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Abstract: Structured light beams have recently attracted enormous research interest for their unique
properties and potential applications in optical communications, imaging, sensing, etc. Since most of
these applications involve the propagation of structured light beams, which is accompanied by the
phenomenon of diffraction, it is very necessary to employ diffraction theories to analyze the obstacle
effects on structured light beams during propagation. The aim of this work is to provide a systematic
summary and comparison of the scalar diffraction theories for structured light beams. We first present
the scalar fields of typical structured light beams in the source plane, including the fundamental
Gaussian beams, higher-order Hermite–Gaussian beams, Laguerre–Gaussian vortex beams, non-
diffracting Bessel beams, and self-accelerating Airy beams. Then, we summarize and compare the
main scalar diffraction theories of structured light beams, including the Fresnel diffraction integral,
Collins formula, angular spectrum representation, and Rayleigh–Sommerfeld diffraction integral.
Finally, based on these theories, we derive in detail the analytical propagation expressions of typical
structured light beams under different conditions. In addition, the propagation of typical structured
light beams is simulated. We hope this work can be helpful for the efficient study of the propagation
of structured light beams.

Keywords: scalar diffraction theory; structured light beams; propagation

1. Introduction

It is well known that light, as a most important information carrier, has a wide range
of applications in communications, sensing, imaging, etc. Traditionally, light fields with
simple spatial distribution, such as plane waves and fundamental Gaussian beams, were
employed in these applications. In recent years, light fields with strong spatial inhomo-
geneity of amplitude, phase, polarization, and other parameters are gaining attention
as novel information carriers for these applications. Such light fields are usually called
structured light beams, including the Hermite–Gaussian beams [1], the Laguerre–Gaussian
beams [2], the Bessel beams [3], the Airy beams [4], and so on. Compared with conven-
tional plane waves and fundamental Gaussian beams, structured light beams exhibit a
variety of novel physical effects and phenomena, e.g., strong spatial inhomogeneity, phase
singularity, diffraction-free propagation, transverse acceleration, and so on [5]. Owing to
their fascinating properties and promising potential applications, structured light beams
have become a research hotspot in optics and optoelectronics [6–13]. Because most of the
applications of structured light beams involve their propagation, which is accompanied
by the phenomenon of diffraction, the research on the obstacle effects of such beams dur-
ing propagation has important significance. In most cases, the propagation effects of the
structured light beams can be examined by the scalar diffraction theories.

There have been extensive studies on the propagation effects of structured light beams
using various scalar diffraction theories, which can be divided into four categories: the
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Fresnel diffraction integral [14–17], the Collins formula [18–24], the angular spectrum rep-
resentation [25–30], and the Rayleigh–Sommerfeld diffraction integral [31–40]. The Fresnel
diffraction integral, which is an approximation of the Kirchhoff diffraction formula, is
usually used to study the propagation of paraxial light beams in a homogeneous medium.
The Collins formula, which is a generalized Fresnel diffraction integral formula expressed
in terms of ray transfer matrix elements, is usually applied to analyze the propagation of
paraxial light beams passing through the ABCD optical system. The angular spectrum rep-
resentation, whose basic idea is to expand any light beams in terms of lots of plane waves
by Fourier transform, is not only suitable for describing the propagation of light beams in
a homogeneous medium but also suitable for describing the reflection and refraction of
structured light beams in a layered medium. Moreover, under the paraxial approximation,
the angular spectrum representation is identical to the framework of the Fresnel diffraction
integral, which extends its importance even further. The Rayleigh–Sommerfeld diffraction
integral, which degenerates into the Fresnel diffraction integral under paraxial approxima-
tion, is usually adopted to study the non-paraxial propagation of structured light beams. As
mentioned earlier, these scalar diffraction theories have been extensively applied to study
the propagation of structured light beams, including the Hermite–Gaussian beams [41–44],
Laguerre–Gaussian beams [45–53], Bessel beams [54–57], and Airy beams [58–63]. How-
ever, most of the previous works only focused on studying the propagation of one type
of structured light beam using one of the scalar diffraction theories. In addition, some
analytical formulas for the propagation of structured light beams presented in previous
works are not concise, explicit, and systematic enough. The purpose of this work is to
provide a summary of the main scalar diffraction theories of structured light beams and
systematically derive concise and explicit analytical expressions for the propagation of
typical structured light beams under different conditions.

The remainder of this paper is composed of five parts. In Section 2, the scalar fields
of typical structured light beams in the source plane are presented. In Section 3, the main
scalar diffraction theories of light beams are summarized. In Section 4, the analytical
propagation expressions of typical structured light beams described by various scalar
diffraction theories are derived in detail. In Section 5, some numerical simulations are
performed and analyzed. Finally, the conclusion is drawn in Section 6.

