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1. Theoretical Model for the DFB laser 
The DFB laser is simulated by a traveling wave model (TWM) [17]: 𝑑𝑁(𝑧, 𝑡)𝑑𝑡 = 𝐼(𝑡) (𝑒𝑉)⁄ − 𝑁(𝑧, 𝑡) 𝜏௖⁄ − 𝑣௚𝑃௦(𝑧, 𝑡)𝑔(𝑧, 𝑡) [1 + 𝜀𝑃௦(𝑧, 𝑡)],⁄  (S1a)

ቆ 1𝑣௚ 𝜕𝜕𝑡 + 𝜕𝜕𝑧ቇ 𝐹(𝑧, 𝑡) 

(S1b)= ቊ−𝑗𝛿 + 12 ቈ 𝛤𝑔(𝑧, 𝑡)1 + 𝜀𝑃௦(𝑧, 𝑡) − 𝛼቉ቋ 𝐹(𝑧, 𝑡) + 𝑗𝜅𝑅(𝑧, 𝑡) + 𝑠̃௙(𝑧, 𝑡), 
ቆ 1𝑣௚ 𝜕𝜕𝑡 − 𝜕𝜕𝑧ቇ 𝑅(𝑧, 𝑡) 

(S1c)= ቊ−𝑗𝛿 + 12 ቈ 𝛤𝑔(𝑧, 𝑡)1 + 𝜀𝑃௦(𝑧, 𝑡) − 𝛼቉ቋ 𝑅(𝑧, 𝑡) + 𝑗𝜅𝐹(𝑧, 𝑡) + 𝑠̃௥(𝑧, 𝑡), 
where 𝑁(𝑧, 𝑡) is the carrier density, 𝐼(𝑡) the injected current, 𝑒 the electron charge, 𝑉 
the active region volume, 𝜏௖  the carrier lifetime, 𝑣௚ = 𝑐 𝑛௚⁄  the group velocity, 𝑐  the 
speed of light, 𝑛௚ the group index, 𝑃௦(𝑧, 𝑡) = 𝑛௘௙௙ (2ℎ𝑣଴)⁄ ඥ𝜀଴ 𝜇଴⁄ Γ ൫𝑑𝑤𝑣௚൯⁄ ∙ [|𝐹(𝑧, 𝑡)|ଶ +|𝑅(𝑧, 𝑡)|ଶ] the photon density distribution, 𝑛௘௙௙ = 𝑛௘௙௙଴ − 𝜆଴ (4𝜋)⁄ 𝛼௅ாி ∙ 𝛤𝑔(𝑧, 𝑡) effective 
index, 𝑛௘௙௙଴  effective index without injection, 𝜆଴  the peak gain wavelength, 𝛼௅ாி  lin-
ewidth enhancement factor, 𝛤 the optical confinement factor, 𝑔(𝑧, 𝑡) = 𝑎 ln[𝑁(𝑧, 𝑡) 𝑁଴⁄ ] 
the material optical gain, 𝑎 the material gain coefficient, 𝑁଴ the transparent carrier den-
sity, ℎ Planck’s constant, 𝑣଴ the optical frequency corresponding to 𝜆଴, 𝜀଴ the permit-
tivity of a vacuum, 𝜇଴ the permeability of a vacuum, 𝑑 thickness of active region, 𝑤 
width of active region, 𝐹(𝑧, 𝑡) the slowly varying envelopes of the forward propagating 
fields, 𝑅(𝑧, 𝑡) the slowly varying envelopes of the backward propagating fields, 𝜀 non-
linear gain suppression coefficient, 𝑗  the imaginary unit, 𝛿 = ൣ2𝜋𝑛௘௙௙଴ 𝜆଴⁄ −1 2⁄ 𝛼௅ாி𝛤𝑔(𝑧, 𝑡) − 𝜋 Λ⁄ ൧ the phase detuning factor from the Bragg wavelength, 𝛬 Bragg 
grating period, 𝛼 the optical modal loss, and 𝜅 grating coupling coefficient. 

The magnitude of the spontaneous emission noise fields 𝑠̃௙(𝑧, 𝑡, 𝜆௜) and 𝑠̃௥(𝑧, 𝑡, 𝜆௜) 
are approximated as Gaussian random processes with a zero mean and satisfy the follow-
ing autocorrelation function [17]: 

〈ห𝑠̃௙,௥(𝑧, 𝑡)หห𝑆ሚ௙,௥(𝑧ᇱ, 𝑡ᇱ)ห〉 = 2ඨ𝜇଴𝜀଴ ΓΥ𝑔௦௣ℎ𝑣଴𝑛௘௙௙ 𝛿(𝑧 − 𝑧ᇱ)𝛿(𝑡 − 𝑡ᇱ), (S2) 
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where 𝛾  indicates the spontaneous coupling factor, 𝑔௦௣  is the spontaneous emission 
gain, and 𝛿( ) is Dirac’s delta function. Again, the phase of the spontaneous emission 
noise fields is assumed to be uniformly distributed between 0–2π. 

