Progresses of Mid-Infrared Glass Fiber for Laser Power Delivery
Abstract
:1. Introduction
2. Step Refractive Index Fibers
2.1. Heavy Metal Oxide Glass Fiber
2.2. Heavy Metal Fluoride Glass Fiber
2.3. Chalcogenide Glass Fiber
2.3.1. Progress in Laser Delivery below 5 μm Wavelength
2.3.2. Progress in Laser Delivery above 5 μm Wavelength
- (1)
- Transmission of CO laser in CHG fiber
- (2)
- Transmission of CO2 laser in CHG fiber
3. Micro-Structured Fibers
4. Challenges Faced by MIR Fiber
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ke, K.; Xia, C.; Islam, M.N.; Welsh, M.J.; Freeman, M.J. Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser. Opt. Express 2009, 17, 12627–12640. [Google Scholar] [CrossRef] [PubMed]
- Powers, M.A.; Davis, C.C. Spectral LADAR: Active range-resolved three-dimensional imaging spectroscopy. Appl. Opt. 2012, 51, 1468–1478. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-H.; Glenday, A.G.; Benedick, A.J.; Chang, G.; Chen, L.-J.; Cramer, C.; Fendel, P.; Furesz, G.; Kärtner, F.X.; Korzennik, S. In-situ determination of astro-comb calibrator lines to better than 10 cm s−1. Opt. Express 2010, 18, 13239–13249. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Jia, Z.; Li, Z.; Jia, S.; Zhao, Z.; Zhang, L.; Feng, Y.; Qin, G.; Ohishi, Y.; Qin, W. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica 2018, 5, 1264–1270. [Google Scholar] [CrossRef]
- Li, Z.; Jia, Z.; Yao, C.; Zhao, Z.; Li, N.; Hu, M.; Ohishi, Y.; Qin, W.; Qin, G. 22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers. Opt. Lett. 2020, 45, 1882–1885. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wu, B.; Wang, X.; Pan, Z.; Liu, Z.; Zhang, P.; Shen, X.; Nie, Q.; Dai, S.; Wang, R. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev. 2017, 11, 1700005. [Google Scholar] [CrossRef]
- Jha, A.; Richards, B.; Jose, G.; Teddy-Fernandez, T.; Joshi, P.; Jiang, X.; Lousteau, J. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Prog. Mater. Sci. 2012, 57, 1426–1491. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, F.; Dai, S.; Zhang, P.; Liu, Z.; Qin, G.; Jia, Z. Mid-infrared femtosecond laser-induced damage in TeO2-BaF2-Y2O3 fluorotellurite glass. Opt. Mater. Express 2022, 12, 1670–1682. [Google Scholar] [CrossRef]
- Takahashi, S. Optical properties of fluoride glasses. J. Non-Cryst. Solids 1987, 95, 95–106. [Google Scholar] [CrossRef]
- Poulain, M.; Poulain, M.; Lucas, J. Verres fluores au tetrafluorure de zirconium proprietes optiques d’un verre dope au Nd3+. Mater. Res. Bull. 1975, 10, 243–246. [Google Scholar] [CrossRef]
- Whitehurst, C.; Dickinson, M.R.; Charlton, A.; King, T.A.; France, P. Transmission of 2.94 µm laser radiation by zirconium fluoride optical fibers. Infrared Fiber Opt. Proc. SPIE 1989, 1048, 141–144. [Google Scholar] [CrossRef]
- Wüthrich, S.; Lüthy, W.; Weber, H.P. Optical damage thresholds at 2.94 μm in fluoride glass fibers. Appl. Opt. 1992, 31, 5833–5837. [Google Scholar] [CrossRef] [PubMed]
