Partially Coherent Off-Axis Double Vortex Beam and Its Properties in Oceanic Turbulence
Abstract
:1. Introduction
2. Theoretical Model of a PCOADVB
3. Propagation CSD of a PCOADVB in Oceanic Turbulence
4. Numerical Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baykal, Y.; Ata, Y.; Gökçe, M.C. Underwater turbulence, its effects on optical wireless communication and imaging: A review. Opt. Laser Technol. 2022, 156, 108624. [Google Scholar] [CrossRef]
- Nikishov, V.V.; Nikishov, V.I. Spectrum of Turbulent Fluctuations of the Sea-Water Refraction Index. Int. J. Fluid Mech. Res. 2000, 27, 82–98. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhu, Y. Oceanic spectrum of unstable stratification turbulence with outer scale and scintillation index of Gaussian-beam wave. Opt. Express 2019, 27, 7656–7672. [Google Scholar] [CrossRef]
- Yao, J.R.; Elamassie, M.; Korotkova, O. Spatial power spectrum of natural water turbulence with any average temperature, salinity concentration, and light wavelength. J. Opt. Soc. Am. A 2020, 37, 1614–1621. [Google Scholar] [CrossRef] [PubMed]
- Farwell, N.; Korotkova, O. Intensity and coherence properties of light in oceanic turbulence. Opt. Commun. 2012, 285, 872–875. [Google Scholar] [CrossRef]
- Korotkova, O.; Farwell, N. Effect of oceanic turbulence on polarization of stochastic beams. Opt. Commun. 2011, 284, 1740–1746. [Google Scholar] [CrossRef]
- Korotkova, O.; Farwell, N.; Shchepakina, E. Light scintillation in oceanic turbulence. Wave Random Complex. 2012, 22, 260–266. [Google Scholar] [CrossRef]
- Baykal, Y. Scintillation index in strong oceanic turbulence. Opt. Commun. 2016, 375, 15–18. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, P.; Qiao, C.; Lu, L.; Fan, C.; Ji, X. Scintillation index of Gaussian waves in weak turbulent ocean. Opt. Commun. 2016, 380, 79–86. [Google Scholar] [CrossRef]
- Yousefi, M.; Kashani, F.D.; Golmohammady, S.; Mashal, A. Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2017, 34, 2126–2137. [Google Scholar] [CrossRef]
- Ata, Y.; Yao, J.; Korotkova, O. BER variation of an optical wireless communication system in underwater turbulent medium with any temperature and salinity concentration. Opt. Commun. 2021, 485, 126751. [Google Scholar] [CrossRef]
- Ata, Y. Structure function, coherence length, and angle-of-arrival variance for Gaussian beam propagation in turbulent waters. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2022, 39, 63–71. [Google Scholar] [CrossRef]
- Liu, D.J.; Wang, Y.C.; Wang, G.Q.; Yin, H.M.; Wang, J.R. The influence of oceanic turbulence on the spectral properties of chirped Gaussian pulsed beam. Opt. Laser Technol. 2016, 82, 76–81. [Google Scholar] [CrossRef]
- Jo, J.-H.; Ri, O.-H.; Ju, T.Y.; Pak, K.-M.; Ri, S.-G.; Hong, K.-C.; Hyon Jang, S. Effect of oceanic turbulence on the spectral changes of diffracted chirped Gaussian pulsed beam. Opt. Laser Technol. 2022, 153, 108200. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.L.; Cai, Y.J. Propagation of Partially Coherent Beam in Turbulent Atmosphere: A Review. Prog. Electromagn. Res. 2015, 150, 123–143. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Zhang, Y.X.; Li, Y.; Hu, Z.D. Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence. Opt. Commun. 2016, 371, 59–66. [Google Scholar] [CrossRef]
- Lu, C.; Zhao, D. Statistical properties of rectangular cusped random beams propagating in oceanic turbulence. Appl. Opt. 2017, 56, 6572–6576. [Google Scholar] [CrossRef]
- Chen, X.D.; Zhao, D.M. Propagation properties of electromagnetic rectangular multi-Gaussian Schell-model beams in oceanic turbulence. Opt. Commun. 2016, 372, 137–143. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, G.; Shen, Y. Effect of oceanic turbulence with anisotropy on the propagation of multi-sinc Schell-model beams. Results Phys. 2022, 36, 105447. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Liu, X.; Liang, C.; Liu, L.; Wang, F.; Cai, Y. Statistical Characteristics of a Twisted Anisotropic Gaussian Schell-Model Beam in Turbulent Ocean. Photonics 2020, 7, 37. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Chang, H.; Huang, J.; Zhu, X.; Cai, Y.; Yu, J. Second-Order Statistics of Self-Splitting Structured Beams in Oceanic Turbulence. Photonics 2023, 10, 339. [Google Scholar] [CrossRef]
- Luo, B.; Wu, G.H.; Yin, L.F.; Gui, Z.C.; Tian, Y.H. Propagation of optical coherence lattices in oceanic turbulence. Opt. Commun. 2018, 425, 80–84. [Google Scholar] [CrossRef]
- Ye, F.; Xie, J.; Hong, S.; Zhang, J.; Deng, D. Propagation properties of a controllable rotating elliptical Gaussian optical coherence lattice in oceanic turbulence. Results Phys. 2019, 13, 102249. [Google Scholar] [CrossRef]