The finite bandwidth of the gain profile is modeled by an infinite impulse response 
(IIR) filter approach [40,41]: |𝐻(𝜔)|ଶ = ሼ(1 − 𝜂)ଶ [1 + 𝜂ଶ − 2𝜂𝑐𝑜𝑠(𝜔Δ𝑡)]⁄ ሽ, (S3) 

where 𝜂 indicates the filter coefficient that controls the filter bandwidth and Δ𝑡 is the 
time marching step in simulation. 

2. Theoretical Model for the SOA 
The numerical model that we have adopted to describe the SOA is given as [42–44]: 𝑑𝑁(𝑧, 𝑡)𝑑𝑡 = 𝐼(𝑡)𝑒𝑉 − 𝑁(𝑧, 𝑡)𝜏௖ − 𝑣௚ ෍ 𝑃௦(𝑧, 𝑡, 𝜆௜)𝑔(𝑧, 𝑡, 𝜆௜) [1 + 𝜀𝑃௧௢௧(𝑧, 𝑡)]⁄ெ

௜ୀିெ , (S4a)

ቆ 1𝑣௚ 𝜕𝜕𝑡 + 𝜕𝜕𝑧ቇ 𝐹(𝑧, 𝑡, 𝜆௜) 

(S4b)= ቊ𝑗 ൤12 𝛼௅ாி𝛤𝑔(𝑧, 𝑡, 𝜆௜)൨ + 12 ቈ 𝛤𝑔(𝑧, 𝑡, 𝜆௜)1 + 𝜀𝑃௧௢௧(𝑧, 𝑡) − 𝛼቉ቋ 𝐹(𝑧, 𝑡, 𝜆௜) + 𝑠̃௙(𝑧, 𝑡, 𝜆௜), 
ቆ 1𝑣௚ 𝜕𝜕𝑡 − 𝜕𝜕𝑧ቇ 𝑅(𝑧, 𝑡, 𝜆௜) 

(S4c)= ቊ𝑗 ൤12 𝛼௅ாி𝛤𝑔(𝑧, 𝑡, 𝜆௜)൨ + 12 ቈ 𝛤𝑔(𝑧, 𝑡, 𝜆௜)1 + 𝜀𝑃௧௢௧(𝑧, 𝑡) − 𝛼቉ቋ R(𝑧, 𝑡, 𝜆௜) + 𝑠̃௥(𝑧, 𝑡, 𝜆௜), 
where 𝑁(𝑧, 𝑡) is the carrier density, 𝐼(𝑡) the injected current, 𝑒 the electron charge, 𝑉 
the active region volume, 𝜏௖  the carrier lifetime, 𝑣௚ = 𝑐 𝑛௚⁄  the group velocity, 𝑐  the 
speed of light, 𝑛௚  the group index,  𝑃௦(𝑧, 𝑡, 𝜆௜) = 𝑛௘௙௙ (2ℎ𝑣௜)⁄ ඥ𝜀଴ 𝜇଴⁄ Γ ൫𝑑𝑤𝑣௚൯⁄ ∙[|𝐹(𝑧, 𝑡, 𝜆௜)|ଶ + |𝑅(𝑧, 𝑡, 𝜆௜)|ଶ] the photon density distribution of the 𝑖௧௛ wavelength chan-
nel, 𝜆௜ is the wavelength of the 𝑖௧௛ (𝑖 = 0, ∓1, ∓2, … , ∓𝑀) channel in the sliced spectrum, 𝑛௘௙௙ = 𝑛௘௙௙଴ − 𝜆଴ (4𝜋)⁄ 𝛼௅ாி𝛤𝑔(𝑧, 𝑡, 𝜆௜) effective index, 𝑛௘௙௙଴  effective index without injec-
tion, 𝜆଴ the peak gain wavelength, 𝛼௅ாி  linewidth enhancement factor, 𝛤  the optical 
confinement factor, 𝑔(𝑧, 𝑡, 𝜆௜) = 𝑎 ln[𝑁(𝑧, 𝑡) 𝑁଴⁄ ][1 − 0.5(𝜆௜ − 𝜆଴ ∆𝜆ீ⁄ )ଶ] the material opti-
cal gain, 𝑎 the material gain coefficient, 𝑁଴ the transparent carrier density, ∆𝜆ீ the gain 
profile width, ℎ Planck’s constant, 𝑣௜ the optical frequency corresponding to 𝜆௜, 𝜀଴ the 
permittivity of a vacuum, 𝜇଴ the permeability of a vacuum, 𝑑 thickness of active region, 𝑤 width of active region, 𝐹(𝑧, 𝑡, 𝜆௜) the slowly varying envelopes of the forward propa-
gating fields, 𝑅(𝑧, 𝑡, 𝜆௜) the slowly varying envelopes of the backward propagating fields, 𝜀  nonlinear gain suppression coefficient, 𝑃௧௢௧(𝑧, 𝑡) = ∑ 𝑃௦(𝑧, 𝑡, 𝜆௜)ெ௜ୀିெ  the total photon 
density distribution in all wavelength channels, 𝑗 the imaginary unit, and 𝛼 the optical 
modal loss. 