2. Scalar Fields of Typical Structured Light Beams in the Source Plane

As is well known, the scalar diffraction theories of light beams give the relationship
between the scalar expressions of light beams in the source plane and that in the observation
plane. In what follows, the source plane is denoted as (x0, y0, 0) in Cartesian coordinates
and (r0, ϕ0, 0) in cylindrical coordinates, and the corresponding scalar fields of light beams
are represented as E0(x0, y0, 0) and E0(x0, y0, 0), respectively.

2.1. Fundamental Gaussian Beams

We start with the simplest fundamental Gaussian beams that are the solutions of the
scalar paraxial wave equation. In Cartesian coordinates, the scalar field of the fundamental
Gaussian beams in the source plane reads as

E0(x0, y0, 0) = exp

[
−
(
x2

0 + y2
0
)

w2
0

]
, (1)

where w0 is the beam waist radius.
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2.2. Hermite–Gaussian Beams

Hermite–Gaussian beams, a class of structured light beams with higher-order modes,
are the solutions of the paraxial wave equation in Cartesian coordinates. The scalar field of
such beams in the source plane reads as

E0(x0, y0, 0) = Hm

(√
2

w0
x0

)
Hn

(√
2

w0
y0

)
exp

[
−
(
x2

0 + y2
0
)

w2
0

]
, (2)

where w0 is the beam waist radius and Hm(.) and Hn(.) are Hermite polynomials of order
m and n, respectively. Note that Equation (2) reduces to Equation (1) when m = n = 0.

2.3. Laguerre–Gaussian Beams

Laguerre–Gaussian beams, a class of structured light beams with vortex phase fronts,
are the solutions of the paraxial wave equation in cylindrical coordinates. The scalar field
of such beams in the source plane reads as

E0(r0, ϕ0, 0) =

(√
2r0

w0

)l

Ll
p

(
2r2

0
w2

0

)
exp

(
−

r2
0

w2
0

)
exp(ilϕ0), (3)

where w0 is the beam waist radius, ϕ0 = tan−1(y0/x0) is the phase angle, and Ll
p(.) is

the associated Laguerre polynomial, with p and l being the radial and azimuthal mode
numbers, respectively.

2.4. Bessel Beams

Bessel beams, a class of structured light beams with non-diffracting characteristics, are
the exact solutions of the scalar Helmholtz wave equation in cylindrical coordinates. The
scalar field of such beams in the source plane reads as

E0(r0, ϕ0, 0) = Jm(krr0) exp(imϕ0), (4)

where Jm(.) is the mth-order Bessel function of the first kind, ϕ0 = tan−1(y0/x0) is the
phase angle, and kr = k sin θ0 is the transverse component of the wavenumber k, with θ0
being the half-cone angle of the Bessel beams.

2.5. Airy Beams

Airy beams, a class of structured light beams with self-accelerating characteristics,
are the solutions of the scalar paraxial wave equation or its quantum mechanics analog,
potential-free Schrödinger equation. In Cartesian coordinates, the scalar field of such beams
in the source plane reads as

E0(x0, y0, 0) = Ai
(

x0

wx

)
exp

(
a0x0

wx

)
Ai
(

y0

wy

)
exp

(
a0y0

wy

)
, (5)

where Ai(·) is the Airy function, wx
(
wy
)

is the transverse scaled parameter in the x(y)
direction, and a0 is the decay parameter.

3. Main Scalar Diffraction Theories of Light Beams

To proceed, we make a summarization of the main scalar diffraction theories of
light beams, including the Fresnel diffraction integral, the Collins formula, the angular
spectrum representation, and the Rayleigh–Sommerfeld diffraction integral. Without loss
of generality, the light beams are assumed to propagate parallel to the positive z-axis, and
the scalar fields of the light beams in the observation plane are represented as E(x, y, z) in
Cartesian coordinates and E(r, ϕ, z) in cylindrical coordinates.
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3.1. Fresnel Diffraction Integral

As mentioned previously, the Fresnel diffraction integral is usually used to charac-
terize the propagation of paraxial light beams in a homogeneous medium. In Cartesian
coordinates, the Fresnel diffraction integral is expressed as [14–17]

E(x, y, z) =
(
− ik

2πz

)
exp(ikz)

r ∞
−∞

r ∞
−∞ E0(x0, y0, 0)

× exp
{

ik
2z

[
(x− x0)

2 + (y− y0)
2
]}

dx0dy0,
(6)

where k = 2π/λ is the wavenumber, with λ being the wavelength of the light beams.
Clearly, once the scalar field E0(x0, y0, 0) in the source plane is known, the scalar field
E(x, y, z) in the observation plane can be obtained by using the Fresnel diffraction integral.
In circular cylindrical coordinates, Equation (6) takes the form

E(r, ϕ, z) =
(
− ik

2πz

)
exp(ikz)

r ∞
0

r 2π
0 E0(r0, ϕ0, 0)

× exp
{

ik
2z
[
r0

2 + r2 − 2r0r cos(ϕ0 − ϕ)
]}

r0dr0dϕ0,
(7)

where ϕ0 = tan−1(y0/x0) and ϕ = tan−1(y/x) are the phase angles of the beam in the
source plane and observation plane, respectively.

