For each enzyme, a comparative analysis of such model substrates should be
performed, which will allow us to choose the type of system that has the highest sensitivity
to conformational changes in DNA.

In the present review, as an example of multifaceted approaches to the analysis of
biopolymer conformational dynamics by the stopped-flow technique with fluorescence
detection, the set of pro- and eukaryotic enzymes involved in DNA base excision repair
was described. To characterize various stages of an enzymatic process, the method of
a stepwise increase in ligand complexity has been employed [57]. A DNA substrate is
defined as a DNA duplex that, after binding to the active site of an enzyme, undergoes
chemical transformations. A DNA ligand is a DNA duplex that can bind within the ac-
tive site of an enzyme but does not undergo chemical transformation. The structures
of all modified nucleotides are given in Figure 1b. A duplex containing a damaged nu-
cleotide in one of the strands has been used as a specific substrate, thus ensuring the
formation of all possible contacts and specific bonds between the enzyme and damaged
DNA. In the case of DNA glycosylases, oligonucleotides carrying a damaged base, such as
8-oxoguanine (oxoG), 5,6-dihydrouracil (DHU), or uracil (U), have been chosen as specific
substrates. For AP endonucleases, such substrates are duplexes carrying an AP-site or its
2-oxymethyl-3-oxy-tetrahydrofuran analog (an F-site). For DNA glycosylases, duplexes
containing an AP-site, which is an intermediate product of the reaction, have served as
a simplified model of interaction with a substrate where there are no stages of specific
recognition of the damaged base. The use of a nonreactive analog of an AP-site containing
a 2-oxymethyl-3-oxy-tetrahydrofuran residue (an F-site) instead of 2′-deoxyribose allows
us to characterize only the stages of binding of a DNA glycosylase to damaged DNA.
The duplex carrying an F-site has all the specific features of the AP-site but is resistant to
incision by DNA glycosylases because it does not contain a hydroxyl group at the 1′ posi-
tion. Duplexes of oligonucleotides containing no modified nucleosides have been used as
nonspecific substrates.

Comparison of a model system involving a nonspecific DNA duplex (the simplest non-
specific interactions) with a model system involving a duplex containing an F-site (specific
binding, an analog of a DNA glycosylase product, or a substrate for AP endonucleases) or
an AP-site (specific binding, a β-elimination reaction catalyzed by some DNA glycosylases,
or phosphodiester bond hydrolysis catalyzed by AP endonucleases), and then with a model
system involving a specific DNA substrate containing a damaged base (the full enzymatic
reaction cycle catalyzed by DNA glycosylases), allowed to reveal additional interactions
between the reacting molecules and, as a consequence, additional conformational changes
in both the enzyme molecule and the substrate molecule. This approach makes it possible
to correlate conformational alterations in biopolymers with interactions of certain residues
during the assembly of a specific enzyme–substrate complex.
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Because the recognition and conversion of substrates in enzymatic reactions proceed in
millisecond and second ranges, the stopped-flow method has been applied to register these
processes, which allows mixing an enzyme and substrate for ~1 ms, followed by continuous
recording of the fluorescence intensity of various fluorescent markers, whose characteristics
are shown below. The registered kinetic curves of changes in fluorescence intensity have
reflected conformational transformations during an enzyme–substrate interaction.

F = f0[E] + f1[ES1] + f2[ES2] + · · ·+ fn[ESn] + Fnoise (1)

d[ES1]

dt
= k1[S][E] + k−2[ES2]− (k−1 + k2)[ES1] (2)

d[ESi]

dt
= ki[ESi−1] + k−(i+1)

[
ES(i+1)

]
− (k−i + ki+1)[ESi] (3)

d[ESn]

dt
= kn[ESn−1]− (k−n + kn+1)[ESn] (4)

d[P]
dt

= kn+1[ESn] (5)

E0 = [E] +
n

∑
i=1

[ESi] (6)

S0 = [S] + [P] +
n

∑
i=1

[ESi] (7)

An analysis of the kinetic data has been conducted according to Equation (1). The total
fluorescence intensity is equal to the sum of the mathematical products of the coefficients
of specific fluorescence f and the concentrations of the respective fluorescent species and
background fluorescence. Concentrations of all enzyme forms corresponding to the ana-
lyzed kinetic scheme have been found via the solution of a system of differential equations
and material balance equations (Equations (2)–(7)). A numerical solution of this system of
equations using the software enables a researcher to obtain the dependence of concentra-
tions of all reaction intermediates on time, rate constants, and initial concentrations of the
interacting substances. During the numerical integration, the values of the rate constants
and coefficients of specific fluorescence of all forms are optimized so that the theoretical
curve corresponding to this mechanism describes the experimental curve. Using a stepwise
increase in complexity of the interaction model, it is possible to discriminate between
various schemes of enzyme–substrate interaction and to determine the minimal number of
stages in the scheme that will satisfactorily describe the experimental data, judging by the
match between the theoretical curve and experimental curve; this match is estimated as
a deviation of the difference of these curves (residuals) from a zero line. Figure 2a shows
an example of the analysis of a kinetic curve, including the dependence of concentrations
of all fluorescently registered reaction intermediates on time. In this case, the stage of
accumulation of reaction products was additionally confirmed by direct examination of
the accumulation of reaction products by gel electrophoresis. The correspondence of the
proposed kinetic scheme to the experimental data is presented in Figure 2b.
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3. Conformational Changes in DNA Glycosylases of the HhH-GPD Structural Family
and in DNA during Their Interaction
3.1. Human 8-Oxoguanine DNA Glycosylase hOGG1

Human 8-oxoguanine DNA glycosylase hOGG1 has very high specificity for 8-oxo-
guanine (oxoG), although it differs from guanine by only two atoms [58–60]. In the case of
the oxidized base, the enzyme hydrolyzes the N-glycosidic bond and catalyzes the reaction
of β-elimination of the phosphate group (Figure 3) [61–65].
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Figure 3. Chemical steps of hOGG1’s catalysis (step 1: hydrolysis of the N-glycosidic bond and
removal of the damaged base resulting in an AP-site; step 2: β-elimination of the 3′-phosphate group).

An analysis of the crystal structures of the enzyme and of its complex with DNA has
revealed that both the protein and DNA change their conformation in the catalytic complex.
DNA is kinked at the site of the lesion, and the damaged nucleotide is flipped out of the
duplex and is located in the active site of the enzyme [66,67]. At the same time, amino acid
residues Arg154, Arg204, Asn149, and Tyr203 are intercalated into the cavity that arose in
DNA after the base eversion (Figure 4).
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Figure 4. Structure of the complex of enzyme hOGG1 with a DNA duplex containing oxoG (Protein
Data Bank [PDB] ID: 1EBM).

To elucidate the function of some amino acid residues of the enzyme in the processes
of DNA binding, lesion recognition, and catalytic reaction, mutants of the enzyme have
been used [60,64,68–70], which contain substitutions of amino acid residues Tyr203, Arg154,
or Arg204 (intercalation into the duplex), Phe45, Phe319, or His270 (boundaries of the
pocket in which the everted base is located), and Lys249 or Asp268 (catalytic amino acid
residues) (Figure 5). These residues have been replaced by site-directed mutagenesis, and
thus mutants of the enzyme have been created. Some of the mutants contain a substitution
with a tryptophan residue, which has served as a fluorescent marker in a certain region of
the enzyme–substrate complex and helped to register the processes involving the affected
amino acid residue.
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Figure 5. Specific contacts ensuring recognition of a damaged base in the active site of hOGG1.
(a) The complex of hOGG1 with an oxoG-containing DNA duplex, and the oxoG base is situated
in the active site; the image shows the location of amino acid residues Gly42, Phe45, His270, and
Phe319 forming the active-site pocket and catalytic residues Asp268 and Gln249 (instead of Lys249)
(PDB ID: 1YQR). (b) The complex of hOGG1 with an intact DNA duplex, and the G base is located
in the exo-site; the image shows the location of amino acid residues Phe45, His270, and Phe319
and catalytic residues Asp268 and Lys249 (PDB ID: 1YQK). (c) The complex of hOGG1 with a DNA
duplex containing oxoG; the image shows amino acid residues Asn149, Arg154, Tyr203, and Arg204
(PDB ID: 1EBM).
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Relative catalytic activity of the mutant enzymes during the interaction with an oxoG-
substrate has been determined by direct examination of the reaction products’ accumulation
by gel electrophoresis (Figure 6) [68–70]. Substitution of catalytic amino acid residues
Lys249 and Asp268 leads to a complete loss of N-glycosylase and AP-lyase activities.
Furthermore, substitutions of amino acid residues getting intercalated into the DNA duplex
(Tyr203Ala, Arg154Ala, and Arg204Ala) and of His270Trp cause a significant decrease in
catalytic activity.
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or one of its mutants with oxoG-substrate.

