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Abstract: Due to the lack of theoretical research on the amount of spatio-temporal information
in high-speed photography technologies, obtaining an optimized system with the best amount of
spatio-temporal information remains a challenge, resulting in insufficient effective information and
observation accuracy for ultrafast events. This paper presents an ultrafast raster imaging (URI)
system with a large amount of spatio-temporal information based on the all-optical raster principle
in single-shot. Specifically, we derive the optimal equation of spatial resolution and the expression
for the maximum amount of spatio-temporal information that can achieve excellent performance for
a URI system. It serves as a general guideline for obtaining a large amount of information design
in the URI system. Compared with the existing URI systems, the advanced URI system exhibits
an improvement of nearly one order of magnitude in the amount of spatio-temporal information
and more than twofold in spatial resolution. It shows great potential for capturing intricate and
non-repetitive ultrafast events on the femtosecond time scale.

Keywords: high-speed photography; spatial resolution; frame rate; the raster principle

1. Introduction

High-speed photography, which extends temporal resolution beyond that of the hu-
man eye, is a time-amplified technique for blurring-free observations of transient processes.
It is an indispensable tool for exploring fundamental mechanisms in physics, chemistry,
and biology and has been widely applied in industries, energy, and medicine [1–5]. It
is strongly established that imaging techniques with different temporal resolutions are
needed to study transient processes with different characteristic times. Traditional film-
based cameras [6] and high-speed framing cameras based on digital memory [7,8] can
capture movies with a frame interval time as short as 10 ps [7]. However, these methods
are insufficient for observing transient dynamics on the atomic time scale (1 ps∼10 fs),
primarily due to the limitations of mechanical mechanisms and the electronic readout
speed of detectors. Fortunately, the generation and development of ultrashort pulse lasers
have propelled the temporal resolution of imaging based on pump-probe technology
into the attosecond region [9–13], enabling the effective observation of repeated ultrafast
events. To capture non-repetitive processes, various single-shot ultrafast imaging tech-
niques have emerged, boasting frame rates of up to a trillion frames per second (Tfps).
These include ultrafast compressed photography (CUP) [14–19] with passive detection
and active detection-based photography [20,21], which leverage spatial multiplexing en-
coding [22] and division techniques such as space and are based on space division [23–26],
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angle [27–29], wavelength [30–39], spatial frequency [40–42], and polarization [43]. De-
spite significant advances in ultrafast photography, a comprehensive theoretical study of
the amount of spatio-temporal information of these systems is still lacking. As a result, ob-
taining an optimized system with a large amount of spatio-temporal information remains
a challenge. Therefore, it is necessary to study the amount of spatio-temporal information,
design the imaging system with optimal performance, obtain more effective information
on ultrafast events, and improve the observation accuracy.

In this paper, we propose an active illumination ultrafast raster imaging system with a
large amount of spatio-temporal information based on the all-optical raster principle in
single-shot. The URI system is designed based on the Nyquist sampling theorem and the
frequency-time mapping method. Specifically, as shown in Figure 1, the object (transient
scenes) is illuminated with a linearly chirped laser pulse. After sampling (e.g., using a
microlens array) and imaging, spectrally time-coded raster images are formed, and they
pass through a frequency-spatial mapping device (a 4f optical system and a diffraction
grating placed in the Fourier plane. Here, spectrally time-coded raster images are focused
by the first lens on the Fourier plane. On this plane, light of different frequencies is
separated by diffraction grating at specific angles, with each frequency corresponding to a
particular diffraction angle. Subsequently, the second lens re-images these diffracted beams
on the detection plane), resulting in a spatially dispersed raster image on the detection
plane. Here, raster images of different wavelengths are located at different positions on the
detector. After that, we extract each single-wavelength raster image with system calibration
and reconstruct the object by performing the Fourier transform algorithm based on the
Nyquist sampling theorem. In our previous work, the URI system [43] obtained 12-frame
images with an intrinsic spatial resolution of 10-line pairs per millimeter (lp/mm). The
frame rate and the temporal resolution are 2 Tfps and 460 fs, respectively. However, there
is still a lot of room for optimizing the main parameters of spatial resolution, temporal
resolution, frame rate, and frame number. Therefore, here, we derive the optimal equation
of spatial resolution and the expression for the best amount of spatio-temporal information
that can achieve excellent performance for a URI system with an improved amount of
spatio-temporal information by nearly one order of magnitude greater than the previous
work [43]. This serves as a general guideline for obtaining a large amount of information
design in the URI system, which is renowned for its high spatial–temporal resolution
and high frame rate and exhibits great potential for capturing intricate and non-repetitive
ultrafast events on the femtosecond time scale.
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2. The Amount of Information in High-Speed Photographic Systems

For high-speed photography systems, the key goal is to obtain more effective informa-
tion on the dynamic processes. The equation for the amount of spatio-temporal information
in an imaging system can be expressed as [44,45].