3.2. Collins Formula

The Collins formula is a generalized Fresnel diffraction integral formula expressed in
terms of the ABCD transfer matrix for the paraxial optical system. In Cartesian coordinates,
the Collins formula is expressed as [18–24]

E(x, y, z) =
(
− ik

2πB

)
exp(ikz)

r ∞
−∞

r ∞
−∞ E0(x0, y0, 0)

× exp
{

ik
2B
[
A
(
x2

0 + y2
0
)
+ D

(
x2 + y2)− 2(x0x + y0y)

]}
dx0dy0,

(8)

and in circular cylindrical coordinates, the Collins formula has the form

E(r, ϕ, z) =
(
− ik

2πB

)
exp(ikz)

r ∞
0

r 2π
0 E0(r0, ϕ0, 0)

× exp
{

ik
2B
[
Ar2

0 + Dr2 − 2r0r cos(ϕ0 − ϕ)
]}

r0dr0dϕ0,
(9)

where A, B, C, and D are elements of the transfer matrix. For the sake of free space, the
ABCD transfer matrix can be written as[

A B
C D

]
=

[
1 z
0 1

]
. (10)

Obviously, substituting Equation (10) into Equations (8) and (9) yields Equations (6) and (7),
i.e., the Collins formula reduces to the Fresnel diffraction integral.

3.3. Angular Spectrum Representation

The angular spectrum representation is a powerful approach to characterize the
propagation of structured light beams in a homogeneous medium as well as the reflection
and refraction of structured light beams in a layered medium. The basic idea of such an
approach is to expand structured light beams in terms of lots of plane waves by Fourier
transform. Specifically, the scalar field of the structured light beam to be considered in the
observation plane is expressed as [25–30]

E(x, y, z) =
w +∞

−∞

w +∞

−∞
Ẽ
(
kx, ky

)
exp

[
i
(
kxx + kyy

)]
exp(ikzz)dkxdky, (11)
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where Ẽ
(
kx, ky

)
is the angular spectrum of the beam, kx and ky are the transverse compo-

nents of the wave vector k, and kz =
√

k2 − k2
x − k2

y refers to the beam propagating into

the half-space z > 0. The angular spectrum Ẽ
(
kx, ky

)
can be obtained by evaluating the

two-dimensional Fourier transform of the scalar field of the structured light beam in the
source plane as follows:

Ẽ
(
kx, ky

)
=

1
4π2

w +∞

−∞

w +∞

−∞
E0(x0, y0, 0) exp

[
−i
(
kxx0 + kyy0

)]
dx0dy0. (12)

Under the paraxial approximation, we can expand kz in a series as

kz =

√
k2 −

(
k2

x + k2
y

)
≈ k−

k2
x + k2

y

2k
. (13)

Substituting Equation (13) into Equation (11), we obtain

E(x, y, z) = exp(ikz)
r +∞
−∞

r +∞
−∞ Ẽ

(
kx, ky

)
× exp

[
i
(

kxx + kyy− k2
x+k2

y
2k z

)]
dkxdky.

(14)

Equations (11), (12), and (14) are the formulae of angular spectrum representation
for describing the propagation of structured light beams in Cartesian coordinates. For the
case of structured light beams described in circular cylindrical coordinates, the angular
spectrum representation of the scalar field in the observation plane can be expressed as

E(r, ϕ, z) =
r π

0
r 2π

0 Ẽ(θ, φ) exp[ikr sin θ cos(φ− ϕ)]

× exp(ik cos θz)k2 cos θ sin θdθdφ,
(15)

E(r, ϕ, z) = exp(ikz)
r π

0
r 2π

0 Ẽ(θ, φ) exp[ikr sin θ cos(φ− ϕ)]

× exp
(
−ik sin2 θz/2

)
k2 cos θ sin θdθdφ,

(16)

where

Ẽ(θ, φ) =
1

4π2

w ∞

0

w 2π

0
E0(r0, ϕ0, 0) exp[−ikr0 sin θ cos(φ− ϕ0)]r0dr0dϕ0. (17)

3.4. Rayleigh–Sommerfeld Diffraction Integral

The Rayleigh–Sommerfeld diffraction integral is an approximation method to charac-
terize the non-paraxial propagation of structured light beams. In Cartesian coordinates, the
Rayleigh–Sommerfeld diffraction integral is expressed as [31–40]