Changes in fluorescence intensity of Trp residues during the binding of wild-type or
mutant hOGG1 to an intact DNA duplex, even after the introduction of new tryptophan
residues, have been too weak for their correct quantitative analysis (Figure 7a) [68]. This
finding indicates that the enzyme molecule does not undergo appreciable conformational
rearrangements during the formation of the initial nonspecific complex with undamaged
DNA. By contrast, a significant increase in fluorescence intensity of aPu, as registered
with an undamaged DNA duplex containing aPu residue, unequivocally points to disrup-
tion of Watson–Crick bonds and/or of stacking during the emergence of the nonspecific
enzyme–DNA complex (Figure 7b) [68].

In addition, according to [60,71,72], at this point, the G base may undergo partial
eversion from the double helix and insertion into the exo-site of the enzyme. Differences
in the amplitude and timing of the signal change reflect a difference between the mutant
versions of the enzyme in the ability to bind intact DNA and different degrees of duplex
loosening by these mutants. Typically, substitutions lead to the deceleration of the complex
formation and decrease its stability.
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DNA duplex containing aPu residue. Concentrations of hOGG1 and DNA ligands were 2.0 and
1.0 µM, respectively.

In the course of interaction with a substrate containing an AP site, the fluorescence
intensity of Trp in mutants of hOGG1 slowly decreases during 10 s (Figure 8a) [64,68].
Because hOGG1 catalyzes the β-elimination reaction (AP-lyase activity) with very low
efficiency, this decrease in Trp fluorescence likely reflects only the DNA-binding step. The
binding of an AP-substrate containing an aPu residue and the intercalation of amino acid
residues of hOGG1 into the DNA duplex give well-pronounced aPu fluorescence changes
characterizing DNA conformational transitions (Figure 8b) [60,68]. A slight increase in
fluorescence intensity of aPu (before time point 100 ms) for wild-type hOGG1 and all
mutants is likely related to enhancement of the hydrophilicity of the medium near the
aPu residue. This increase is most likely due to partial melting of the duplex and/or
interactions with hydrophilic residues Arg154, Arg204, and Asn149. Additionally, these
data suggest that substitution of Tyr203Trp leads to a slowdown of the decline phase,
whereas substitution of Tyr203Ala eliminates this phase altogether. That is, the process that
induces the diminution of fluorescence intensity is related to the intercalation of Tyr203
into DNA.

Equation (8) has been utilized to calculate the observed rate constants characterizing
the change in fluorescence intensity during the interaction with intact DNA duplex and
with AP-substrate:

Fc = Fb +
N

∑
i=0

Ai × exp(−ki × t) (8)

where i is a stage number, Ai is the amplitude of the signal change, and ki is the observed
rate constant.

Interaction between wild-type hOGG1 and a DNA duplex containing oxoG results
in a decline of the signal of Trp fluorescence within 10 s (Figure 9a) [68]. Earlier, it was
demonstrated [64] that this phase includes three equilibrium stages related to the formation
of the enzyme–DNA catalytic complex (Scheme 1). The subsequent rise in intensity of Trp
fluorescence can be explained by the chemical steps of the enzymatic process and by the
dissociation of the enzyme–product complex. The interaction between wild-type hOGG1
and an oxoG-substrate containing aPu residue yields an increase in aPu fluorescence
intensity during the first 20 ms (Figure 9b) [68]. According to [60], within this time interval,
the oxoG base is flipped out of the duplex into the active site of the enzyme, thereby leaving
free space in the duplex. At the next step, between time points 20 ms and 100 s, a two-phase
decrease in the fluorescence of aPu occurs, characterized by the sequential intercalation of
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residues Tyr203, Asn149, Arg154, and Arg204 into this DNA-free space. Catalytic steps and
dissociation of the enzyme–product complex cause an increase in the fluorescence intensity
of aPu at time points after 100 s.
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Scheme 1. Kinetic mechanism of interaction between hOGG1 and oxoG-containing DNA substrate.

E is hOGG1; OG is oxoG-substrate; (E•OG)n are various enzyme–substrate complexes
arising during the recognition of 8-oxoguanine; E•AP is a complex of E with an AP-site
resulting from an N-glycosylase reaction; E•P is a complex of E with reaction product P
generated by an AP-lyase reaction; ki and k−i are rate constants of the forward and reverse
reactions of the individual steps.
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Taken together, these findings show that the selected amino acid residues indeed take
part in both the nonspecific binding and subsequent damage recognition because they all
affect conformational alterations in both the enzyme and the duplex. For all mutants of the
enzyme, concentration series of kinetic curves have been obtained characterizing changes
in the fluorescence of Trp and aPu, and kinetic parameters of the individual stages have
been calculated (Table 1).

Thermodynamic analysis of the interaction of hOGG1 with damaged and undamaged
DNA has been performed on the basis of kinetic data generated at different temperatures.
As the temperature decreases, the catalytic activity of the enzyme decreases considerably
(Figure 10a) [72]. The kinetic curves (Figure 10b) describing the formation of a nonspecific
complex at low temperatures contain two distinct phases of fluorescence intensity growth,
implying a two-stage interaction mechanism. For each temperature, a concentration series
has been obtained, allowing the calculation of individual rate constants of forward and
reverse reactions in equilibrium stages (Table 2).
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Table 1. Rate and equilibrium constants characterizing the interaction of wild-type hOGG1 or its mutants with a DNA substrate containing oxoG, as determined by
the analysis of changes in fluorescence intensity of Trp and aPu.

Trp Detection aPu Detection

Constants WT K249Q Y203W F319W F45W WT K249Q Y203W F319W F45W

k1 × 10−8,
M−1s−1 2.6 ± 0.1 1.7 ± 0.4 5.4 ± 1.0 2.2 ± 0.1 6.9 ± 1.8 1.2 ± 0.1 0.3 ± 0.1 0.66 ± 0.04 0.6 ± 0.2 0.5 ± 0.1

k−1, s−1 130 ± 1 290 ± 60 520 ± 110 240 ± 10 500 ± 45 120 ± 10 62 ± 12 130 ± 7 260 ± 40 103 ± 9

K1, M−1 2.0 × 106 0.6 × 106 1.0 × 106 0.9 × 106 1.4 × 106 1.0 × 106 0.5 × 106 0.5 × 106 0.2 × 106 0.5 × 106

k2, s−1 13.3 ± 0.2 5.0 ± 0.5 7.4 ± 1.0 31.9 ± 1.2 12.1 ± 2.0 1.4 ± 0.1 1.4 ± 0.1 0.3 ± 0.1 4.1 ± 1.5 1.4 ± 0.1

k−2, s−1 1.16 ± 0.02 2.8 ± 0.2 1.2 ± 0.2 0.5 ± 0.1 2.3 ± 0.6 1.5 ± 0.1 1.1 ± 0.2 1.3 ± 0.3 2.5 ± 0.8 1.4 ± 0.2

K2 11.5 1.8 6.2 63.8 5.3 0.9 1.3 0.2 1.6 1.0

k3, s−1 0.012 ± 0.001 0.26 ± 0.01 0.010 ± 0.001 0.08 ± 0.01 0.009 ± 0.001 0.10 ± 0.01 5.4 ± 1.1 0.28 ± 0.04 0.9 ± 0.2 0.48 ± 0.09

k−3, s−1 0.07 ± 0.01 0.52 ± 0.01 0.12 ± 0.01 0.8 ± 0.1 0.4 ± 0.1 0.013 ± 0.002 0.8 ± 0.1 0.022 ± 0.008 0.5 ± 0.2 0.38 ± 0.04

K3 0.17 0.5 0.08 0.1 0.02 7.7 6.7 12.7 1.8 1.3

k4, s−1 0.06 ± 0.02 - 0.03 ± 0.01 0.018 ± 0.002 0.05 ± 0.01 0.029 ± 0.001 - 0.015 ± 0.004 0.015 ± 0.004 0.034 ± 0.002

k5 × 103, s−1 6.4 ± 0.7 - 4.2 ± 0.9 1.8 ± 0.1 0.4 ± 0.1 3.6 ± 0.2 - 3.0 ± 0.7 1.9 ± 0.1 4.4 ± 0.1

KEP, µM 0.88 - 0.3 ± 0.1 1.1 ± 0.1 1.3 ± 0.4 7.0 ± 1.1 - 1.0 ± 0.2 - -

Kbind, M−1 2.9 × 107 2.2 × 106 8.0 × 106 6.5 × 107 8.8 × 106 9.2 × 106 5.3 × 106 2.1 × 106 1.3 × 106 1.6 × 106

K1 × K2 × K3 3.9 × 106 0.54 × 106 0.50 × 106 6.1 × 106 0.15 × 106 6.9 × 106 4.3 × 106 1.3 × 106 0.58 × 106 0.65 × 106

Ki = ki/k−i, Kbind = K1 + K1 × K2 + K1 × K2 × K3
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Table 2. Rate constants describing the interaction of wild-type hOGG1 with undamaged DNA or
oxoG-substrate at different temperatures.