- Nazabal, V.; Poulain, M.; Olivier, M.; Pirasteh, P.; Camy, P.; Doualan, J.L.; Guy, S.; Djouama, T.; Boutarfaia, A.; Adam, J.L. Fluoride and oxyfluoride glasses for optical applications. J. Fluor. Chem. 2012, 134, 18–23. [Google Scholar] [CrossRef]
- Loehr, S.R.; Bruce, A.J.; Mossadegh, R.; Doremus, R.H.; Moynihan, C.T. IR Spectroscopy Studies of Attack of Liquid Water on ZrF4-Based Glasses. Mater. Sci. Forum 1985, 5, 311–322. [Google Scholar] [CrossRef]
- Itoh, K.; Miura, K.; Masuda, I.; Iwakura, M.; Yamashita, T. Low-loss fluorozirco-aluminate glass fiber. J. Non-Cryst. Solids 1994, 167, 112–116. [Google Scholar] [CrossRef]
- Aydin, Y.O.; Fortin, V.; Vallée, R.; Bernier, M. Towards power scaling of 2.8 μm fiber lasers. Opt. Lett. 2018, 43, 4542–4545. [Google Scholar] [CrossRef] [PubMed]
- Slusher, R.; Lenz, G.; Hodelin, J.; Sanghera, J.; Shaw, L.; Aggarwal, I. Large Raman Gain and Nonlinear Phase Shifts in High-Purity As2Se3 Chalcogenide Fibers. J. Opt. Soc. Am. B 2004, 21, 1146–1155. [Google Scholar] [CrossRef]
- Nguyen, V.Q.; Sanghera, J.; Pureza, P.; Kung, F.; Aggarwal, I. Fabrication of Arsenic Selenide Optical Fiber with Low Hydrogen Impurities. J. Am. Ceram. Soc. 2002, 85, 2849–2851. [Google Scholar] [CrossRef]
- Kapany, N.S.; Simms, R.J. Recent developments in infrared fiber optics. Infrared Phys. 1965, 5, 69–80. [Google Scholar] [CrossRef]
- Lynda, E.B.; John, A.M.; Jasbinder Singh, S.; Ishwar, D.A. Midinfrared power delivery through chalcogenide glass-clad optical fibers. Proc. SPIE 1996, 2714, 211–221. [Google Scholar] [CrossRef]
- Sanghera, J.; Shaw, L.; Talley, D.; Busse, L.; Aggarwal, I. IR fiber optics for biomedical applications. Proc. SPIE—Int. Soc. Opt. Eng. 2000, 3907, 461–467. [Google Scholar] [CrossRef]
- Sanghera, J.S.; Busse, L.E.; Aggarwal, I.D.; Chenard, F. Infrared fibers for defense against MANPAD systems. Proc. SPIE 2005, 5781, 7–14. [Google Scholar] [CrossRef]
- Papagiakoumou, E.; Papadopoulos, D.N.; Serafetinides, A.A. Pulsed infrared radiation transmission through chalcogenide glass fibers. Opt. Commun. 2007, 276, 80–86. [Google Scholar] [CrossRef]
- Qi, S.; Li, Y.; Huang, Z.; Ren, H.; Sun, W.; Shi, J.; Wang, F.; Shen, D.; Feng, X.; Yang, Z. Flexible chalcogenide glass large-core multimode fibers for hundred-watt-level mid-infrared 2–5 µm laser transmission. Opt. Express 2022, 30, 14629–14644. [Google Scholar] [CrossRef] [PubMed]
- Chenard, F.; Alvarez, O.; Moawad, H. MIR chalcogenide fiber and devices. Prog. Biomed. Opt. Imaging—Proc. SPIE 2015, 9317, 93170B. [Google Scholar] [CrossRef]
- Sincore, A.; Cook, J.; Tan, F.; El Halawany, A.; Riggins, A.; McDaniel, S.; Cook, G.; Martyshkin, D.V.; Fedorov, V.V.; Mirov, S.B.; et al. High power single-mode delivery of mid-infrared sources through chalcogenide fiber. Opt. Express 2018, 26, 7313–7323. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhong, M.; Xu, T.; Xiao, J.; Jiao, K.; Wang, X.; Yan, B.; Liu, J.; Wang, X.; Zhao, Z. Mid-Infrared single-mode Ge-As-S fiber for high power laser delivery. J. Light. Technol. 2022, 40, 2151–2156. [Google Scholar] [CrossRef]