E(x, y, z) =
(
− ikz

2π

)
exp(ikρ)

ρ2

r +∞
−∞

r +∞
−∞ E0(x0, y0, 0)

× exp
[

ik
2ρ

(
x2

0 + y2
0 − 2xx0 − 2yy0

)]
dx0dy0,

(18)

where ρ =
√

x2 + y2 + z2. It is worth noting that the Rayleigh–Sommerfeld diffraction
integral reduces to the Fresnel diffraction integral by replacing ρ of the exponential part
in Equation (18) with ρ = z +

(
x2 + y2)/2z and other terms with z. In circular cylindrical

coordinates, Equation (18) takes the form

E(r, ϕ, z) =
(
− ikz

2π

)
exp(ikρ)

ρ2

r ∞
0

r 2π
0 E0(r0, ϕ0, 0)

× exp
{

ik
2ρ

[
r2

0 − 2r0r cos(ϕ0 − ϕ)
]}

r0dr0dϕ0,
(19)
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where ρ =
√

r2 + z2.

4. Analytical Propagation Expressions of Typical Structured Light Beams Described by
Various Scalar Diffraction Theories
4.1. Fundamental Gaussian Beams
4.1.1. Fresnel Diffraction Integral

Substituting Equation (1) into Equation (6) and making use of the integral formula

w ∞

−∞
exp

(
−ax2 + ibx

)
dx =

√
π

a
exp

(
− b2

4a

)
, (20)

we obtain the analytical propagation expression of the fundamental Gaussian beams under
the paraxial approximation as follows:

E(x, y, z) =
1

1 + iz/zR
exp

[
−
(
x2 + y2)/w2

0
1 + iz/zR

]
exp(ikz), (21)

where zR = kw0
2/2 is the Rayleigh range.

4.1.2. Collins Formula

Substituting Equation (1) into Equation (8) and recalling the integral formula given by
Equation (20), we obtain the analytical propagation expression of paraxial fundamental
Gaussian beams passing through an ABCD optical system as follows:

E(x, y, z) =
q0

Aq0 + B
exp

[
ik
(
x2 + y2)

2

(
Cq0 + D
Aq0 + B

)]
exp(ikz), (22)

where q0 = −izR, with zR = kw0
2/2. Notably, by substituting Equation (10) into Equation (22),

we obtain Equation (21), which indicates that the Collins formula is a generalized form of
the Fresnel diffraction integral.

4.1.3. Angular Spectrum Representation

Substituting Equation (1) into Equation (12) and using the integral formula given
by Equation (20), we obtain the angular spectrum of the fundamental Gaussian beams
as follows:

Ẽ
(
kx, ky

)
=

w2
0

4π
exp

[
−
(

k2
x + k2

y

)w2
0

4

]
. (23)

Further substituting Equation (23) into Equation (14) and performing the integration
with the help of Equation (20), we obtain the analytical propagation expression of paraxial
fundamental Gaussian beams, which coincides with Equation (21) derived by the Fresnel
diffraction integral.

4.1.4. Rayleigh–Sommerfeld Diffraction Integral

Substituting Equation (1) into Equation (18) and applying the integral formula given
by Equation (20), we obtain the analytical propagation expression of the fundamental
Gaussian beams beyond the paraxial approximation as follows:

E(x, y, z) =
(
− ikz

2aρ2

)
exp

(
−

b2
x + b2

y

4a

)
exp(ikρ), (24)

where
a =

1
w2

0
− ik

2ρ
, bx = − kx

ρ
, by = − ky

ρ
, ρ =

√
x2 + y2 + z2. (25)
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Replacing ρ of the exponential part in Equation (24) by ρ = z +
(
x2 + y2)/(2z) and

other terms by z, we obtain the analytical propagation expression of fundamental Gaussian
beams under the paraxial approximation, which coincides with Equation (21).

4.2. Hermite–Gaussian Beams
4.2.1. Fresnel Diffraction Integral

Substituting Equation (2) into Equation (6) and making use of the integral formula

w +∞

−∞
exp

[
− (x− a)2

b

]
Hm(cx)dx =

√
πb
(

1− c2b
)m/2

Hm

(
ca√

1− c2b

)
, (26)

we obtain the analytical propagation expression of the Hermite–Gaussian beams under the
paraxial approximation as follows:

E(x, y, z) = Hm

(√
2

w x
)

Hn

(√
2

w y
)[

1−iz/zR√
1+(z/zR)

2

]m+n

× 1
1+iz/zR

exp
[
− (x2+y2)/w2

0
1+iz/zR

]
exp(ikz),

(27)

where w(z) = w0

√
1 + (z/zR)

2 and zR = kw0
2/2. Letting m = n = 0, Equation (27)

reduces to Equation (21), which corresponds to the propagation expression of fundamental
Gaussian beams.