DNA Constants
Temperature

10 ◦C 15 ◦C 20 ◦C 25 ◦C 30 ◦C

oxoG-substrate

k1, M−1s−1 (1.3 ± 0.7) × 107 (2.2 ± 1.0) × 107 (1.7 ± 0.8) × 107 (1.9 ± 1.0) × 107 (2.0 ± 1.0) × 107

k−1, s−1 230 ± 80 390 ± 50 360 ± 20 410 ± 70 520 ± 120

k2, s−1 8.3 ± 3.8 15.6 ± 4.2 26.6 ± 6.0 53.5 ± 20.3 72.4 ± 31.4

k−2, s−1 6.1 ± 0.2 11.8 ± 0.2 19.6 ± 1.7 37.9 ± 11.1 40.5 ± 12.5

k3, s−1 0.087 ± 0.017 0.12 ± 0.03 0.19 ± 0.07 0.4 ± 0.1 0.3 ± 0.1

k−3, s−1 0.011 ± 0.001 0.018 ± 0.001 0.007 ± 0.002 0.02 ± 0.003 0.002 ± 0.001

k4, s−1 0.005 ± 0.001 0.007 ± 0.001 0.014 ± 0.002 0.026 ± 0.003 0.041 ± 0.007

k5, s−1 0.0006 ± 0.0001 0.0012 ± 0.0001 0.001 ± 0.0001 0.001 ± 0.001 0.0037 ± 0.007

undamaged DNA

k1, M−1s−1 (5.6 ± 1.2) × 107 (6.6 ± 1.1) × 107 (5.9 ± 1.3) × 107 (6.3 ± 0.3) × 107 (7.4 ± 1.4) × 107

k−1, s−1 97 ± 23 128 ± 21 119 ± 19 140 ± 14 170 ± 17

k2, s−1 12.6 ± 5.5 17.5 ± 2.2 20.7 ± 6.3 14.0 ± 1.5 18.2 ± 8.7

k−2, s−1 12.4 ± 0.5 25.2 ± 1.3 38.9 ± 1.9 49.8 ± 2.3 72.1 ± 9.9

Kinetic curves reflecting the interaction of hOGG1 with substrate with oxoG-substrate
have a more complicated profile: rise-fall-rise (Figure 10c) [72]. The concentration series of
kinetic curves obtained by recording the fluorescence intensity of aPu for each temperature
is described in Scheme 1, enabling us to calculate the rate constants (Table 2).

By means of the values of the rate constants of forward and reverse reactions, for each
i-th equilibrium stage, equilibrium constants (Ki) have been computed. The dependence
of ln(Ki) on 1/T has a linear shape (Figure 11a), and with the help of the Van’t Hoff
equation (Equation (9)), we can calculate the standard enthalpy ∆Hi

◦ and entropy ∆Si
◦

of all equilibrium stages (Table 3). From the temperature dependence of the irreversible
stages’ rate constants that characterize the hydrolysis of the N-glycosidic bond (k4) and the
β-elimination reaction (k5) (Figure 11b), standard activation enthalpy (∆H◦ ,‡) and standard
activation entropy (∆S◦ ,‡) are calculated. This dependence is described by the Eyring
equation (Equation (10)) for the transition state theory.

ln(Ki) = −∆Gi
◦/RT = −∆Hi

◦/RT + ∆Si
◦/R, (9)

where ∆Gi
◦ is standard Gibbs free energy, ∆Hi

◦ is standard enthalpy, and ∆Si
◦ is

standard entropy.
ln(ki/T) = ln(kB/h) + ∆S◦ ,‡/R − ∆H◦ ,‡/RT, (10)

where kB and h are respectively Boltzmann and Planck constants, R is the gas constant, T is
the absolute temperature in Kelvin degrees, and ki is the rate constant of the chemical step.
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Table 3. Thermodynamic parameters of the interaction of wild-type hOGG1 with undamaged DNA
or oxoG-substrate.

DNA
Stage Number

Parameter ∆G◦i298,
kcal/mol

∆H◦i,
kcal/mol

∆S◦i,
cal/(K·mol)

oxoG-
substrate

1 −6.4 −2.8 ± 0.7 11.2 ± 2.4

2 −0.2 2.1 ± 0.9 7.7 ± 3.3

3 −1.8 23.2 ± 7.8 85.4 ± 26.6

i=3
∑

i=1

−8.4 22.5 ± 9.4 104.3 ± 32.3

4 19.6 18.6 ± 1.1 −3.5 ± 3.9

5 21.0 13.0 ± 1.9 −27.0 ± 6.7

undamaged
DNA

1 −7.7 −2.4 ± 0.2 18.0 ± 0.7

2 0.8 −12.7 ± 1.2 −44.7 ± 4.1

i=2
∑

i=1

−6.9 −15.1 ± 1.4 −26.7 ± 4.8

The mechanism of incision of damaged DNA includes the sequential formation of
covalent intermediate complexes of the enzyme with DNA in the form of a Schiff base
(Figure 12). To determine characteristic times of the emergence and disappearance of these
intermediates, electrospray ionization mass spectrometric analysis of the reaction mixture
is performed at certain time intervals (Figure 13) [53], while NaBH4 is added to the reaction
mixture to reduce the Schiff base at 0–1000 s after the start of the reaction.
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Figure 12. The main reaction steps catalyzed by hOGG1. Step 1: removal of the damaged base
(N-glycosidic bond hydrolysis); step 2: the reaction of β-elimination of the 3′-phosphate group; step
3: regeneration of the free enzyme. Stable covalent adducts are depicted that come into being after
reduction of the Schiff base by NaBH4.
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aged DNA allows us to conclude that the first stage of the interaction is the formation of 
a nonspecific complex, accompanied by the “melting” of DNA duplex strands, as follows 
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Figure 13. MS/ESI spectra of intermediates arising during the interaction of enzyme hOGG1 and
oxoG-substrate at t = 0, 30, 600, and 1000 s ((a–d), respectively).

The mass spectrum of the free enzyme hOGG1 contains a set of positively charged ion
peaks that match the molecular weight of the unmodified protein (42,340 Da)
(Figure 13a). During the first 30 s, the N-glycosylase reaction proceeds and adduct I
is produced (Figure 13b). Adduct II, corresponding to the covalent complex with DNA
after the β-elimination of the 3′-phosphate group, has been undetectable. The mass spectra
show slow regeneration of the free enzyme from the complex corresponding to adduct I.
This evidence confirms that the rate-limiting step is the β-elimination reaction.

A combined analysis of the mass spectrometric data, thermodynamic parameters, and
mutational analysis results obtained from the interaction with damaged and undamaged
DNA allows us to conclude that the first stage of the interaction is the formation of a
nonspecific complex, accompanied by the “melting” of DNA duplex strands, as follows
from the increasing intensity of aPu fluorescence. Moreover, X-ray diffraction analysis
indicates partial eversion of an intact base from the helix in such a nonspecific complex.

This stage has values of thermodynamic parameters that are similar for damaged and
undamaged DNA and is characterized by energetically favorable changes in enthalpy and
entropy (Table 3). At this stage, DNA is scanned for damage by hOGG1 via the insertion of
a so-called wedge into the DNA double helix, which is Tyr203. Furthermore, it is reported
that each substitution of Arg154Ala and Arg204Ala significantly lowers the activity of
the enzyme owing to the loss of the ability to locally disrupt the structure of the duplex,
suggesting that these residues directly participate in this stage of the interaction. Kinetic
evidence indicates that catalytic amino acid residue Lys249 also participates in the duplex
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loosening and eversion of oxoG by means of electrostatic interactions with phosphate
groups of the nucleotide, and contacts with His270 are also important at this stage.

The second stage of damage recognition is energetically neutral, and the loss of
enthalpy is compensated by an increase in entropy. At this stage, a bond forms between
His270 and the phosphate group of the damaged nucleotide, thereby facilitating a shift
of oxoG to the active site of the enzyme, where it engages in a stacking interaction with
Phe319. In addition, intercalation of Arg154, Arg204, and Asn149 into the DNA helix takes
place at this stage. In the case of an intact duplex, this step is absent; therefore, this step is
important for discrimination between damaged and undamaged bases.

