Photo-Aligned Ferroelectric Liquid Crystal Fork Grating-Mediated Fast Switchable Spiral Phase Contrast Imaging
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, H.; Friese, M.E.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 1995, 75, 826–829. [Google Scholar] [CrossRef] [PubMed]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Toyoda, K.; Takahashi, F.; Takizawa, S.; Tokizane, Y.; Miyamoto, K.; Morita, R.; Omatsu, T. Transfer of light helicity to nanostructures. Phys. Rev. Lett. 2013, 110, 143603. [Google Scholar] [CrossRef]
- Ni, J.; Wang, C.; Zhang, C.; Hu, Y.; Yang, L.; Lao, Z.; Xu, B.; Li, J.; Wu, D.; Chu, J. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl. 2017, 6, e17011. [Google Scholar] [CrossRef] [PubMed]
- Situ, G.; Warber, M.; Pedrini, G.; Osten, W. Phase contrast enhancement in microscopy using spiral phase filtering. Opt. Commun. 2010, 283, 1273–1277. [Google Scholar] [CrossRef]
- Serabyn, E.; Mawet, D.; Burruss, R. An image of an exoplanet separated by two diffraction beamwidths from a star. Nature 2010, 464, 1018–1020. [Google Scholar] [CrossRef]
- Qiu, X.; Li, F.; Zhang, W.; Zhu, Z.; Chen, L. Spiral phase contrast imaging in nonlinear optics: Seeing phase objects using invisible illumination. Optica 2018, 5, 208–212. [Google Scholar] [CrossRef]
- Jesacher, A.; Furhapter, S.; Bernet, S.; Ritsch-Marte, M. Shadow effects in spiral phase contrast microscopy. Phys. Rev. Lett. 2005, 94, 233902. [Google Scholar] [CrossRef]
- Furhapter, S.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 2005, 13, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.K.; Joseph, J.; Senthilkumaran, P. Directional edge enhancement using superposed vortex filter. Opt. Laser Technol. 2014, 57, 230–235. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Qi, Q.; Zheng, S.; Chen, L. Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters. Sci. Rep. 2015, 5, 15826. [Google Scholar] [CrossRef]
- Bernet, S.; Jesacher, A.; Furhapter, S.; Maurer, C.; Ritsch-Marte, M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express 2006, 14, 3792–3805. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.S.; Han, Y.J.; Xu, J.B.; Ding, J.P. Radial Hilbert transform with Laguerre-Gaussian spatial filters. Opt. Lett. 2006, 31, 1394–1396. [Google Scholar] [CrossRef] [PubMed]
- Huo, P.; Zhang, C.; Zhu, W.; Liu, M.; Zhang, S.; Zhang, S.; Chen, L.; Lezec, H.J.; Agrawal, A.; Lu, Y.; et al. Photonic Spin-Multiplexing Metasurface for Switchable Spiral Phase Contrast Imaging. Nano Lett. 2020, 20, 2791–2798. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Liu, J.; Li, H.; Wang, M.; Zang, H.; Zhang, Y.; Yao, J. Terahertz metasurface polarization detection employing vortex pattern recognition. Photonics Res. 2023, 11, 2256–2263. [Google Scholar] [CrossRef]
- Zheng, C.; Li, H.; Zang, H.; Yao, J. Terahertz polarization detection based on the mode analysis of longitudinally polarized vortices. Opt. Laser Technol. 2024, 170, 110210. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Y.; Liu, H.; Gong, X.; Chigrinov, V.G. Increasing rewriting speed of optically driving liquid crystal display by process optimization. Liq. Cryst. 2018, 46, 151–157. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, J.; Srivastava, A.K.; Guo, Q.; Chigrinov, V.G.; Kwok, H.S. Optically rewritable ferroelectric liquid-crystal grating. Europhys. Lett. 2013, 102, 24005. [Google Scholar] [CrossRef]
- Wei, B.Y.; Hu, W.; Ming, Y.; Xu, F.; Rubin, S.; Wang, J.G.; Chigrinov, V.; Lu, Y.Q. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater. 2014, 26, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wei, B.Y.; Shi, L.Y.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.S.; Hu, W.; Lu, Y.Q. Fork gratings based on ferroelectric liquid crystals. Opt. Express 2016, 24, 5822–5828. [Google Scholar] [CrossRef] [PubMed]
- Chigrinov, V.; Panarin, Y.; Vorflusev, V.; Pozhidaev, E. Aligning properties and anchoring strength of Ferroelectric Liquid Crystals. Ferroelectrics 1996, 178, 145–154. [Google Scholar] [CrossRef]
- Guo, Q.; Srivastava, A.K.; Pozhidaev, E.P.; Chigrinov, V.G.; Kwok, H.S. Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy. Appl. Phys. Express 2014, 7, 021701. [Google Scholar] [CrossRef]
- Guo, Q.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.S. Polymer and azo-dye composite: A photo-alignment layer for liquid crystals. Liq. Cryst. 2014, 41, 1465–1472. [Google Scholar] [CrossRef]
- Moreno, I.; Davis, J.A.; Pascoguin, B.M.; Mitry, M.J.; Cottrell, D.M. Vortex sensing diffraction gratings. Opt. Lett. 2009, 19, 2927–2929. [Google Scholar] [CrossRef]
- Reynolds, G.O.; DeVelis, J.B.; Parrent, G.B., Jr.; Thompson, B.J. The New Physical Optics Notebook: Tutorials in Fourier Optics; SPIE Optical Engineering Press: Bellingham, WA, USA, 1989. [Google Scholar]
- Davis, J.A.; McNamara, D.E.; Cottrell, D.M.; Campos, J. Image processing with the radial Hilbert transform: Theory and experiments. Opt. Lett. 2000, 25, 99–101. [Google Scholar] [CrossRef]
- Bouchal, P.; Bouchal, Z. Selective edge enhancement in three-dimensional vortex imaging with incoherent light. Opt. Lett. 2012, 37, 2949–2951. [Google Scholar] [CrossRef]
Phase Step | π/3 | 2π/3 | π |
---|---|---|---|
① in bright field image | 6.3% | 30.5% | 50.0% |
② in bright field image | 16.7% | 18.4% | 37.9% |
① in edge-enhanced image | 33.2% | 66.8% | 82.4% |
② in edge-enhanced image | 32.8% | 87.1% | 94.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Zhong, Z.; Zhao, H.; Wang, S.; Yan, K. Photo-Aligned Ferroelectric Liquid Crystal Fork Grating-Mediated Fast Switchable Spiral Phase Contrast Imaging. Photonics 2024, 11, 85. https://doi.org/10.3390/photonics11010085
Guo Q, Zhong Z, Zhao H, Wang S, Yan K. Photo-Aligned Ferroelectric Liquid Crystal Fork Grating-Mediated Fast Switchable Spiral Phase Contrast Imaging. Photonics. 2024; 11(1):85. https://doi.org/10.3390/photonics11010085
Chicago/Turabian StyleGuo, Qi, Zidi Zhong, Huijie Zhao, Shijie Wang, and Kexin Yan. 2024. "Photo-Aligned Ferroelectric Liquid Crystal Fork Grating-Mediated Fast Switchable Spiral Phase Contrast Imaging" Photonics 11, no. 1: 85. https://doi.org/10.3390/photonics11010085
APA StyleGuo, Q., Zhong, Z., Zhao, H., Wang, S., & Yan, K. (2024). Photo-Aligned Ferroelectric Liquid Crystal Fork Grating-Mediated Fast Switchable Spiral Phase Contrast Imaging. Photonics, 11(1), 85. https://doi.org/10.3390/photonics11010085