4.2.2. Collins Formula

Substituting Equation (2) into Equation (8) and recalling the integral formula given by
Equation (26), we obtain the analytical propagation expression of paraxial Hermite–Gaussian
beams passing through an ABCD optical system as follows:

E(x, y, z) = Hm

(√
2

w′ x
)

Hn

(√
2

w′ y
)(√

Aq0−B
Aq0+B

)m+n

× q0
Aq0+B exp

[
ik(x2+y2)

2

(
Cq0+D
Aq0+B

)]
exp(ikz),

(28)

where w′ = w0

√
A2 − B2/q2

0 and q0 = −izR, with zR = kw0
2/2.

4.2.3. Angular Spectrum Representation

Substituting Equation (2) into Equation (12) and using the integral formula given by
Equation (26), we obtain the angular spectrum of the Hermite–Gaussian beams as follows:

Ẽ
(
kx, ky

)
= im+nHm

(
−w0kx√

2

)
Hm

(
−

w0ky√
2

)
w2

0
4π

exp

−
(

k2
x + k2

y

)
w2

0

4

. (29)

Further substituting Equation (29) into Equation (14) and performing the integration
with the help of Equation (26), we obtain the analytical propagation expression of paraxial
Hermite–Gaussian beams, which coincides with Equation (27) derived by the Fresnel
diffraction integral.
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4.2.4. Rayleigh–Sommerfeld Diffraction Integral

Substituting Equation (2) into Equation (18) and applying the integral formula given
by Equation (26), we obtain the analytical propagation expression of the Hermite–Gaussian
beams beyond the paraxial approximation as follows:

E(x, y, z) = Hm

(√
2

w x
)

Hn

(√
2

w y
)[

1−iρ/zR√
1+(ρ/zR)

2

]m+n

×
(
− ikz

2aρ2

)
exp

(
− b2

x+b2
y

4a

)
exp(ikρ),

(30)

where a, bx, by, and ρ are defined by Equation (25).

4.3. Laguerre–Gaussian Beams
4.3.1. Fresnel Diffraction Integral

Substituting Equation (3) into Equation (7) and utilizing the integral formulas [5]

w 2π

0
exp[ix cos(ϕ0 − ϕ)] exp(ilϕ0)dϕ0 = 2πil Jl(x) exp(ilϕ), (31)

r π
0 (x)l+ 1

2 exp
(
−ax2)Ll

p
(
bx2)Jl(cx)

√
cxdx

= 2−l−1a−l−p−1(a− b)pcl+ 1
2 exp

(
− c2

4a

)
Ll

p

[
bc2

4a(b−a)

]
,

(32)

we obtain the analytical propagation expression of the paraxial Laguerre–Gaussian beams

E(r, ϕ, z) =
(√

2 r
w

)l
Ll

p

(
2 r2

w2

)[
1−iz/zR√
1+(z/zR)

2

]2p+l
exp(ilϕ)

× 1
1+iz/zR

exp
(
− r2/w2

0
1+iz/zR

)
exp(ikz),

(33)

where w(z) = w0

√
1 + (z/zR)

2 and zR = kw0
2/2.

4.3.2. Collins Formula

Substituting Equation (3) into Equation (9) and recalling the integral formulas given
by Equations (31) and (32), we obtain the analytical propagation expression of paraxial
Laguerre–Gaussian beams passing through an ABCD optical system as follows:

E(r, ϕ, z) =
(√

2r
w0

q0
Aq0+B

)l( Aq0−B
Aq0+B

)p
Ll

p

(
2 r2

w′2
)

exp(ilϕ)

× q0
Aq0+B exp

[
ikr2

2

(
Cq0+D
Aq0+B

)]
exp(ikz),

(34)

where w′ = w0

√
A2 − B2/q2

0 and q0 = −izR with zR = kw0
2/2.

4.3.3. Angular Spectrum Representation

Substituting Equation (3) into Equation (17) and using the integral formulas given by
Equations (31) and (32), we obtain the angular spectrum of the Laguerre–Gaussian beams
as follows [5]:

Ẽ(θ, φ) =
(
− iw0k sin θ√

2

)l
(−1)pLl

p

(
w2

0k2 sin2 θ
2

)
× exp(ilφ)w2

0
4π exp

(
−w2

0k2 sin2 θ
4

)
.