The last, third stage of recognition gives rise to a catalytically competent conformation
of hOGG1. At this stage, the oxoG base is completely within the active site, where the local
rearrangements happen that are necessary to implement the hydrolysis of the N-glycosidic
bond. In this context, the formation of the catalytic complex features high endothermicity
due to the enthalpy change, which is compensated by a substantial increase in entropy. The
growth of entropy during an interaction of DNA-binding proteins with DNA is usually
due to two factors: desolvation of polar groups in the region of the protein–DNA contact
and displacement of highly ordered “crystalline” water molecules from DNA grooves.
Accordingly, the formation of a catalytically competent state requires dehydration of the
protein–DNA interface and the assembly of a more compact enzyme–substrate complex.
After that, catalytic stages of the enzymatic process occur, and the dissociation of the
enzyme–product complex completes the enzymatic cycle.

3.2. Other Members of the HhH-GPD Structural Family: MutY, MBD4, and Nth

Enzymes in the HhH-GPD structural family have considerable differences both in size
and in the general layout of the protein globule [73]. Such dissimilarities are attributable,
among other things, to the specific functions of these enzymes. For example, the adenine-
DNA glycosylase MutY from Escherichia coli possesses unique specificity for the oxoG/A
pair, forms an elaborate network of contacts with both DNA strands, and at the same
time hydrolyzes the N-glycosidic linkage to the intact adenine base located opposite the
oxoG [74–76]. Moreover, the removal of adenine from the G/A pair is ~10 times less
efficient, which confirms the high efficiency of discrimination at a specific site in DNA.
Kinetics of the interaction with model DNA substrates and with ligands have been recorded
by means of changes in fluorescence intensity of Trp residues and of a fluorescein residue in
DNA [77,78]. It has been found that during the formation of the initial complex, nonspecific
contacts emerge between the DNA-binding site of the enzyme and the DNA duplex. At the
second stage of the interaction of MutY with the DNA substrate, discrimination of bases G
and oxoG located opposite adenine takes place, as does recognition of adenine itself and
the formation of a catalytic complex.

Another representative of the HhH-GPD structural family, human methyl-CpG-binding
domain 4 (MBD4), contains an N-glycosylase catalytic domain that interacts mostly with
the damaged DNA strand and removes uracil [79,80]. To analyze conformational transfor-
mations during the enzymatic process, model substrates containing various fluorophores,
including new ones, have been screened [81]. It has been shown that fluorophores are not
always sensitive enough to the duplex structure alterations induced by the enzyme. As the
most sensitive fluorescent markers of the enzymatic process, we have chosen Trp and aPu
residues and the FRET pair FAM/BHQ1. When fluorescently labeled substrates have been
tested, it has been found that the bending of the DNA duplex and its local melting occur in
the initial complex. At the next time point, the damaged nucleotide is everted out of the
duplex, and amino acid residues Arg468 and Leu508 get inserted into the formed cavity.
A catalytic complex forms, in which the hydrolysis of the linkage to uracil takes place, as
does the subsequent dissociation of the enzyme’s complex with the product.

Another member of this family, endonuclease III Nth from Escherichia coli, is responsi-
ble for the removal of oxidized and reduced pyrimidine bases, such as 5,6-dihydrouracil
(DHU) [82]. Although Nth contains two Trp residues, it has not been possible to register



Photonics 2023, 10, 1033 17 of 36

conformational changes in the enzyme during its interaction with DNA [44,83]. Fluo-
rophores and their various locations have been screened for the purpose of registering
DNA conformational transformations [44,83]. The most fluorescently sensitive model
systems containing DHU, AP site, or F-site as damaged nucleotides and 3′-placed aPu,
X-aPu/G, and X/tCO (X = DHU, AP site, F-site, or G) have been chosen and exploited,
which contain various modified nucleotides to which Nth has different specificity. A cu-
mulative analysis of the obtained data [44,83] has revealed that DNA undergoes multiple
conformational transformations during the formation of the enzyme–substrate complex.
A decline in fluorescence intensity of the new fluorophore tCO and a rise for aPu in the
initial part of the kinetic curves signify destabilization of the double helix, which can occur
due to local melting, bending of the duplex, or the insertion of residue Leu81 and an
attempt to flip the damaged nucleotide out of the duplex. Next, the transition of aPu into a
hydrophobic environment, accompanied by a decrease in fluorescence intensity, indicates
the intercalation of an active-site amino acid residue into the double helix, which occurs
after complete eversion of the damaged nucleotide. According to X-ray diffraction data,
this residue is Gln41 [84,85]. After that, an adjustment of the active site takes place, as do
the formation of a catalytically competent state, catalytic stages, and dissociation of the
enzyme–product complex.

3.3. The General Model of Lesion Recognition by Enzymes of Structural Family HhH-GPD

For all enzymes of this family, with the tested types of DNA substrates and DNA
ligands, concentration series have been obtained, kinetic schemes of interaction have been
established, and rate constants of these schemes have been calculated [86]. This analysis
of the kinetic data shows that, just as in hOGG1, in the enzymes MutY, MBD4, and Nth,
the formation of the catalytically competent complex proceeds through a sequence of
stages accompanied by conformational alterations of the protein and DNA molecules. The
interaction can be broken down into two key steps: (i) the initial nonspecific binding, which
also occurs upon interaction with intact DNA; and (ii) the emergence of specific contacts
and damage recognition (Table 4).

Table 4. Key steps in the recognition of damage by enzymes of structural family HhH-GPD.

hOGG1 Nth (B. st.) MBD4 MutY (E. coli)

Initial
binding

Destabilization
of double
helix

Arg154,
Arg204 Arg78, Arg84 Arg468 Arg50, Arg91

Intercalation
of “sensor” Tyr203 Leu82 Leu508 Tyr88

Specific
recogni-
tion

Complete
eversion of
damaged
base

+ + + +

Intercalation
of other
amino acid
residues

Asn149 Gln42 - Gln48

At the step of nonspecific binding, hydrogen bonds form between a nucleotide (located
in the complementary strand opposite the base to be removed) and arginine residues
(Arg154 and Arg204 in hOGG1, Arg78 and Arg84 in Nth, and possibly Arg468 in MBD4);
this event induces destabilization of the Watson–Crick hydrogen bonds in the damaged
segment of the DNA duplex. It should be noted that arginine residues in different enzymes
are positioned differently; for instance, when comparing the structures of hOGG1 and Nth,
one can see (Figure 14a) that these are structurally nonhomologous residues; nevertheless,
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these residues can perform the very same function of destabilizing the damaged segment
of the double helix.
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of Phe319, followed by the final formation of contacts between the Cyt base and residues 
Arg154, Arg204, and Asn149, which are intercalated into the duplex. In Nth, these resi-
dues are Arg78, Arg84, and Gln41, whereas in MutY, they are Gln48 and possibly Arg50 
and Arg91. Known structures of the MBD4 catalytic domain cannot help identify the 
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Figure 14. A comparison of spatial structure between DNA-binding sites of hOGG1 (pink, PDB ID
1FN7) and Nth from Geobacillus stearothermophilus (greenish, PDB ID 1P59) complexed with F-site-
containing DNA. (a) Arginine residues interacting with phosphate groups of the complementary
DNA strand. Arg154 and Arg204 of hOGG1 are highlighted in red, whereas Arg78 and Arg84 of Nth
are highlighted in green. (b) Spatial correspondence of residues Tyr203 and Gln149 (red) in hOGG1
to residues Leu82 and Gln42 (green) in Nth.

Furthermore, at this stage, the sensor residue (Tyr203 in hOGG1, Leu81 in Nth, Tyr88
in MutY, and possibly Leu508 in MBD4) is wedged into the DNA duplex destabilized by the
arginine residues. If we compare hOGG1 and Nth as an example, one can see (Figure 14b)
that these are homologous residues. This intercalation of the amino acid residue induces
partial eversion of the damaged base from the DNA strand. This partial eversion into the
so-called exo site of the enzyme has been documented crystallographically for hOGG1
(PDB ID 1YQK). In hOGG1, the partially inverted base is reported to come into contact
with His270 and Lys249 (Lys120 in Nth).

