CVD Encapsulation of Laser-Graphitized Electrodes in Diamond Electro-Optical Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optical Characterization of Laser Structured and Epitaxially Grown Diamond Surface
3.2. Confocal Raman Spectroscopy of Deposited Diamond Layer and Encapsulated Graphitized Structures
3.3. Electrical Conductivity of Encapsulated Graphitized Structures
3.4. Electrical Strength between Encapsulated Graphitized Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geis, M.W. Growth of Device-Quality Homoepitaxial Diamond Thin Films. MRS Online Proc. Libr. 1989, 162, 15–22. [Google Scholar] [CrossRef]
- Yoneda, H.; Ueda, K.I.; Aikawa, Y.; Baba, K.; Shohata, N. Photoconductive properties of chemical vapor deposited diamond switch under high electric field strength. Appl. Phys. Lett. 1995, 66, 460–462. [Google Scholar] [CrossRef]
- Bogdanov, A.V. Investigation of microplasma breakdown at a contact between a metal and a semiconducting diamond. Sov. Phys. Semicond 1982, 16, 720. [Google Scholar]
- Aleksov, A.; Kubovic, M.; Kaeb, N.; Spitzberg, U.; Bergmaier, A.; Dollinger, G.; Bauer, T.; Schreck, M.; Stritzker, B.; Kohn, E. Diamond field effect transistors—Concepts and challenges. Diam. Relat. Mater. 2023, 12, 391–398. [Google Scholar] [CrossRef]
- Saha, N.C.; Kim, S.W.; Oishi, T.; Kasu, M. 3326-V modulation-doped diamond MOSFETs. IEEE Electron Device Lett. 2022, 43, 1303–1306. [Google Scholar] [CrossRef]
- Araujo, D.; Suzuki, M.; Lloret, F.; Alba, G.; Villar, P. Diamond for electronics: Materials, processing and devices. Materials 2021, 14, 7081. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, W.; Chen, G.; Wen, F.; Lin, F.; He, S.; Wang, Y.; Zhang, L.; Fan, S.; Bu, R.; et al. Electrical properties of cerium hexaboride gate hydrogen-terminated diamond field effect transistor with normally-off characteristics. Carbon 2023, 201, 71–75. [Google Scholar] [CrossRef]
- He, S.; Chen, G.; Han, X.; Wang, W.; Chang, X.; Li, Q.; Zhang, Q.; Wang, Y.-F.; Zhang, M.; Zhu, T.; et al. Solution-processed tin oxide thin film for normally-off hydrogen terminated diamond field effect transistor. Appl. Phys. Lett. 2022, 120, 132102. [Google Scholar] [CrossRef]
- Dang, C.; Lu, A.; Wang, H.; Zhang, H.; Lu, Y. Diamond semiconductor and elastic strain engineering. J. Semicond. 2022, 43, 021801. [Google Scholar] [CrossRef]
- Ghosh, S.; Surdi, H.; Kargar, F.; Koeck, F.A.; Rumyantsev, S.; Goodnick, S.; Nemanich, R.J.; Balandin, A.A. Excess noise in high-current diamond diodes. Appl. Phys. Lett. 2022, 120, 062103. [Google Scholar] [CrossRef]
- Cañas, J.; Eon, D. Barrier height requirements for leakage suppression in diamond power Schottky diodes. Diam. Relat. Mater. 2023, 136, 110038. [Google Scholar] [CrossRef]
- Weippert, J.; Reinke, P.; Benkhelifa, F.; Czap, H.; Giese, C.; Kirste, L.; Straňák, P.; Kustermann, J.; Engels, J.; Lebedev, V. Pseudovertical Schottky Diodes on Heteroepitaxially Grown Diamond. Crystals 2022, 12, 1626. [Google Scholar] [CrossRef]
- Marinelli, M.; Milani, E.; Paoletti, A.; Tucciarone, A.; Verona-Rinati, G.; Angelone, M.; Pillon, M. Trapping and detrapping effects in high-quality chemical-vapor-deposition diamond films: Pulse shape analysis of diamond particle detectors. Phys. Rev. B 2001, 64, 195205. [Google Scholar] [CrossRef]
- Ramos, M.R.; Crnjac, A.; Cosic, D.; Jakšić, M. Ion microprobe study of the polarization quenching techniques in single crystal diamond radiation detectors. Materials 2022, 15, 388. [Google Scholar] [CrossRef] [PubMed]