- Dianov, E.; Masychev, V.; Plotnichenko, V.; Sysoev, V.; Baikalov, P.; Devjatykh, G.; Konov, A.; Schipachev, J.; Churbanov, M. Fiber-optica cable for CO laser power transmission. Electron. Lett. 1984, 20, 129–130. [Google Scholar] [CrossRef]
- Hattori, T.; Sato, S.; Fujioka, T.; Takahashi, S.; Kanamori, T. High-power CO laser transmission through As-S glass fibres. Electron. Lett. 1984, 20, 811–812. [Google Scholar] [CrossRef]
- Arai, T.; Kikuchi, M. Carbon monoxide laser power delivery with an As2S3 infrared glass fiber. Appl. Opt. 1984, 23, 3017–3019. [Google Scholar] [CrossRef]
- Watanabe, S.; Iwamoto, N.; Hattori, T.; Sato, S.-I.; Obara, M.; Takahashi, S.; Kanamori, T. 60-W CO laser power transmission through As-S glass fibers. In Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, ML, USA, 21 May 1985; p. FP6. [Google Scholar] [CrossRef]
- Sato, S.i.; Watanabe, S.; Fujioka, T.; Saito, M.; Sakuragi, S. High power, high intensity CO infrared laser transmission through As2S3 glass fibers. Appl. Phys. Lett. 1986, 48, 960–962. [Google Scholar] [CrossRef]
- Arai, T.; Kikuchi, M.; Saito, M.; Takizawa, M. Power transmission capacity of As-S glass fiber on CO laser delivery. J. Appl. Phys. 1988, 63, 4359–4364. [Google Scholar] [CrossRef]
- Sato, S.; Igarashi, K.; Taniwaki, M.; Tanimoto, K.; Kikuchi, Y. Multihundred-watt CO laser power delivery through chalcogenide glass fibers. Appl. Phys. Lett. 1993, 62, 669–671. [Google Scholar] [CrossRef]
- Sanghera, J.S.; Aggarwal, I.D. Active and passive chalcogenide glass optical fibers for IR applications: A review. J. Non-Cryst. Solids 1999, 256–257, 6–16. [Google Scholar] [CrossRef]
- Nishii, J.; Yamashita, T.; Yamagishi, T. Chalcogenide glass fiber with a core–cladding structure. Appl. Opt. 1989, 28, 5122–5127. [Google Scholar] [CrossRef] [PubMed]
- Junji, N.; Ikuo, I.; Syozo, M.; Ryuji, I.; Toshiharu, Y.; Takashi, Y. Chalcogenide glass fibers for power delivery of CO2 laser. Proc. SPIE 1990, 1228, 224–232. [Google Scholar] [CrossRef]
- Inagawa, I.; Takashi Yamagishi, T.Y.; Toshiharu Yamashita, T.Y. Transmission-Loss Spectra of Chalcohalide Se-Te-I Glass Fibers and Its Delivery of CO2 Laser Power. Jpn. J. Appl. Phys. 1991, 30, 2846. [Google Scholar] [CrossRef]
- Su, J.; Dai, S.; Jiang, L.; Lin, C.; Yang, C.-C.; Zhang, N.; Yuan, Y. Fabrication and bending strength analysis of low-loss Ge15As25Se40Te20 chalcogenide glass fiber: A potential mid-infrared laser transmission medium. Opt. Mater. Express 2019, 9, 2859–2869. [Google Scholar] [CrossRef]
- Knight, J.; Birks, T.; Russell, P.S.J.; Atkin, D. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996, 21, 1547–1549. [Google Scholar] [CrossRef]
- Birks, T.A.; Knight, J.C.; Russell, P.S.J. Endlessly single-mode photonic crystal fiber. Opt. Lett. 1997, 22, 961–963. [Google Scholar] [CrossRef]
- Monro, T.M.; Bennett, P.; Broderick, N.; Richardson, D. Holey fibers with random cladding distributions. Opt. Lett. 2000, 25, 206–208. [Google Scholar] [CrossRef] [PubMed]