(35)
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Further substituting Equation (35) into Equation (16) and performing the integration
with the help of Equations (31) and (32), we obtain the analytical propagation expression
of paraxial Laguerre–Gaussian beams, which coincides with Equation (33) derived by the
Fresnel diffraction integral.

4.3.4. Rayleigh–Sommerfeld Diffraction Integral

Substituting Equation (3) into Equation (19) and applying the integral formulas given
by Equations (31) and (32), we derive that the analytical propagation expression of the
Laguerre–Gaussian beams beyond the paraxial approximation as follows:

E(r, ϕ, z) =
(√

2r
w

)l
Ll

p

(
2 r2

w2

)(
1−iρ/zR√

1+ρ2/z2
R

)2p+l

× exp(ilϕ)
(
− ikz

2aρ2

)
exp

(
− b2

4a

)
exp(ikρ),

(36)

where

a =
1

w2
0
− ik

2ρ
, b = − k

ρ
r, w = w0

√
1 + (ρ/zR)

2, r =
√

x2 + y2, ρ =
√

r2 + z2. (37)

Replacing ρ of the exponential part in Equation (37) by ρ = z + r2/(2z) and other
terms by z, we obtain the analytical propagation expression of fundamental Gaussian
beams under the paraxial approximation, which coincides with Equation (33).

4.4. Bessel Beams
4.4.1. Fresnel Diffraction Integral

Substituting Equation (4) into Equation (7), employing the integral formula given by
Equation (31) and the following integral formula

w ∞

0
Jm(ar)Jm(br) exp

(
−cr2

)
rdr =

i−m

2c
exp

[
− 1

4c

(
a2 + b2

)]
Jm

(
iab
2c

)
, (38)

we obtain the analytical propagation expression of the paraxial Bessel beams

E(r, ϕ, z) = exp
(
− ik2

r z
2k

)
Jm(krr) exp(imϕ) exp(ikz), (39)

where kr = k sin θ0 with θ0 being the half-cone angle of the Bessel beams.

4.4.2. Collins Formula

Substituting Equation (4) into Equation (9) and employing the integral formulas given
by Equations (31) and (38), we obtain the analytical propagation expression of paraxial
Bessel beams passing through an ABCD optical system

E(r, ϕ, z) =
1
A

exp
(

ik2Cr2 − ik2
r B

2kA

)
Jm

(
krr
A

)
exp(imϕ) exp(ikz). (40)

4.4.3. Angular Spectrum Representation

Substituting Equation (4) into Equation (17), employing the integral formula given by
Equation (31), and recalling the properties of the Dirac delta function [5]

δ(b− a) = b
∞w

0

rJl(br)Jl(ar)dr, (41)

δ(ax) =
δ(x)
|a| , δ[g(x)] =

δ(x− x0)

|g′(x0)|
, (42)
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we obtain the angular spectrum of the Bessel beams as follows [5]:

Ẽ(θ, φ) =
1

2πim
δ(θ − θ0)

k2 sin θ0 cos θ0
exp(imφ), (43)

where θ0 is the half-cone angle of the Bessel beam.
After substituting Equation (43) into Equation (15) and performing the integrations,

we can obtain the analytical propagation expression of the Bessel beams that satisfy the
scalar Helmholtz wave equation as follows:

E(ρ, ϕ, z) = Jm(krr) exp(imϕ) exp(ikzz), (44)

where kz = k cos θ0 is the longitudinal component of the wavenumber k.
The analytical propagation expression of the Bessel beams that satisfy the paraxial

wave equation can be calculated by substituting Equations (43) and (16). The calculation
result is the same as Equation (39).

4.4.4. Rayleigh–Sommerfeld Diffraction Integral

Substituting Equation (4) into Equation (19) and applying the integral formulas given
by Equations (31) and (38), we obtain the analytical propagation expression of the non-
paraxial Bessel beams

E(r, ϕ, z) =
(

z
ρ

)
exp

(
− ikr2

2ρ

)
exp

(
− ik2

r ρ

2k

)
Jm(krr) exp(imϕ) exp(ikρ), (45)

where kr = k sin θ0 and ρ =
√

r2 + z2.