- Edoardo, B.; Nicola, M. Diamond Detectors for Timing Measurements in High Energy Physics. Front. Phys. 2020, 8, 248. [Google Scholar]
- Liu, Y.-H.; Loh, C.-W.; Zhang, J.-L.; Wu, F.-L.; Qi, M.; Hei, L.-F.; Lv, F.-X.; Lv, Y.-L.; Ge, T.; Li, Y.-Q.; et al. Proton irradiation tests of single crystal diamond detector at CIAE. Nucl. Mater. Energy 2020, 22, 100735. [Google Scholar] [CrossRef]
- Anderlini, L.; Bellini, M.; Cindro, V.; Corsi, C.; Kanxheri, K.; Lagomarsino, S.; Lucarelli, C.; Morozzi, A.; Passaleva, G.; Passeri, D.; et al. A Study of the Radiation Tolerance and Timing Properties of 3D Diamond Detectors. Sensors 2022, 22, 8722. [Google Scholar] [CrossRef]
- Chiodini, G.; Martino, M. Diamond Radiation Detectors. Photocond. Photocond. Mater. Fundam. Tech. Appl. 2022, 2, 689–714. [Google Scholar]
- Yoneda, H.; Tokuyama, K.; Ueda, K.-I.; Yamamoto, H.; Baba, K. High power terahertz radiation with diamond photoconductive antenna array. In Proceedings of the 25th International Conference on Infrared and Millimeter Waves (Cat. No. 00EX442), Beijing, China, 12–15 September 2000; pp. 61–62. [Google Scholar]
- Yoneda, H.; Tokuyama, K.; Ueda, K.-I.; Yamamoto, H.; Baba, K. High-power terahertz radiation emitter with a diamond photoconductive switch array. Appl. Opt. 2011, 40, 6733–6736. [Google Scholar] [CrossRef]
- Kononenko, V.V.; Komlenok, M.S.; Chizhov, P.A.; Bukin, V.V.; Bulgakova, V.V.; Khomich, A.A.; Bolshakov, A.P.; Konov, V.I.; Garnov, S.V. Efficiency of Photoconductive Terahertz Generation in Nitrogen-Doped Diamonds. Photonics 2022, 9, 18. [Google Scholar] [CrossRef]
- Kononenko, T.V.; Ashikkalieva, K.K.; Kononenko, V.V.; Zavedeev, E.V.; Dezhkina, M.A.; Komlenok, M.S.; Ashkinazi, E.E.; Bukin, V.V.; Konov, V.I. Diamond Photoconductive Antenna for Terahertz Generation Equipped with Buried Graphite Electrodes. Photonics 2023, 10, 75. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Imai, T.; Tanabe, K.; Tsuno, T.; Kumazawa, Y.; Fujimori, N. The measurement of thermal properties of diamond. Diamond Rel. Mater. 1997, 6, 1057–1061. [Google Scholar]
- Fu, J.; Hoffman, A.; Kuntumalla, M.K.; Wang, H.-X.; Chen, D.; Mosyak, A.; Yossifon, G. Investigation of the cooling enhancement of a single crystal diamond heat sink with embedded microfluidic channels. Diam. Relat. Mater. 2022, 130, 109470. [Google Scholar] [CrossRef]
- Hao, X.; Liu, B.; Li, Y.; Zhao, J.; Zhang, S.; Wen, D.; Liu, K.; Dai, B.; Han, J.; Zhu, J. Diamond single crystal-polycrystalline hybrid microchannel heat sink strategy for directional heat dissipation of hot spots in power devices. Diam. Relat. Mater. 2023, 135, 109858. [Google Scholar] [CrossRef]
- Du, L.; Yuan, J.; Deng, N.; Qu, Y.; Zhang, X.; Hu, W. Heat transfer properties of single crystal diamond zigzag double-layer microchannel heat sinks. Int. J. Therm. Sci. 2024, 196, 108687. [Google Scholar] [CrossRef]
- Zhang, C.; Vispute, R.D.; Fu, K.; Ni, C. A review of thermal properties of CVD diamond films. J. Mater. Sci. 2023, 58, 3485–3507. [Google Scholar] [CrossRef]
- Negmatov, S.S.; Daminov, A.A.; Umarov, A.V.; Abed, N.S.; Berkinov, E.H. Synthetic Diamond Thermistors and Heatsinks. J. Optoelectron. Laser 2022, 41, 764–769. [Google Scholar]
- Mu, F.; He, R.; Suga, T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices. Scr. Mater. 2018, 150, 148–151. [Google Scholar] [CrossRef]
- Kononenko, V.V.; Konov, V.I.; Pimenov, S.M.; Prokhorov, A.M.; Pavel’ev, V.S.; Soifer, V.A. Diamond diffraction optics for CO2 lasers. Quantum Electron. 1999, 29, 9. [Google Scholar] [CrossRef]