- Urich, A.; Maier, R.R.J.; Mangan, B.J.; Renshaw, S.; Knight, J.C.; Hand, D.P.; Shephard, J.D. Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fiber. Opt. Express 2012, 20, 6677–6684. [Google Scholar] [CrossRef] [PubMed]
- Monro, T.M.; West, Y.D.; Hewak, D.; Broderick, N.; Richardson, D.J. Chalcogenide holey fibers. Electron. Lett. 2000, 36, 1998–2000. [Google Scholar] [CrossRef]
- Troles, J.; Brilland, L.; Smektala, F.; Traynor, N.; Houizot, P.; Desevedavy, F. Chalcogenide Photonic Crystal Fibers for Near and Middle Infrared Applications. In Proceedings of the 2007 9th International Conference on Transparent Optical Networks, Rome, Italy, 1–5 July 2007; pp. 297–300. [Google Scholar] [CrossRef]
- Ren, H.; Qi, S.; Hu, Y.; Han, F.; Shi, J.; Feng, X.; Yang, Z. All-solid mid-infrared chalcogenide photonic crystal fiber with ultralarge mode area. Opt. Lett. 2019, 44, 5553–5556. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Ren, H.; Xu, F.; Shi, J.; Qi, S.; Hu, Y.; Tang, J.; Han, F.; Shen, D.; Yang, Z. Few-moded ultralarge mode area chalcogenide photonic crystal fiber for mid-infrared high power applications. Opt. Express 2020, 28, 16658–16672. [Google Scholar] [CrossRef]
- Temelkuran, B.; Hart, S.D.; Benoit, G.; Joannopoulos, J.D.; Fink, Y. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 2002, 420, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, J.G.; Mousavi, S.M.; Ventura, A.; Poletti, F. Numerical modeling of a hybrid hollow-core fiber for enhanced mid-infrared guidance. Opt. Express 2021, 29, 17042–17052. [Google Scholar] [CrossRef]
- Duguay, M.; Kokubun, Y.; Koch, T.; Pfeiffer, L. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett. 1986, 49, 13–15. [Google Scholar] [CrossRef]
- Benabid, F.; Knight, J.C.; Antonopoulos, G.; Russell, P.S.J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 2002, 298, 399–402. [Google Scholar] [CrossRef]
- Pryamikov, A.D.; Biriukov, A.S.; Kosolapov, A.F.; Plotnichenko, V.G.; Semjonov, S.L.; Dianov, E.M. Demonstration of a waveguide regime for a silica hollow—Core microstructured optical fiber with a negative curvature of the core boundary in the spectral region & 3.5 μm. Opt. Express 2011, 19, 1441–1448. [Google Scholar] [CrossRef]
- Yu, F.; Song, P.; Wu, D.; Birks, T.; Bird, D.; Knight, J. Attenuation limit of silica-based hollow-core fiber at mid-IR wavelengths. APL Photonics 2019, 4, 080803. [Google Scholar] [CrossRef]
- Gattass, R.R.; Rhonehouse, D.; Gibson, D.; McClain, C.C.; Thapa, R.; Nguyen, V.Q.; Bayya, S.S.; Weiblen, R.J.; Menyuk, C.R.; Shaw, L.B.; et al. Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion. Opt. Express 2016, 24, 25697–25703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chang, Y.; Xu, Y.; Chengzhen, L.; Xiao, X.; li, j.; ma, x.; Wang, Y.; Guo, H. Design and fabrication of a chalcogenide hollow-core anti-resonant fiber for mid-infrared applications. Opt. Express 2023, 31, 7659–7670. [Google Scholar] [CrossRef] [PubMed]