4.5. Airy Beams
4.5.1. Fresnel Diffraction integral

Substituting Equation (5) into Equation (6) and making use of the integral formula

r +∞
−∞ Ai(x) exp

(
bx2 + cx

)
dx

=
√
−π

b exp
(
− c2

4b +
c

8b2 − 1
96b3

)
Ai
(

1
16b2 − c

2b

)
,

(46)

we obtain the analytical propagation expression of the paraxial Airy beams

E(x, y, z) = Ai(Tx) exp(Mx)Ai
(
Ty
)

exp
(

My
)

exp(ikz), (47)

with

Tx =
x

wx
− z2

4k2w4
x
+

ia0z
kw2

x
, (48)

Ty =
y

wy
− z2

4k2w4
y
+

ia0z
kw2

y
, (49)

Mx =
a0x
wx
− a0z2

2k2w4
x
− iz3

12k3w6
x
+

ia2
0z

2kw2
x
+

izx
2kw3

x
, (50)

My =
a0y
wy
− a0z2

2k2w4
y
− iz3

12k3w6
y
+

ia2
0z

2kw2
y
+

iyz
2kw3

y
, (51)

where zR = kw0
2/2 is the Rayleigh range.
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4.5.2. Collins Formula

Substituting Equation (5) into Equation (8) and utilizing the integral formulas given
by Equation (46), we obtain the analytical propagation expression of paraxial Airy beams
passing through an ABCD optical system

E(x, y, z) =
1
A

Ai
(
T′x
)

exp
(

M′x
)
Ai
(

T′y
)

exp
(

M′y
)

exp(ikz), (52)

with

T′x =
x

Awx
− B2

4A2k2w4
x
+

ia0B
Akw2

x
, T′y =

y
Awy

− B2

4A2k2w4
y
+

ia0B
Akw2

y
, (53)

M′x =
ikC
2A

x2 +
a0x
Awx

− a0B2

2A2k2w4
x
− iB3

12A3k3w6
x
+

ia2
0B

2Akw2
x
+

iBx
2A2kw3

x
, (54)

M′y =
ikC
2A

y2 +
a0y
Awy

− a0B2

2A2k2w4
y
− iB3

12A3k3w6
y
+

ia2
0B

2Akw2
y
+

iBy
2A2kw3

y
. (55)

4.5.3. Angular Spectrum Representation

Substituting Equation (5) into Equation (12) and using the integral formula given by
Equation (46), we obtain the angular spectrum of the Airy beams [63]

Ẽ
(
kx, ky

)
=

wxwy
4π2 exp

[
−a0

(
k2

xw2
x + k2

yw2
y

)
+ 2

3 a3
0

]
× exp

{
i
3

[(
k3

xw3
x + k3

yw3
y

)
− 3a2

0
(
kxwx + kywy

)]}
.

(56)

After substituting Equation (56) into Equation (14) and performing the integration, we
can obtain the analytical propagation expression of paraxial Airy beams, which coincides
with Equation (47) derived by the Fresnel diffraction integral.

4.5.4. Rayleigh–Sommerfeld Diffraction Integral

Substituting Equation (5) into Equation (18) and applying the integral formula given
by Equation (46), we obtain the analytical propagation expression of the non-paraxial
Airy beams

E(x, y, z) =
(

z
ρ

)
exp

[
− ik(x2+y2)

2ρ

]
×Ai

(
T′′x
)

exp
(

M′′
x
)

Ai
(
T′′y
)

exp
(

M′′
y
)

exp(ikρ),
(57)

with

T′′x =
x

wx
− ρ2

4k2w4
x
+

ia0ρ

kw2
x

, T′′y =
y

wy
− ρ2

4k2w4
y
+

ia0ρ

kw2
y

, (58)

M′′
x =

a0x
wx
− a0ρ2

2k2w4
x
− iρ3

12k3w6
x
+

ia2
0ρ

2kw2
x
+

ixρ

2kw3
x

, (59)

M′′
y =

a0y
wy
− a0ρ2

2k2w4
y
− iρ3

12k3w6
y
+

ia2
0ρ

2kw2
y
+

iyρ

2kw3
y

, (60)

where ρ =
√

x2 + y2 + z2.

5. Numerical Results and Discussion

Based on the above derived analytical expressions, we perform some numerical
simulations to illustrate the propagation of typical structured light beams under different
conditions. In what follows, besides the parameters given below every figure, the common
parameters are chosen as follows: the free space wavelength of all the structured light
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beams λ = 632.8 nm, the orders of the Hermite–Gaussian beams m = n = 1, the mode
numbers of the Laguerre–Gaussian beams p = l = 2, the order of the Bessel beams m = 2,
and the decay parameter of the Airy beams a0 = 0.15.