At the stage of specific binding in the case of hOGG1, oxoG is completely everted
into the active-site pocket of the enzyme with the initiation of stacking with the aromatic
ring of Phe319, followed by the final formation of contacts between the Cyt base and
residues Arg154, Arg204, and Asn149, which are intercalated into the duplex. In Nth,
these residues are Arg78, Arg84, and Gln41, whereas in MutY, they are Gln48 and possibly
Arg50 and Arg91. Known structures of the MBD4 catalytic domain cannot help identify
the amino acid residue that performs the function of Asn or Gln in other members of
the HhH-GPD family. The complete intercalation of these residues into the DNA double
helix is accompanied by final conformational fine-tuning of the enzyme–substrate complex,
resulting in a catalytically competent state.

4. Conformational Alterations in DNA Glycosylases of Structural Family H2tH and in
DNA during Their Interaction
4.1. Endonuclease VIII Nei

Endonuclease VIII Nei is one of the main DNA glycosylases in prokaryotic cells and
removes a wide range of oxidized or reduced pyrimidine bases [87,88] (Figure 15). Analysis
of X-ray diffraction data [89,90] indicates that in the enzyme–substrate complex, the N-
and C-terminal domains of the enzyme undergo closure, the sugar-phosphate backbone
of DNA gets kinked, the damaged base is flipped out of the duplex and is located in the
active site of the enzyme, and the triad of residues Gln69, Leu70, and Tyr71 gets inserted
into the nascent cavity (Figure 16a).
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E is Nei; DHU is a DHU-containing DNA substrate; (E•DHU)n are various enzyme–
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Figure 15. Chemical steps of Nei’s catalysis. Step 1: hydrolysis of the N-glycosidic bond and removal
of the damaged base, resulting in an AP-site; stage 2: β-elimination of the 3′-phosphate group; step 3:
β-elimination of the 5′-phosphate group.
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Figure 16. Schematic representation of spatial structure of the complex of enzyme Nei with DNA.
(a) Structure of the covalent complex of Nei with a DNA duplex containing an AP-site (PDB ID 1K3W).
(b) Spatial distribution of Trp residues and conformational changes associated with formation of
enzyme-DNA complex. (c) Functionally important amino acid residues taking part in the formation
of specific contacts between the enzyme and DNA.

Enzyme Nei contains four Trp residues (Figure 16b), which have been employed [91]
to register conformational changes in the enzyme during DNA binding. Scheme 2 has
been proposed, according to which the initial DNA binding happens at the first stage,
whereas the DNA bending, the eversion of the lesion, the insertion of the triad of amino
acid residues, and the assembly of the catalytically competent state should occur during
the second and third stages. To determine the nature of the processes taking place at these
stages, conformational alterations of DNA have been recorded [35,92,93].
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Scheme 2. Kinetic mechanism of interaction between Nei and DHU-containing DNA substrate.

Examination of the structure of the active site suggests (Figure 16c) that the base
located on the 5′ side of the damaged nucleotide is close to residue Leu70 and that the base
situated opposite the damaged nucleotide engages in contacts with Gln69 and Tyr71 [35].
Therefore, duplexes containing a fluorescent dye on the 5′ side (X-DHU/G12, X = aPu, CPy,
or 3HC) or opposite (DHU/N12, N = aPu, CPy, 3HC, or tCO) to damaged base DHU have
been used as promising substrates.
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E is Nei; DHU is a DHU-containing DNA substrate; (E•DHU)n are various enzyme–
substrate complexes arising during the recognition of 5,6-dihydrouracil; E•P is the complex
of E with reaction product P; ki and k−i are rate constants of the forward and reverse
reactions of the individual steps.

This screening of fluorophores has revealed that aPu is not sensitive to the processes
happening at the stages of complexation with the enzyme. It has been demonstrated that in
the model system X-DHU/G12, CPy and 3HC lead to a complete loss of the catalytic activity
of the enzyme. Consequently, we have employed the model system DHU/N12, which has a
much smaller effect on the catalytic activity of the enzyme. For all fluorophores (except for
aPu, for which no changes have been detectable; Figure 17), concentration series of kinetic
curves have been generated, and kinetic schemes and rate constants have been determined.
Figure 17 presents examples of kinetic curves constructed with various fluorophores in the
model system DHU/N12.
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Figure 17. Interaction of Nei with various DHU-containing substrates carrying fluorescent base
analogs aPu, Cpy, tCO, or 3HC opposite the DHU base. Vertical lines denote the time ranges of
conformational changes in the enzyme that correspond to the kinetic stages in Scheme 2.

Registration of the fluorescence of Trp and of fluorophores in DNA has helped to
uncover the coupled conformational dynamics of the enzyme and of DNA during the
enzymatic process and to detail the nature of the stages of lesion recognition. The initial
increase in fluorescence intensity of Trp and the initial rise of 3HC fluorescence intensity
before time point 6 ms probably reflect the rapid “closure” of the N- and C-terminal domains
of the enzyme during the appearance of the initial nonspecific complex. A comparison of
the kinetic curves suggests that during the first change in Trp fluorescence intensity (up to
time point 0.6 s), two conformational changes in DNA occur that can be registered by means
of 3HC: a plateau from 0.006 to 0.02 s and a growth of intensity until 1.0 s. These phases of
fluorescence kinetics of 3HC may mean the bending of the DNA helix, the eversion of the
DHU base from the helix, and the subsequent intercalation of amino acid residues Gln69,
Leu70, and Tyr71 into the DNA helix because these processes increase the hydrophobicity
of the surroundings of the 3HC residue. The next rise in Trp fluorescence intensity (in
the time interval from 1 to 10 s) leads to only a slight change in the fluorescence of 3HC.
Within this period, the structure of the active site gets finely adjusted, which is necessary
to achieve a catalytically competent state. The last change in fluorescence intensities of
Trp and 3HC at time points after 10 s is the result of catalytic steps and dissociation of
the enzyme–product complex, which afford a more hydrated environment for 3HC in the
DNA product.

Several mutant versions of the enzyme have been used to determine the functions
of various amino acid residues and to further clarify the nature of the specific steps of
DNA binding. For the substitution, residues Leu70 and Tyr71, which get intercalated into
the duplex, have been chosen, as well as residues Phe121, Phe230, and Pro253 (located in
the DNA-binding site) and residue Glu2 (required for the catalytic reaction). Nei mutants
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containing substitutions Glu2Gln, Leu70Ser, Leu70Trp, Tyr71Trp, Phe121Trp, Phe230Trp, or
Pro253Trp have been generated by site-directed mutagenesis. Testing of the relative activity
of the mutant enzymes has shown that the replacement of Glu2 or Leu70 causes a large loss
of catalytic activity (Figure 18a). Changes in Trp fluorescence intensity, which characterize
conformational rearrangements of the enzyme, have been documented during the inter-
action of each mutant with substrate DHU/G12 or AP/G12 (Figure 18b,c). Substitutions of
Glu2 and Leu70, which eliminate the enzymatic activity, also lead to the almost complete
disappearance of all changes in Trp fluorescence intensity. This finding indicates that the
amplitude of changes in Trp fluorescence intensity reflects the course of the catalytic stages
of the enzymatic process.
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Figure 18. (a) Relative activity of wild-type Nei and mutants of the enzyme. Experimental kinetic
curves describing conformational changes of the enzyme during the interaction of wild-type Nei or
one of its mutants with (b) substrate DHU/G12 or (c) substrate AP/G12.

Among the mutants Nei Tyr71Trp, Nei Phe121Trp, Nei Phe230Trp, and Nei Pro253Trp,
which retain the enzymatic activity, the behaviors of Trp fluorescence intensity differ in
the initial section of the kinetic curves up to 5 s, which characterizes the stages of damage
recognition and assembly of the catalytic complex. Such differences from the shape of
the curve of the wild-type enzyme imply the contribution of a new Trp residue to the
fluorescence intensity. Furthermore, these differences allow us to conclude that there are
conformational alterations in the enzyme in the region of this particular amino acid residue
and to identify the time point and stage in the mechanism at which this amino acid gets
involved. To calculate the rate constants, concentration series of kinetic curves have been
obtained for each mutant (Table 5).

The weight of evidence describing the conformational alterations of the enzyme and
of DNA substrates as well as mutational analysis has helped us to propose a molecular-
kinetic mechanism of damage recognition by the Nei enzyme, where step 1 corresponds to
the rapid initial binding of DNA and the formation of the nonspecific enzyme–substrate
complex, in which the N- and C-terminal domains of the enzyme are in a closed position. In
this complex, wedging of residue Leu70 into the duplex takes place, which is a key process
in the search for a damaged DNA region. Step 2 includes the bending of the double helix at
the site of the damaged base, the eversion of DHU from the duplex, and the intercalation of
Tyr71 into DNA. This amino acid residue is necessary to stabilize the twisted conformation
of the damaged nucleotide. In addition, at step 3, during the fine-tuning of the active site
to achieve a catalytically competent state, Tyr71 gets involved too. At this step, contacts
arise between Phe121 and the ribose-phosphate backbone of DNA. The formation of the
catalytic complex leads to the hydrolysis of the N-glycosidic bond and subsequent reactions
of β-elimination of 3′- and 5′-phosphate groups. The enzymatic cycle is completed by the
dissociation of the enzyme–product complex.
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Table 5. Rate and equilibrium constants characterizing the interaction of wild-type Nei or one of its
mutants with substrate DHU/G12.