I = IR IT = SR2 ln κ f g2/3

IR = SR2 ln κ

IT = f g2/3
(1)

where I represents the total amount of spatio-temporal information, which refers to the
number of bits transmitted and recorded with a high-speed camera per unit of time (bit/s).
It covers both time and space information: the amount of temporal information, denoted as
IT, and the amount of temporal information, denoted as IR, so it is an important indicator
for comprehensively evaluating the performance of high-speed cameras.

The frame rate f, which is the reciprocal of the frame interval time τf, is a fundamental
parameter that characterizes a camera’s temporal resolution capability. The modified
temporal qualify factor g2/3 can be determined as the ratio of the frame interval time τf to
the effective exposure time τ. In order to avoid information blurring caused by overlapping
between adjacent frames, the optimization condition is set to g2/3 = 1.

The space information amount IR is the product of the spatial bandwidth product
(S·R2) of a single frame and the information capacity (ln κ) of a single pixel. Here, κ denotes
the number of information levels and usually indicates the signal-to-noise ratio. S and R
correspond to the area and spatial resolution of the image, respectively. I is usually used to
evaluate the quality of a high-speed camera, which reflects not only the ability of the camera
to record spatio-temporal information but also the level of design and manufacturing of
the high-speed camera.

In summary, it is crucial to design an imaging system with a large amount of spatio-
temporal information. The maximum amount of spatio-temporal information Imax should
be equal to the product of the optimal amount of temporal information ITopt and the optimal
amount of temporal information IRopt. Typically, we design imaging systems with optimal
spatial resolution and the optimal effective frame rate to achieve this goal.

3. Analysis and Discussion
3.1. Characterization of the Spatial Resolution and Frame Number

Spatial resolution R is a key parameter in high-speed photography. For a URI system,
the spatial resolution (intrinsic spatial resolution) is mainly decided by the pitch h of
sampling points of the raster image. The sampling and framing of the URI are depicted in
Figure 2. The red squares represent the raster sampling points after sampling the 2D image,
and the size of sampling points is δ. Framing the raster image along the time direction
K, where K refers to the spectral dispersion direction of the probe pulse on the detection
plane, thus, raster images of different wavelengths (colors) are located at different positions
on the detector. According to the linear time–wavelength mapping relationship of linear
chirped laser pulses, squares of different colors represent sampling points at different times
of the raster image. L is the maximum length of spatially dispersive raster sampling points
along the time direction K, and d2 is the distance between two adjacent spatially dispersed
sampling points of the raster image. The geometric relationship between the parameters is
given by

(2h + x) h = (d1 + d2) L (2)

Substituting equation (h + x)/h = d1/d2 into Equation (2), and after simplification, we
obtain the relationship h2 = d2 L, Considering the framing of the raster image sampling
points by sampling points, the value of L should be the product of the size of sampling
points δ and the frame number n, i.e., L = (n + 1) δ. When d2 = δ, the relationship between
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the pitch h of the sampling point and the frame number n can be mathematically formulated

N = h2/δ2 − 1 (3)
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Theoretically, R is inversely proportional to the h of sampling points, that is, R = 1/2h.
Combining Equation (3), it can be expressed as

R =
1
2

1√
(n + 1)δ

(4)

In URI, the size of the sampling point of raster image δ is mainly modulated by the
entrance pupil of an objective of the imaging system, and the common size of sampling
points is around 10 µm. Here, we consider the relationship between spatial resolution and
the frame number in the case of δ = 10 µm, 12 µm, and 14 µm, as illustrated in Figure 3. It
is evident that there exists a trade-off between spatial resolution and frame number, that is,
we can obtain more frames at the cost of an obvious decline in spatial resolution. But, on
the brighter side, reducing the size of the sampling point of the raster image can potentially
improve either spatial resolution or the frame number.
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3.2. Frame Rate and Spatial Resolution

Frame rate f is another critical parameter in high-speed photography. To effectively
capture ultrafast events on the atomic time scale, frame rate should be performed at the
femtosecond level. For a URI system, the frame rate is determined by the duration T of
a probe laser pulse and the size of the sampling point of the raster image. The size of
the sampling point can be adjusted with the entrance pupil of the objective of the optical
system. By combining Equation (4) with the relationship Tf = L/δ = n, the relationship
between the spatial resolution and the frame rate is given by

f =
1
T
(

1
4R2δ2 − 1) (5)