The magnitude of the spontaneous emission noise fields 𝑠̃௙(𝑧, 𝑡) and 𝑠̃௥(𝑧, 𝑡) are 
treated in a similar way to equation (S2) in Section 1: 

〈ห𝑠̃௙,௥(𝑧, 𝑡)หห𝑆ሚ௙,௥(𝑧ᇱ, 𝑡ᇱ)ห〉 = 2ඨ𝜇଴𝜀଴ ΓΥ𝑔௦௣ℎ𝑣଴𝑛௘௙௙ 𝛿(𝑧 − 𝑧ᇱ)𝛿(𝑡 − 𝑡ᇱ), (S5) 

where 𝛾 is the spontaneous coupling factor, 𝑅௦௣(𝑧, 𝑡, 𝜆௜) the spontaneous emission rate, 𝑑௭ the length of a subsection introduced by the spatial discretization of the active region 
along the wave propagation direction, and 𝛿( ) Dirac’s delta function. The phase of the 
spontaneous emission noise fields is assumed to be uniformly distributed between 0–2π. 
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3. Theoretical Model for the Optical Fiber  
The slow-varying envelope of a propagating optical pulse in the fiber can be de-

scribed by the nonlinear Schrodinger equation (NSE) [20]:  𝜕𝐴(𝑧, 𝑡)𝜕𝑧 + 𝛼2 𝐴(𝑧, 𝑡) + 𝛽ଵ 𝜕𝐴(𝑧, 𝑡)𝜕𝑡 + 𝑗2 𝛽ଶ 𝜕ଶ𝐴(𝑧, 𝑡)𝜕𝑡ଶ − 16 𝛽ଷ 𝜕ଷ𝐴(𝑧, 𝑡)𝜕𝑡ଷ= 𝑗𝛾|𝐴(𝑧, 𝑡)|ଶ𝐴(𝑧, 𝑡), (S6) 

where 𝐴 is the low-varying envelope of the optical field, 𝛼 the fiber loss, 𝛽ଵ the wave 
propagation constant, 𝛽ଶ the second-order dispersion, 𝛽ଷ the third-order dispersion, 𝛾 
the fiber nonlinear parameter, and j the imaginary unit.  

Transforming to a reference frame moving with the pulse and introducing the new 
coordinates (𝑇 = 𝑡 − 𝛽ଵ𝑧), the term 𝛽ଵ can be eliminated in (S6) to yield: 𝜕𝐴(𝑧, 𝑇)𝜕𝑧 + 𝛼2 𝐴(𝑧, 𝑇) + 𝑗2 𝛽ଶ 𝐴(𝑧, 𝑇)𝜕𝑇ଶ − 𝛽ଷ6 𝐴(𝑧, 𝑇)𝜕𝑇ଷ = 𝑗𝛾|𝐴ଶ(𝑧, 𝑇)|𝐴(𝑧, 𝑇). (S7) 

According to the split-step method [22], the solution to (S7) is given by: 𝐴(𝑧 + ∆𝑧, 𝜔) = exp [𝑗(1 2⁄ 𝛽ଶ∆𝑧𝜔ଶ − 1 6⁄ 𝛽ଷ∆𝑧𝜔ଷ − 1 2⁄ 𝛼∆𝑧)]𝐹[𝐴(𝑧, 𝑇)], (S8) 

𝐴(𝑧 + ∆𝑧, 𝑇) = 𝑒𝑥𝑝ሼ𝑗∆𝑧𝛾|𝐹ିଵ[𝐴(𝑧 + ∆𝑧, 𝜔)]|ሽ 𝐹ିଵ[𝐴(𝑧 + ∆𝑧, 𝜔)], (S9) 

where 𝐹[ ] and 𝐹ିଵ[ ] are the Fourier and inverse Fourier transforms, respectively. In 
our simulations, we have neglected dispersions higher than the second order as well as 
the fiber nonlinearity by setting 𝛾 = 0, due to the relatively short transmission distance. 
As such, we can rewrite (S8) and (S9) as: 

𝐴(𝑧 + ∆𝑧, 𝑇) = 𝐹ିଵ ൜𝑒𝑥𝑝 ൤12 (𝑗𝛽ଶ∆𝑧𝜔ଶ − 𝛼∆𝑧)൨ 𝐹[𝐴(𝑧, 𝑇)]ൠ.  (S10) 

 