- Komlenok, M.; Kononenko, T.; Sovyk, D.; Pavelyev, V.; Knyazev, B.; Ashkinazi, E.; Reshetnikov, A.; Komandin, G.; Pashinin, V.; Ralchenko, V.; et al. Diamond diffractive lens with a continuous profile for powerful terahertz radiation. Opt. Lett. 2021, 46, 340–343. [Google Scholar] [CrossRef]
- Isberg, J.; Hammersberg, J.; Johansson, E.; Wikström, T.; Twitchen, D.J.; Whitehead, A.J.; Coe, S.N.; Scarsbrook, G.A. High carrier mobility in single-crystal plasma-deposited diamond. Science 2002, 297, 1670–1672. [Google Scholar] [CrossRef] [PubMed]
- Kalish, R. Diamond as a unique high-tech electronic material: Difficulties and prospects. J. Phys. D Appl. Phys. 2007, 40, 6467. [Google Scholar] [CrossRef]
- Wort, C.J.H.; Balmer, R.S. Diamond as an electronic material. Mater. Today 2008, 11, 22–28. [Google Scholar] [CrossRef]
- Field, E. The Properties of Diamond; Academic Press: London, UK, 1979; pp. 82, 389 and 652. [Google Scholar]
- Marchand, D.; Fretigny, C.; Lagues, M.; Legrand, A.P.; McRae, E.; Mareche, J.F.; Lelaurain, M. Surface structure and electrical conductivity of natural and artificial graphites. Carbon 1984, 22, 497–506. [Google Scholar]
- Fedoseev, D.V.; Varshavskaya, I.G.; Lavrent’ev, A.V.; Deryaguin, B.V. Phase transformations in highly disperse powders during their rapid heating and cooling. Powder Technol. 1985, 44, 125–129. [Google Scholar] [CrossRef]
- Rothschild, M.; Arnone, C.; Ehrlich, D.J. Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 1986, 4, 310–314. [Google Scholar] [CrossRef]
- Kononenko, T.V.; Meier, M.; Komlenok, M.S.; Pimenov, S.M.; Romano, V.; Pashinin, V.P.; Konov, V.I. Microstructuring of diamond bulk by IR femtosecond laser pulses. Appl. Phys. A 2008, 90, 645–651. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Bellini, M.; Corsi, C.; Gorelli, F.; Parrini, G.; Santoro, M.; Sciortino, S. Three-dimensional diamond detectors: Charge collection efficiency of graphitic electrodes. Appl. Phys. Lett. 2013, 103, 233507. [Google Scholar] [CrossRef]
- Kononenko, T.; Dyachenko, P.; Konov, V. Diamond photonic crystals for the IR spectral range. Opt. Lett. 2014, 39, 6962–6965. [Google Scholar] [CrossRef]
- Shimizu, M.; Shimotsuma, Y.; Sakakura, M.; Yuasa, T.; Homma, H.; Minowa, Y.; Tanaka, K.; Miura, K.; Hirao, K. Periodic metallo-dielectric structure in diamond. Opt. Express 2009, 17, 46–54. [Google Scholar] [CrossRef]
- Komlenok, M.S.; Lebedev, S.P.; Komandin, G.A.; Piqué, A.; Konov, V.I. Fabrication and electrodynamic properties of all-carbon terahertz planar metamaterials by laser direct-write. Laser Phys. Lett. 2018, 15, 036201. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Bellini, M.; Corsi, C.; Fanetti, S.; Gorelli, F.; Liontos, I.; Parrini, G.; Santoro, M.; Sciortino, S. Electrical and Raman-imaging characterization of laser-made electrodes for 3D diamond detectors. Diam. Relat. Mater. 2014, 43, 23–28. [Google Scholar] [CrossRef]
- Sun, B.; Salter, P.S.; Booth, M.J. High conductivity micro-wires in diamond following arbitrary paths. Appl. Phys. Lett. 2014, 105, 231105. [Google Scholar] [CrossRef]
- Pimenov, S.M.; Vlasov, I.I.; Khomich, A.A.; Neuenschwander, B.; Muralt, M.; Romano, V. Picosecond-laser-induced structural modifications in the bulk of single-crystal diamond. Appl. Phys. A 2011, 105, 673–677. [Google Scholar] [CrossRef]
- Komlenok, M.S.; Dezhkina, M.A.; Kononenko, V.V.; Khomich, A.A.; Popovich, A.F.; Konov, V.I. Effect of laser radiation parameters on the conductivity of structures produced on the polycrystalline diamond surface. Bull. Lebedev Phys. Inst. 2017, 44, 246–248. [Google Scholar] [CrossRef]
- Available online: https://optosystems.ru/ (accessed on 12 December 2023).