Figure 4 illustrates the relationship between frame rate and spatial resolution. Here,
we consider the cases T = 10 ps and δ = 10 µm, 12 µm, and 14 µm. Obviously, the frame
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rate is inversely proportional to the square of the spatial resolution. Notably, for a given
pitch h of sampling points, by reducing the size δ of the sampling point, the frame rate of a
URI system can be effectively improved.
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3.3. Optimal Temporal Resolution and the Spatial Resolution Equation for a URI System

The temporal resolution of the URI system mainly relies on the duration of the original
Fourier-transform limit femtosecond pulse and the linearly chirped pulse. The equation
τ =

√
t0T indicates an optimal temporal resolution [46], where t0 is the Fourier-limited

duration of the original femtosecond pulse, and the time window T is the FWHM (full width
at half maximum) of the chirped laser pulse. Therefore, a shorter Fourier-limited duration
femtosecond pulse source can further improve the temporal resolution of a URI system,
and the FWHM of the chirped pulse should cover the duration of the ultra-fast process.
Here, to ensure the optimal temporal degree of freedom (DOF) and avoid information
blurring caused by overlapping between the adjacent frames, the modification factor g2/3 is
set to 1. That is, the frame interval (∆t) equals the effective exposure time τ. Therefore, the
optimal frame number is denoted by nmax = T/τ =

√
T/t0, which should be a constant

for a given light source system and the time window of the observation.
For a high-speed imaging system, Equation (1) indicates that improving the spatial

resolution can effectively improve the amount of spatio-temporal information. In URI, in
a static situation, spatial resolution is time independent. However, at the femtosecond
scale, the frame number n =

√
T/t0 should be given based on the case of optimal temporal

resolution and then substituting it into Equation (4), so, we can obtain the time-dependent
spatial equation

R =
1
2

1√
(
√

T/t0 + 1)δ
(6)

According to the previous analysis and discussion, we know that reducing the size
of the sampling point of a raster image is the key to improving the spatial resolution and
frame rate. As we known, the size of the sampling point of a raster image should be equal
to a shifting size (∆x) of adjacent frames, i.e., δ = ∆x = (fl/Λ), where Λ and fl are the grating
period and the focal length of the lens in the 4f optical system, respectively, and ∆λ is the
corresponding wavelength difference, which should be greater than or equal to the spectral
resolution of URI system. The spectral resolution (δλ) can be denoted by δλ = λ0Λ/S′,
where S′ is the probe beam width on the grating (given by S′ = fl d/fm, where d and fm are
the diameter and focal length of each lens in the microlens array, respectively). Therefore,
the spectral resolution δλ can be expressed as δλ = λ0Λfm/fl d. Considering that ∆λ ≥ δλ,
we can obtain δ ≥ λ0fm/d. Meanwhile, since one microlens corresponds to one sampling
point, the size of the sampling point must be greater than or equal to the diffraction limit of
the microlens, that is, δ ≥ 1.22λ0fm/d, where λ0 is the center wavelength of the probe laser
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pulses. Obviously, when δmin = 1.22λ0fm/d, it follows that ∆λ ≥ δλ, and thus, we obtain
the optimally time-dependent spatial resolution

Ropt =
1
2

d

1.22
√
(
√

T/t0 + 1)λ0 fm

(7)

Figure 5 shows the relationship between the time window and the spatial resolution in
the case of δ = δmin for previous URI systems. When the designed time window is T = 6 ps, it
follows that n = 13, f = 2.2 × 1012 fps, and the spatial resolution is approximately improved
to 26 lp/mm. Therefore, compared with existing URI systems, the spatial resolution of the
optimized URI system is significantly improved by 2.6 times. In addition, a higher spatial
resolution can be obtained using a shorter central wavelength of the probe laser pulse.

Photonics 2024, 11, x FOR PEER REVIEW 6 of 9 
 

 

size of the sampling point must be greater than or equal to the diffraction limit of the 
microlens, that is, δ ≥ 1.22λ0fm/d, where λ0 is the center wavelength of the probe laser pulses. 
Obviously, when δmin = 1.22λ0fm/d,, it follows that Δλ ≥ δλ, and thus, we obtain the optimally 
time-dependent spatial resolution 

0 0 m

1
2 1.22 1)

opt
dR

T t fλ
=

+（

 (7)

Figure 5 shows the relationship between the time window and the spatial resolution 
in the case of δ = δmin for previous URI systems. When the designed time window is T = 6 
ps, it follows that n = 13, f = 2.2 × 1012 fps, and the spatial resolution is approximately im-
proved to 26 lp/mm. Therefore, compared with existing URI systems, the spatial resolu-
tion of the optimized URI system is significantly improved by 2.6 times. In addition, a 
higher spatial resolution can be obtained using a shorter central wavelength of the probe 
laser pulse.  