Constants L70S L70W Y71W F121W F230W P253W WT

k1, M−1s−1 (0.09 ± 0.02)
× 106

(0.06 ± 0.01)
× 106

(21 ± 3) ×
106

(39 ± 11) ×
106

(30 ± 2) ×
106

(27 ± 2) ×
106

(36 ± 7) ×
106

k−1, s−1 1 ± 0.1 0.4 ± 0.1 330 ± 30 120 ± 31 310 ± 45 310 ± 26 410 ± 20

K1
a, M−1 0.9 × 105 1.5 × 105 0.63 × 105 3 × 105 0.97 × 105 0.87 × 105 0.88 × 105

k2, s−1 16 ± 3 17 ± 4 21 ± 3 23 ± 3 27 ± 2

k−2, s−1 2.5 ± 0.1 0.55 ± 0.25 1.2 ± 0.1 0.8 ± 0.1 1.8 ± 0.3

K2 6.4 31 17.5 28.7 15

k3, s−1 0.4 ± 0.1 0.58 ± 0.15 0.82 ± 0.04 1.0 ± 0.03 1.6 ± 0.1

k−3, s−1 1.1 ± 0.1 0.89 ± 0.14 0.66 ± 0.06 1.2 ± 0.1 1.5 ± 0.2

K3 0.36 0.65 1.2 0.83 1.1

Kass
b, M−1 1.45 × 105 6 × 106 2 × 106 2 × 106 1.45 × 106

kcat, s−1 0.09 ± 0.01 0.08 ± 0.03 0.14 ± 0.03 0.26 ± 0.09 0.38 ± 0.01 0.4 ± 0.03 0.35 ± 0.02

Kp, M (1.0 ± 0.2) ×
10−6

(0.7 ± 0.5) ×
10−6

(0.4 ± 0.1) ×
10−6

(0.6 ± 0.1) ×
10−6

(0.6 ± 0.2) ×
10−6

(0.63 ± 0.08)
× 10−6

(0.7 ± 0.1) ×
10−6

a Ki = ki/k−i, where i is the stage number, b Kass = K1 × K2 × K3.

4.2. Other Members of Structural Family H2tH: Fpg and NEIL1

Formamidopyrimidine DNA glycosylase Fpg has wide substrate specificity for oxidized
nitrogenous bases, including oxoG [94,95]. This protein’s molecule has a positively charged
channel within which DNA binds. In the catalytic complex, the DNA is bent, the damaged
base is flipped out of the duplex, and this free space is filled by residues Met73, Arg108,
and Phe110 [96].

While working in this field, we have analyzed the accumulation of reaction products
starting in the millisecond range by the “reaction interruption” (quench-flow) technique [97].
Our results indicate the existence of a stage of enzyme–substrate interaction after which the
addition of a “quencher” (7 M urea) to the reaction mixture does not affect the attainment
of the catalytic conformation; in other words, the dissociation of the enzyme–substrate
complex proceeds more slowly than do intramolecular conformational rearrangements
giving rise to the competent state and resulting in chemical stages. According to our results,
this stage is the eversion of the damaged base.

Double electron–electron resonance spectroscopy has been utilized to determine the
bending angle of DNA duplexes caused both by the damaged nucleotide itself and by
the formation of a complex with Fpg [98,99]. It has been found that the presence of an
F-site in the duplex leads to its bending by ~20◦, whereas the nucleotide containing the
damaged oxoG base does not affect the overall structure of the duplex. In addition, it has
been demonstrated under equilibrium conditions that Fpg causes additional bending of
the DNA duplex containing an F-site and induces the bending of intact DNA during the
formation of the nonspecific complex.

Mass-spectrometric analysis of covalent reaction intermediates has been carried
out [97], as performed for hOGG1. It has been shown that the stage of breakup of the cova-
lent complex with a ribose residue is the rate-limiting stage of the entire
enzymatic process.

Kinetic patterns of Fpg’s catalysis at different temperatures have been studied during
interactions with intact DNA or with one of the duplexes containing an F-site or oxoG [36].
Registration of DNA conformational changes has been performed by means of changes
in fluorescence intensity of the CPy residue located opposite a specific site. Via a similar
approach, as in the case of hOGG1, concentration series of curves and rate constants have
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been obtained for each temperature, enabling us to compute thermodynamic parameters of
stages of the enzymatic process with the help of Van’t Hoff’s (Equation (9)) and Eyring’s
(Equation (10)) equations.

A combined analysis of the kinetic and thermodynamic data on the conformational
transformations of the Fpg enzyme and DNA during their interaction has made it possible
to propose the most probable interpretation of the nature of the conformational transitions
occurring in the enzyme–substrate complex on the way to the catalytically competent
state (Table 6). It should be pointed out that overall, the stages of DNA binding and
damage recognition proceed at considerable enthalpy costs, but they are compensated
by an increase in entropy due to the removal of water molecules from the contact area
and to the formation of a tightly bound enzyme–substrate complex. In this context, dehy-
dration of the protein–DNA interface begins at the stage of the emergence of the initial
nonspecific complex.

Table 6. Thermodynamic parameters of the interaction of DNA glycosylase Fpg with ligand G/CPy
12

or F/CPy
12 or substrate oxoG/CPy

12.

DNA
Stage Number

Parameter ∆G◦i298,
kcal/mol

∆H◦i, kcal/mol ∆S◦i, cal/(K·mol) Process

G/CPy
12 1 −7.0 −3.8 ± 0.9 10.9 ± 3.2

Nonspecific binding, local
“melting” of segment of DNA
duplex, dehydration

F/CPy
12

1 −7.2 −4.0 ± 0.3 10.8 ± 1.0
Nonspecific binding, local
“melting” of segment of DNA
duplex, dehydration

2 0.7 6.7 ± 0.3 20.3 ± 0.9
Kinking of DNA and intercalation
of Fpg amino acid residues into
duplex

∑i=2
i=1 −6.5 2.7 ± 0.4 31.1 ± 1.3

oxoG/CPy
12

1 −7.0 −3.2 ± 0.4 12.7 ± 1.5
Nonspecific binding, local
“melting” of segment of DNA
duplex, dehydration

2 0.4 0.3 ± 0.8 −0.3 ± 2.7

Insertion of “wedge” into DNA
(amino acid residue Phe110) for
discrimination between damaged
and intact segments of DNA

3 0.8 6.3 ± 1.7 18.4 ± 5.8 Kinking of DNA

4 −1.5 −15.5 ± 3.9 −46.9 ± 13.5

Eversion of oxoG base into active
site of Fpg concurrently with
insertion of amino acid residues
Arg108 and Met73 into resultant
cavity in DNA helix

5 −1.9 31.2 ± 5.5 111.1 ± 18.6

Final fine adjustment of active-site
structure to attain catalytically
competent state, dehydration of
DNA grooves

∑i=5
i=1 −9.2 19.1 ± 12.3 95.0 ± 42.1

6 19.6 6.0 ± 1.4 −45.5 ± 4.7 Transition state of catalytical
chemical stage

7 −7.0 −4.1 ± 0.3 9.6 ± 0.9 Formation of enzyme–product
complex

The data are presented as the mean ± standard deviation. ∆∆G◦ i298 = RT(∆Ki/Ki) ≤ 0.1 kcal/mol.