- Wang, Y.F.; Chang, X.; Liu, Z.; Liu, Z.; Fu, J.; Zhao, D.; Shao, G.; Wang, J.; Zhang, S.; Liang, Y.; et al. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate. J. Cryst. Growth 2018, 489, 51–56. [Google Scholar] [CrossRef]
- Fu, J.; Liu, Z.; Zhu, T.; Zhang, M.; Zhang, X.; Shao, G.; Liu, Z.; Wang, Y.; Zhao, D.; Chang, X.; et al. Fabrication of microchannels in single crystal diamond for microfluidic systems. Microfluid. Nanofluidics 2018, 22, 92. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, J.; Shao, S.; Tu, J.; Huang, Y.; Bi, T.; Chen, L.; Wei, J.; Kawarada, H.; Li, C. Evolution of growth characteristics around the junction in the mosaic diamond. Diam. Relat. Mater. 2021, 120, 108640. [Google Scholar] [CrossRef]
- Tardieu, A.; Cansell, F.; Petitet, J.P. Pressure and temperature dependence of the first-order Raman mode of diamond. J. Appl. Phys. 1990, 68, 3243–3245. [Google Scholar] [CrossRef]
- Lespade, P.; Al-Jishi, R.; Dresselhaus, M.S. Model for Raman scattering from incompletely graphitized carbons. Carbon 1982, 20, 427. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef]
- Komlenok, M.S.; Dezhkina, M.A.; Khomich, A.A.; Orekhov, A.S.; Orekhov, A.S.; Konov, V.I. Measuring the Local Thickness of Laser-Induced Graphitized Layer on Diamond Surface by Raman Spectroscopy. Phys. Status Solidi B 2019, 256, 1800686. [Google Scholar] [CrossRef]
- Merlen, A.; Buijnsters, J.G.; Pardanaud, C. A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons. Coatings 2017, 7, 153. [Google Scholar] [CrossRef]
- Benybassez, C.; Rouzaud, J.N. Characterization of carbonaceous materials by correlated electron and optical microscopy and raman microspectroscopy. Scan. Electr. Microsc. 1985, 1, 119–132. [Google Scholar]
- Khomich, A.A.; Kononenko, V.; Kudryavtsev, O.; Zavedeev, E.; Khomich, A.V. Raman study of the diamond to graphite transition induced by the single femtosecond laser pulse on the (111) face. Nanomaterials 2023, 13, 162. [Google Scholar] [CrossRef]
- Hong, A. Dielectric Strength of Air. The Physics Factbook. 2000. Available online: https://hypertextbook.com/facts/2000/AliceHong.shtml (accessed on 12 December 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komlenok, M.S.; Kononenko, V.V.; Bolshakov, A.P.; Kurochitskiy, N.D.; Pasternak, D.G.; Ushakov, A.A.; Konov, V.I. CVD Encapsulation of Laser-Graphitized Electrodes in Diamond Electro-Optical Devices. Photonics 2024, 11, 10. https://doi.org/10.3390/photonics11010010
Komlenok MS, Kononenko VV, Bolshakov AP, Kurochitskiy ND, Pasternak DG, Ushakov AA, Konov VI. CVD Encapsulation of Laser-Graphitized Electrodes in Diamond Electro-Optical Devices. Photonics. 2024; 11(1):10. https://doi.org/10.3390/photonics11010010
Chicago/Turabian StyleKomlenok, Maxim S., Vitali V. Kononenko, Andrey P. Bolshakov, Nikolay D. Kurochitskiy, Dmitrii G. Pasternak, Alexander A. Ushakov, and Vitaly I. Konov. 2024. "CVD Encapsulation of Laser-Graphitized Electrodes in Diamond Electro-Optical Devices" Photonics 11, no. 1: 10. https://doi.org/10.3390/photonics11010010
APA StyleKomlenok, M. S., Kononenko, V. V., Bolshakov, A. P., Kurochitskiy, N. D., Pasternak, D. G., Ushakov, A. A., & Konov, V. I. (2024). CVD Encapsulation of Laser-Graphitized Electrodes in Diamond Electro-Optical Devices. Photonics, 11(1), 10. https://doi.org/10.3390/photonics11010010