Firstly, the paraxial propagation of typical structured light beams in the free space is
simulated and analyzed. In the simulations, the beam waist radius of the Gaussian-type
beams, which include the fundamental Gaussian beams, the Hermite–Gaussian beams,
and the Laguerre–Gaussian beams, is set as w0 = 2.0λ, the half-cone angle of the Bessel
beams is set as θ0 = 5o, and the transverse scaled parameters of the Airy beams are chosen
as wx = wy = 2.0λ. In Figure 1, we display the transverse intensity distributions of typical
structured light beams under the paraxial approximation at different propagation distances.
As we can see, with increasing propagation distance, the distributions of intensity in the
transverse plane for the fundamental Gaussian beam, the Hermite–Gaussian beam, and
the Laguerre–Gaussian beam gradually go away from the center due to diffraction effects.
In contrast, the transverse intensity distributions of the Bessel beam and the Airy beam
remain almost invariable during propagation. This arises from the fact that both the Bessel
beam and the Airy beam have the characteristic of diffraction-free propagation under the
paraxial approximation.
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Figure 1. Transverse intensity distributions of typical structured light beams under the paraxial ap-
proximation at different propagation distances. (a1–a5) z = 4λ, (b1–b5) z = 8λ, and (c1–c5) z = 12λ.
Shown from left to right are the cases of the fundamental Gaussian beam, the Hermite–Gaussian
beam, the Laguerre–Gaussian beam, the Bessel beam, and the Airy beam, respectively.

Next, we examine the non-paraxial propagation of typical structured light beams in
the free space. The non-paraxial parameters used in simulations are set as follows: the
beam waist radius of the fundamental Gaussian beams, the Hermite–Gaussian beams,
and the Laguerre–Gaussian beams w0 = 0.6λ, the half-cone angle of the Bessel beams
θ0 = 40o, and the transverse scaled parameters of the Airy beams wx = wy = 0.6λ. Figure 2
shows the transverse intensity distributions of typical structured light beams beyond the
paraxial approximation at different propagation distances. It can be observed that the
distributions of intensity in the transverse plane for the fundamental Gaussian beam, the
Hermite–Gaussian beam, and the Laguerre–Gaussian beam rapidly go away from the center
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with increasing propagation distance, which indicates that the diffraction phenomenon of
non-paraxial beams is more pronounced than that of paraxial beams. It is also observed
that the non-paraxial Airy beam no longer exhibits the characteristics of diffraction-free
propagation, and its peak intensity distribution will become wider with the propagation
distance increasing, which is completely different from the paraxial Airy beam. Most
notably, the Bessel beam still has the characteristic of diffraction-free propagation beyond
the paraxial approximation, as exhibited in Figure 2a4–c4.
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Shown from left to right are the cases of the fundamental Gaussian beam, the Hermite–Gaussian
beam, the Laguerre–Gaussian beam, the Bessel beam, and the Airy beam, respectively.

Finally, based on the analytical propagation expressions of typical structured light
beams described with the Collins formula, we simulate their propagation in a gradient-
index medium with the following refractive index [64–66]:

n = n0

(
1− r2

2β2

)
, (61)

where n0 is the refractive index on the symmetry axis, r =
√

x2 + y2 is the radial distance
from the symmetry axis, and β is the distribution factor involved in the determination of
the gradient-index distribution. For such a gradient-index medium, the ABCD transfer
matrix can be expressed as [56,67]

[
A B
C D

]
=

[
cos(z/β)

β sin(z/β)
n0

−n0 sin(z/β)
β cos(z/β)

]
, (62)

where z is the propagation distance of the beam in the gradient-index medium.
Figure 3 illustrates the propagation of typical structured light beams in the gradient-

index medium described above, where the parameters used in simulations are set as
n0 = 1.594, β = 0.05, w0 = 2.0λ, θ0 = 5o, and wx = wy = 2.0λ. Since the intensity pattern
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reconstructs itself repeatedly, only one propagation period L = 2πβ is shown. It can be
seen from Figure 3 that the Fundamental Gaussian beam, the Hermite–Gaussian beam,
and the Laguerre–Gaussian beam converge and increase sharply in intensity at z = L/2,
while the Bessel beam focuses at z = L/4 and z = 3L/4. In addition, the Airy beam
exhibits two singularities at z = L/4 and z = 3L/4, respectively. The sidelobe of the
intensity distribution of the Airy beam weakens as it approaches the singularities and
reconstructs gradually when close to maximum intensity, demonstrating the acceleration
and self-healing nature of the Airy beam.
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6. Conclusions

In conclusion, a summary of the main scalar diffraction theories of structured light beams
is provided. The main scalar diffraction theories of light beams, including the Fresnel diffrac-
tion integral, Collins formula, angular spectrum representation, and Rayleigh–Sommerfeld
diffraction integral, are summarized and compared. On the base of such theories, the
concise and explicit analytical expressions for the propagation of typical structured light
beams under different conditions are systematically derived, and the consistency between
these expressions is analyzed. Some numerical simulations are performed to illustrate
the paraxial and non-paraxial propagation of typical structured light beams. This work is
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expected to be beneficial to the study of the propagation effects of structured light beams
by using various scalar diffraction theories.
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