Human endonuclease VIII, NEIL1, is a eukaryotic member of this structural
family [100,101]. A comparison of the currently known structure of the free NEIL1 en-
zyme [102,103] with the structures of complexes of Fpg or Nei with damaged DNA reveals
a high level of structural homology. A comparison of the amino acid sequences of NEIL1,
Fpg, and Nei also shows high homology among these enzymes. A fragment of sequences
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(Figure 19) helps to see that the organization of amino acid residues that get intercalated
into DNA after the eversion of a lesion is the same in NEIL1 as in Fpg, i.e., these residues
are located at a distance from each other in the amino acid sequence, in contrast to Nei.
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The high structural homology between NEIL1, Fpg, and Nei implies that during
the formation of the catalytic complex, NEIL1 probably undergoes in a similar way the
conformational rearrangements related to the recognition of the damaged nucleotide, then
the bending of DNA, the inversion of the damaged base into the enzyme active site, and
the intercalation of amino acid residues into the DNA. Accordingly, to register the mutual
conformational changes of NEIL1 and DNA during their interaction, the same approach
has been used as with Nei and Fpg [104]. For registration of the conformational changes
in the enzyme by means of changes in Trp fluorescence intensity as DNA substrates, a
series of duplexes have been employed that contain in the central part an intact nucleotide
(duplex G/C12) or a modified nucleotide (duplex X/G12, where X = F-site, AP-site, or DHU).
The kinetic curves obtained under the same conditions for the enzymes of this family have
revealed major differences in the kinetics of changes in Trp fluorescence intensity [104].
That is, despite similar structural patterns of the formation of the catalytic complex and the
high homology, the changes in Trp fluorescence intensity in each case are determined by
individual features of the positioning of Trp residues in an enzyme’s globule. Nonetheless, a
common characteristic of all kinetic curves is a local minimum of Trp fluorescence intensity
during the formation of the catalytic complex in the course of interaction with various
“cleavable” DNA duplexes containing an AP-site or DHU. Additionally, DNA duplexes
(XFAM/BHQ1/G17, where X = C, F-site, AP-site, or DHU) containing the dyes FAM and
BHQ1 at the 5’ ends of the oligonucleotides forming the duplex have been employed
to record the DNA conformational changes. The stages of DNA bending and catalysis
have been documented, kinetic schemes have been determined, and constants have been
calculated [104]. The obtained results [104] with NEIL1 fit the general picture of DNA
glycosylases as enzymes that initiate damage recognition through indirect readout, probing
DNA for flexibility or other conformational response to the strain induced upon enzyme
binding, and using direct contacts with the damaged base only at later stages of the reaction
to confirm the presence of the lesion.

4.3. A General Model for the Recognition of DNA Damage by Enzymes of Structural Family H2tH

Summarizing the data on this class of enzymes, it can be said that the process of
recognition of a damaged nucleotide is represented by a common model among the studied
pro- and eukaryotic members of the family (Table 7). At the first stage, the initial nonspecific
complex forms between an enzyme and a DNA substrate, accompanied by destabilization
of the duplex and its local “melting”. In the nonspecific complex, a “sensor” amino acid
residue (Phe110 in Fpg, Leu70 in Nei, and Phe119 in NEIL1) is wedged between DNA
bases, thus causing additional destabilization of the double helix. The wedging of the
sensor into the duplex initiates the eversion of the damaged base into the active site of
the enzyme. A comparison of the kinetic curves obtained with FRET substrates indicates
that duplex bending and incorporation of the other residues of the triad into DNA (Met73
and Arg108 in Fpg, Gln69 and Tyr71 in Nei, and Met80 and Arg117 in NEIL1), which
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stabilize the out-of-helix position of the lesion, proceed in a coordinated manner. At the last
stage, the structure of the enzyme–substrate complex is fine-tuned to attain a catalytically
competent state. According to the thermodynamic data obtained about Fpg, at this stage,
the enzyme–substrate complex is compacted and water molecules are displaced from the
contact area between the enzyme and the DNA substrate. Then, the chemical stages of the
process take place, with subsequent dissociation of the enzyme–product complex.

Table 7. Key steps in damage recognition by enzymes of structural family H2tH.

Nei (E. coli) Fpg (E. coli) NEIL1

Destabilization of
double helix, local
“melting”

+ + +

Intercalation of
“sensor” Leu70 Phe110 Phe119

Eversion of damaged
base and duplex
bending

+ + +

Intercalation of other
amino acid residues Gln69, Tyr71 Met78, Arg108 Met80, Arg117

5. Human AP Endonuclease APE1

Human AP endonuclease 1 is a Mg2+-dependent enzyme and differs from DNA glyco-
sylases both in structure and catalytic properties [105–107] (Figure 20). AP endonuclease
processes intermediate DNA products generated by DNA glycosylases in the course of BER
and cleaves an AP site, which is caused by spontaneous loss of a nitrogenous base [108,109].
It is generally accepted that the main function of AP endonucleases in the cell is the cleavage
of DNA from the 5′ terminus of the AP site or the removal of 3′-end-blocking groups such
as 3′-phospho-α,β-unsaturated aldehyde or 3′-terminal phosphate, thereby producing a
3′-hydroxyl group required for DNA synthesis by polymerase [110–112]. Data obtained
over the last two decades clearly indicate that AP endonucleases can recognize as substrates
not only an AP site but also various damaged nucleotides, for example, 5,6-dihydro-2′-
deoxyuridine, the α-anomer of 2′-deoxyadenosine (αA), and several others [106,113–119].
In addition, these enzymes possess endoribonuclease [120–122], 3′-phosphodiesterase,
3′-phosphatase [112] and 3′-5′-exonuclease activities [32,123,124].

Notably, the functional class of AP endonucleases is comparable to the well-studied
class of DNA glycosylases. Indeed, the mechanisms of recognition of a single-nucleotide
lesion by DNA glycosylases have been comprehensively studied by structural, mutational,
and kinetic approaches in the course of the last three decades. It has been revealed that
DNA glycosylases from six structural families have different structures of the DNA-binding
site and of the catalytically active site and distinct functional amino acid residues involved
in specific recognition of a damaged nucleotide and in catalysis; however, almost all
these enzymes have common features of interaction with damaged DNA [73,86,125,126].
These data have improved our understanding of how the recognition of single-nucleotide
lesions occurs. For instance, all DNA glycosylases (with the exception of enzymes from the
ALK family [127]) with currently available structures bend DNA and flip out the damaged
nucleotide and/or complementary nucleotide from the DNA double helix. As a general rule,
the damaged nucleotide is placed in the active-site pocket, where its final verification takes
place. Some amino acid residues of the enzyme are inserted into the formed void in the DNA
duplex (void-filling amino acid residues) and can act either as a specific ‘wedge’ sensing
the lesion and pushing out the damaged nucleotide or as non-specific anchor residues that
stabilize the extra-helical position of the damaged nucleotide [44,72,93,100,128–132].
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side of an AP-site.

According to the structural data [133,134], this strategy of damage recognition is
suitable for AP endonucleases. An analysis of the crystal structures of the free enzyme
APE1 [135–137] and of its complexes with DNA [133,138,139] suggests that amino acid
residues of the enzyme interact predominantly with one strand of the duplex. Human AP
endonuclease APE1 in complex with an abasic DNA causes a bending of the chain at an
angle of ~35◦, the eversion of the damaged nucleotide, and its insertion into the active site.
There are also two ‘wedging’ amino acid residues, Arg177 and Met270, inserted into the
DNA helix after the abasic-site eversion. In this complex, the nucleotide located opposite
the lesion retains stacking with neighboring bases in the DNA duplex [138].

The kinetic mechanism of conformational changes in APE1 and in abasic DNA
molecules in the course of their interaction was studied by recording the intrinsic tryp-
tophan fluorescence of the enzyme [139,140] and the 2-aminopurine fluorescence in the
DNA [141]. To elucidate the mechanism of substrate specificity of AP endonucleases,
an interaction of enzymes with DNA was analyzed by double electron–electron reso-
nance (DEER, also known as pulsed electron–electron double resonance, PELDOR) spec-
troscopy [56,142,143] and molecular dynamic simulations [142,144,145], as well as by real-
time fluorescent detection of conformational rearrangements of the enzyme and DNA
during their interaction [32,33,55,146–151]. The influence of singly (Figure 21a) and doubly
(Figure 21b) charged metal ions [152] on APE1’s DNA binding and catalysis has been
determined. It was shown that the first step of substrate binding (corresponding to the
formation of a primary enzyme–substrate complex) does not depend on the concentration
(0.05–5.0 mM) or the nature of divalent metal ions. In contrast, the initial DNA binding
efficiency significantly decreased at a high concentration (5–250 mM) of monovalent K+

ions, indicating the involvement of electrostatic interactions in this stage.
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conformational alterations of APE1 (d) and of the DNA substrate (e) and on the rate of accumulation
of reaction products (f).

The kinetics of conformational changes of the enzyme and of DNA substrate molecules
were studied during the recognition and cleavage of the abasic site in the pH range from
5.5 to 9.0 using stopped-flow fluorescence techniques (Figure 21c) [147]. The activity of
APE1 increased with an increase in pH because of the acceleration of the rates of catalytic
complex formation and the catalytic reaction. A molecular dynamics simulation uncovered
a significant increase in the pKa of His-309 located in the active site of the enzyme. This
finding revealed that the observed enhancement of enzymatic activity with pH could be
associated with the deprotonation of not only Tyr-171 but also His-309. The obtained data
allowed us to hypothesize that the ionized state of these residues could be a molecular
switch between the alternative catalytic mechanisms, which involve different functionalities
of these residues throughout the reaction.