 
Figure 5. The relationship between the optimal spatial resolution and the time window. 

3.4. The Maximum Amount of Information of a URI System 
According to Equation (1) above, combining the expressions of the spatial resolution 

and frame rate, the amount of spatio-temporal information in a URI system is given by 

2 3
2 ln

4 ( 1)
S nI g
T n

κ
δ

=
+

 (8)

where S = a × b is the area of the image, where a and b are the length and width, respec-
tively. By substituting the optimal parameters into Equation (8), we obtain the expression 
for the maximum amount of spatio-temporal information 

0 2
max 2

m00
( )

2 ( 1)

T tS dI
T fT t λ

≈
+

 (9)

For a given light source system of a URI, Equation (9) provides the expression for 
designing the optimal URI. Here, the time window should be designed to cover the dura-
tion of the ultrafast process. Next, we design a suitable relative aperture (d/fm) of a micro-
lens based on the current manufacturing level of the microlens array. Finally, we design 
the optimal sampling points pitch h of the URI system. As shown in Figure 6, after opti-
mizing the existing URI system, namely, Best-URI, the maximum amount of spatio-tem-
poral information will reach 1.4 × 1017 bit/s. Meanwhile, it is evident from Figure 7 that the 
maximum amount of spatio-temporal information of Best-URI is close to one order of 
magnitude greater than that of 2.1 × 1016 bit/s in the existing URI system.  

In this study, we clearly demonstrated that by optimizing parameters such as the 
pitch of sampling points, the size of the sampling point, and the frame rate, we obtain 

Figure 5. The relationship between the optimal spatial resolution and the time window.

3.4. The Maximum Amount of Information of a URI System

According to Equation (1) above, combining the expressions of the spatial resolution
and frame rate, the amount of spatio-temporal information in a URI system is given by

I =
S

4T
n

(n + 1)δ2 ln κg2/3 (8)

where S = a× b is the area of the image, where a and b are the length and width, respectively.
By substituting the optimal parameters into Equation (8), we obtain the expression for the
maximum amount of spatio-temporal information

Imax ≈
S

2T

√
T/t0

(
√

T/t0 + 1)λ02
(

d
fm

)
2

(9)

For a given light source system of a URI, Equation (9) provides the expression for
designing the optimal URI. Here, the time window should be designed to cover the duration
of the ultrafast process. Next, we design a suitable relative aperture (d/f m) of a microlens
based on the current manufacturing level of the microlens array. Finally, we design the
optimal sampling points pitch h of the URI system. As shown in Figure 6, after optimizing
the existing URI system, namely, Best-URI, the maximum amount of spatio-temporal
information will reach 1.4 × 1017 bit/s. Meanwhile, it is evident from Figure 7 that the
maximum amount of spatio-temporal information of Best-URI is close to one order of
magnitude greater than that of 2.1 × 1016 bit/s in the existing URI system.
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In this study, we clearly demonstrated that by optimizing parameters such as the pitch
of sampling points, the size of the sampling point, and the frame rate, we obtain Best-URI
with the maximum amount of information on the femtosecond time scale. However, as a
single-shot imaging technique in an active detection mode, further improving the system’s
temporal resolution (i.e., effective frame rate) remains a challenge due to the constraints
imposed by the time-frequency uncertainty principle of the probe laser pulse. To address
this issue, we plan to combine polarization time-encoding techniques with raster principles
to circumvent the time–frequency uncertainty constraints of the probe pulses, thereby
further improving the URI system’s temporal resolution and obtaining a larger amount of
spatio-temporal information.

4. Conclusions

This paper presents a formula regarding the amount of spatio-temporal information
based on the all-optical raster principle to realize an ultrafast imaging system with a large
amount of spatio-temporal information. We derived the spatial resolution expression of
the system by considering the pitch of sampling points, the size of the sampling point, and
the frame number, as well as the relationship between spatial resolution and the frame
rate. Furthermore, we also obtained the optimal time-dependent spatial resolution and
the maximum amount of information in the system operating at the femtosecond time
scale. Compared with existing URI systems, an optimized URI system designed based
on the maximum amount of information exhibits an improvement of nearly one order of
magnitude in the amount of spatio-temporal information and more than twofold in spatial
resolution. The optimized URI system, renowned for its large amount of spatio-temporal
information and high spatio-temporal resolution, exhibits greater potential for capturing
intricate and non-repetitive ultrafast events on the femtosecond time scale.
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