- Liu, D.; Zhong, H.; Wang, G.; Yin, H.; Wang, Y. Radial phased-locked multi-Gaussian Schell-model beam array and its properties in oceanic turbulence. Opt. Laser Technol. 2020, 124, 106003. [Google Scholar] [CrossRef]
- Huang, Y.P.; Zhang, B.; Gao, Z.H.; Zhao, G.P.; Duan, Z.C. Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence. Opt. Express 2014, 22, 17723–17734. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, G.; Yin, H.; Zhong, H.; Wang, Y. Propagation properties of a partially coherent anomalous hollow vortex beam in underwater oceanic turbulence. Opt. Commun. 2019, 437, 346–354. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Zhao, S. Propagation Properties of an Off-Axis Hollow Gaussian-Schell Model Vortex Beam in Anisotropic Oceanic Turbulence. J. Mar. Sci. Eng. 2021, 9, 1139. [Google Scholar] [CrossRef]
- Fang, G.J.; Pu, J.X. Propagation properties of stochastic electromagnetic double-vortex beams in a turbulent atmosphere. Chin. Phys. B 2012, 21, 084203. [Google Scholar] [CrossRef]
- Fang, G.J.; Sun, S.H.; Pu, J.X. Experimental study on fractional double-vortex beams. Acta Phys. Sin.-Ch. Ed. 2012, 61, 064210. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Chen, Z.; Pu, J. Scintillation index of double vortex beams in turbulent atmosphere. Optik 2019, 181, 571–574. [Google Scholar] [CrossRef]
- Du, Y.; Liu, D.; Fu, S.; Wang, Y.; Qin, Y. Reconfigurable generation of double-ring perfect vortex beam. Opt. Express 2021, 29, 17353–17364. [Google Scholar] [CrossRef] [PubMed]
- Rickenstorff, C.; Gomez-Pavon, L.D.C.; Sosa-Sanchez, C.T.; Silva-Ortigoza, G. Paraxial and tightly focused behaviour of the double ring perfect optical vortex. Opt. Express 2020, 28, 28713–28726. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.Z.; Zhang, L. Study on orthogonal superposition generation method of double-ring vortex beams. Eur. Phys. J. D 2020, 74, 45. [Google Scholar] [CrossRef]
- Guo, M.; Le, W.; Wang, C.; Rui, G.; Zhu, Z.; He, J.; Gu, B. Generation, Topological Charge, and Orbital Angular Momentum of Off-Axis Double Vortex Beams. Photonics 2023, 10, 368. [Google Scholar] [CrossRef]
- Honari-Latifpour, M.; Ding, J.; Barbuto, M.; Takei, S.; Miri, M.A. Self-Organized Vortex and Antivortex Patterns in Laser Arrays. Phys. Rev. Appl. 2021, 16, 054010. [Google Scholar] [CrossRef]
- Li, Q.; Wu, C.; Zhang, Z.H.; Zhao, S.; Zhong, B.; Li, S.; Li, H.Q.; Jin, L.J. High-Purity Multi-Mode Vortex Beam Generation With Full Complex-Amplitude-Controllable Metasurface. IEEE Trans. Antennas Propag. 2023, 71, 774–782. [Google Scholar] [CrossRef]
- Barbuto, M.; Alù, A.; Bilotti, F.; Toscano, A. Composite Vortex Manipulation as a Design Tool for Reflective Intelligent Surfaces. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2392–2396. [Google Scholar] [CrossRef]
- Wolf, E. Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 2003, 312, 263–267. [Google Scholar] [CrossRef]
- Jeffrey, A.; Dai, H.H. Handbook of Mathematical Formulas and Integrals, 4th ed.; Academic Press Inc.: Cambridge, MA, USA, 2008. [Google Scholar]
- Gbur, G.; Visser, T.D. Coherence vortices in partially coherent beams. Opt. Commun. 2003, 222, 117–125. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, H.R.; Lu, B.D. Composite coherence vortices in a radial beam array propagating through atmospheric turbulence along a slant path. J. Opt. 2010, 12, 065401. [Google Scholar] [CrossRef]
- Liu, D.; Yin, H.; Wang, G.; Wang, Y. Propagation of partially coherent Lorentz–Gauss vortex beam through oceanic turbulence. Appl. Opt. 2017, 56, 8785–8792. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Wang, G.; Yin, Y.; Zhong, H.; Liu, D.; Wang, Y. Partially Coherent Off-Axis Double Vortex Beam and Its Properties in Oceanic Turbulence. Photonics 2024, 11, 20. https://doi.org/10.3390/photonics11010020
Chen L, Wang G, Yin Y, Zhong H, Liu D, Wang Y. Partially Coherent Off-Axis Double Vortex Beam and Its Properties in Oceanic Turbulence. Photonics. 2024; 11(1):20. https://doi.org/10.3390/photonics11010020
Chicago/Turabian StyleChen, Luli, Guiqiu Wang, Yan Yin, Haiyang Zhong, Dajun Liu, and Yaochuan Wang. 2024. "Partially Coherent Off-Axis Double Vortex Beam and Its Properties in Oceanic Turbulence" Photonics 11, no. 1: 20. https://doi.org/10.3390/photonics11010020
APA StyleChen, L., Wang, G., Yin, Y., Zhong, H., Liu, D., & Wang, Y. (2024). Partially Coherent Off-Axis Double Vortex Beam and Its Properties in Oceanic Turbulence. Photonics, 11(1), 20. https://doi.org/10.3390/photonics11010020