Additionally, using Trp fluorescence (Figure 21d), a FRET signal (Figure 21e), and
direct product detection (Figure 21f), it has been shown [152] that the nature of the doubly
charged metal also affects these processes. It has been demonstrated that the rate of
formation of the initial complex does not depend on the concentration of doubly charged
metals; however, they accelerate the second stage of DNA binding. In these experiments,
the absence of doubly charged ions or the presence of Cu2+ or Ca2+ completely inactivates
the enzyme, and the efficiency of other metal ions for the hydrolysis of the phosphodiester
bond increases in the series Zn2+ < Ni2+ < Mn2+ < Mg2+.

To clarify the nature of the processes occurring during the successive stages of F-site
recognition in a DNA substrate, of catalysis, and of dissociation of the enzyme–product
complex, a stepwise thermodynamic analysis of the interaction of APE1 with F-substrate has
been performed [153]. Examination of the kinetic curves of changes in protein fluorescence
intensity has revealed that the minimal kinetic mechanism of the interaction of APE1
with F-substrate includes two-stage equilibrium binding, irreversible formation of the
enzyme–product complex, and equilibrium dissociation of this complex (Scheme 3).
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E is the enzyme, S is a DNA substrate, (E•S)1 and (E•S)2 are enzyme–substrate
complexes, P is a substrate conversion product, E•P is the enzyme–product complex, ki
and k−i are rate constants of forward and reverse reactions of the equilibrium stages, k3 is
the rate constant of the catalytic stage, and Kp is the equilibrium dissociation constant of
the E•P complex.

According to the findings [153], the formation of the initial enzyme–substrate complex
(the first stage in Scheme 3) involves a positive change in standard enthalpy (14.3 kcal/mol)
and a positive change in entropy [79.0 cal/(mol·K)]. Given that the increase in entropy
during the interaction of DNA-binding proteins with DNA is due either to the desolvation
of polar groups at the protein–DNA interface or to the displacement of highly ordered
“crystalline” water molecules from DNA grooves, it can be concluded that at this stage,
bonds appear between amino acid residues of a DNA-binding site and the DNA duplex.
Among them, we can highlight the interaction between phosphate groups of the DNA
duplex on the 5′ and 3′ sides of the F-site and residues Arg73, Ala74, Lys78, Trp280, Asn222,
Asn226, and Asn229 (Figure 20a). Furthermore, at this moment, intercalation of residue
Arg177 probably occurs into the DNA duplex on the side of the major groove, as does the
formation of a hydrogen bond with the phosphate group located on the 3′ side of the F-site.
Residue Met270 gets intercalated into the DNA duplex on the minor-groove side and can
also displace “crystalline” water.

Obtained data [153] allow us to suggest that the second stage of the interaction of
APE1 with F-substrate—a specific rearrangement of complex (E•S)1—features a negative
change in both enthalpy (∆H◦2 = −6.8 kcal/mol) and entropy [−24.6 cal/(mol·K)]. A
negative value of ∆H◦2 indicates the stabilization of the complex during the formation of
new, energetically favorable bonds between the interacting atoms, whereas a negative value
of ∆S◦2 denotes an increase in the complex’s rigidity, i.e., a reduction in internal degrees of
freedom. These results indicate that this step includes the process of F-site inversion into
the active site of the enzyme and stabilization of this state by residues Arg177 and Met270,
which get inserted into the major and minor grooves of DNA, respectively. Additionally, at
this point, there is likely the formation of bonds between a phosphate group located in the
5′ direction from the F-site, residues Asn174, Asn212, and His309, and the Mg2+ ion located
in the enzyme active site.

For the catalytic stage, we have calculated changes in enthalpy (∆H 6=) and entropy
(∆S 6=) of activation of transition complex formation. The enthalpy of activation proved to
be 12.2 kcal/mol. This value refers to the stage of hydrolysis of the phosphodiester bond
by the APE1 enzyme and is in the range of 6.0–18.6 kcal/mol for the catalytic stages of
reactions of N-glycosidic bond cleavage and β-elimination of phosphate groups carried out
by DNA glycosylases Fpg and hOGG1.

6. Conclusions

Within this review, studies on the application of a comprehensive methodology for
investigation into the mechanisms of DNA damage recognition by base excision repair
enzymes on the basis of kinetic, thermodynamic, and mutational assays of conforma-
tional alterations in enzymes and DNA were described. The kinetic analysis of confor-
mational changes in enzymes and DNA during the assembly and transformation of
enzyme–substrate complexes has involved methods of pre-steady-state kinetics because
damage recognition processes are fast. In some cases, conformational changes in the
DNA helix were proven by PELDOR spectroscopy. To correlate conformational changes in
DNA with interactions of certain residues during the formation of specific enzyme–substrate
complexes, the method of a stepwise increase in ligand complexity has been used. The
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thermodynamic analysis has been based on research into enzymatic processes using the
stopped-flow method with fluorimetric detection at various temperatures. The mutational
analysis has been based on the use of mutant versions of enzymes containing a substitution
of amino acid residues present in the active site of the enzyme and at sites of binding
to a substrate. The mass-spectrometric analysis of intermediates of the enzymatic process
catalyzed by enzymes Fpg and hOGG1 has confirmed that the rate-limiting step is the
reaction of β-elimination of the phosphate group. Moreover, the regeneration of DNA
glycosylase Fpg from the complex with a ribose residue is slow and can also limit the rate
of the enzymatic process in a steady-state reaction. Taken together, the results obtained by
all these approaches and the characterization of conformational changes in both enzymes
or their mutants and model DNA duplexes containing modifications of varying degrees of
specificity to the enzyme and various fluorophores have allowed the determination of detailed
molecular-kinetic mechanisms underlying the recognition of specific sites in DNA, the formation of
catalytically competent complexes, and the course of chemical-reaction steps.

Still, the stopped-flow method has restricted applicability, but it has become more
widely known and appreciated, and consequently, the limits of the kinetics technique are
continually pushing. Indeed, the methodology developed during the described research can
be extended to studies not only on DNA-processing enzymes but also on protein–protein
interactions as well as interactions of enzymes with low-molecular-weight substrates
(e.g., peptides, amino acids, and nucleotides) or small-molecule inhibitors or activators of
enzymatic processes.

Although fluorescence does not provide detailed structural information, its utility in
defining structural dynamics and molecular interactions places it at the top of the list of
possible methods that could be applied to address such questions. Clearly, fast kinetic
methods, like any technique, should not be used alone. Rather, its lack of capabilities on
the structural level should be compensated for by the use of complementary approaches.
The modern level of scientific research makes it possible to combine the information of the
crystal structure “photo” at the atomic level with a full-length “film” of conformational
dynamics in the process of enzyme-substrate interaction in real time, recorded using
sensitive fluorescent dyes. In the mind of the author, stopped-flow technology with
fluorescence detection, given its many advantages, will no doubt continue to be applied in
the fields of biophysics, biophysical chemistry, and molecular biology for a very long time.
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Glossary

aPu 2-aminopurine;
AP-site apurinic/apyrimidinic site;
APE1 human apurinic/apyrimidinic endonuclease 1;
BER base excision repair;
BHQ1 black hole quencher 1;
CPy pyrrolocytosine;
DHU 5,6-dihydrouracil;
F-site (2R,3S)−2-(hydroxymethyl)−3-hydroxytetrahydrofuran residue (AP-site analogue);
FAM 6-carboxyfluorescein;
Fpg formamidopyrimidine DNA glycosylase from Escherichia coli;
FRET Forster resonance energy transfer;
HhH-GPD structural family of DNA glycosylases containing the helix-hairpin-helix motif and a

region enriched with glycine and proline residues (Gly/Pro loop) and the aspartate
residue (D);

H2tH structural family of DNA glycosylases containing helix-two turn-helix motif;
hOGG1 human 8-oxoguanine DNA glycosylase;
MutY adenine-DNA glycosylase from Escherichia coli;
MBD4 human methyl-CpG-binding domain 4;
Nth endonuclease III from Escherichia coli;
Nei endonuclease VIII from Escherichia coli;
NEIL1 human endonuclease VIII;
oxoG 8-oxoguanine;
PDB ID Protein Data Bank Identification number;
tCO 1,3-diaza-2-oxophenoxazine;
WT wild type enzyme;
PAGE polyacrylamide gel electrophoresis;
3HC 3-hydroxychromone.
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