- Désévédavy, F.; Renversez, G.; Troles, J.; Brilland, L.; Houizot, P.; Coulombier, Q.; Smektala, F.; Traynor, N.; Adam, J.-L. Te-As-Se glass microstructured optical fiber for the middle infrared. Appl. Opt. 2009, 48, 3860–3865. [Google Scholar] [CrossRef] [PubMed]
- Kosolapov, A.F.; Pryamikov, A.D.; Biriukov, A.S.; Shiryaev, V.S.; Astapovich, M.S.; Snopatin, G.E.; Plotnichenko, V.G.; Churbanov, M.F.; Dianov, E.M. Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core. Opt. Express 2011, 19, 25723–25728. [Google Scholar] [CrossRef]
- Tong, H.T.; Nishiharaguchi, N.; Suzuki, T.; Ohishi, Y. Mid-infrared transmission by a tellurite hollow core optical fiber. Opt. Express 2019, 27, 30576–30588. [Google Scholar] [CrossRef]
- Perevoschikov, S.; Kaydanov, N.; Ermatov, T.; Bibikova, O.; Usenov, I.; Sakharova, T.; Bocharnikov, A.; Skibina, J.; Artyushenko, V.; Gorin, D. Light guidance up to 6.5 μm in borosilicate soft glass hollow-core microstructured optical waveguides. Opt. Express 2020, 28, 27940–27950. [Google Scholar] [CrossRef]
Laser Wavelength (µm) | Fiber Material | D * (µm) | Laser Transmission (W) | Year | References |
---|---|---|---|---|---|
2 | As-S | 9 | 2.1 | 2015 | [25] |
200 | 63 | 2022 | [24] | ||
2.05 | As-S | 12 | 10.3 | 2018 | [26] |
2.52 | 1.3 | ||||
4.1 | 25 | 0.5 | |||
3.8–4.7 | Ge-As-S | 20 | 2.1 | 2022 | [27] |
5 | As-S | 1000 | 39 | 1984 | [29] |
As-S | 226 | 1993 | [34] | ||
Ge-As-S | 180 | 1993 | [34] | ||
10.6 | Ge-As-Se | 560 | 2.2 | 1990 | [37] |
Se-Te-I | 400 | 0.82 | 1991 | [38] | |
Ge-As-Se-Te | 400 | 1.37 | 2019 | [39] |
Year | Fiber Material | Structure | Loss (dB/m) | Power Density (kW/cm2) | References |
---|---|---|---|---|---|
2010 | Te-As-Se | HC-PCF | [email protected] μm | - | [56] |
2020 | Ge-As-Se | PCF | 8@2 μm | 150 (2 μm) | [47] |
2002 | As-Se | HC-BF | [email protected] μm | 0.3 (10.6 μm) | [48] |
2011 | Te-As-Se | ARF | [email protected] μm | - | [57] |
2016 | As-S | ARF | 2.1@10 μm | - | [54] |
2023 | As-S | HC-ARF | [email protected] μm | - | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Jiao, K.; Wang, X.; Wang, Y.; Wang, Y.; Bai, S.; Wang, R.; Zhao, Z.; Wang, X. Progresses of Mid-Infrared Glass Fiber for Laser Power Delivery. Photonics 2024, 11, 19. https://doi.org/10.3390/photonics11010019
Liang X, Jiao K, Wang X, Wang Y, Wang Y, Bai S, Wang R, Zhao Z, Wang X. Progresses of Mid-Infrared Glass Fiber for Laser Power Delivery. Photonics. 2024; 11(1):19. https://doi.org/10.3390/photonics11010019
Chicago/Turabian StyleLiang, Xiaolin, Kai Jiao, Xiange Wang, Yuze Wang, Yuyang Wang, Shengchuang Bai, Rongping Wang, Zheming Zhao, and Xunsi Wang. 2024. "Progresses of Mid-Infrared Glass Fiber for Laser Power Delivery" Photonics 11, no. 1: 19. https://doi.org/10.3390/photonics11010019
APA StyleLiang, X., Jiao, K., Wang, X., Wang, Y., Wang, Y., Bai, S., Wang, R., Zhao, Z., & Wang, X. (2024). Progresses of Mid-Infrared Glass Fiber for Laser Power Delivery. Photonics, 11(1), 19. https://doi.org/10.3390/photonics11010019