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Abstract: (1) Background: The significant progress observed over the last two decades in coherent
beam combining (CBC) technology has mainly focused on its applications in high-energy physics
and laser weapons. This work provides insight into the basic principles of CBC and the search
for an alternative, namely optical angular momentum (OAM) generation using CBC. (2) Methods:
A semi-analytical model based on the paraxial wave equation was explored, generating OAM-
CBC beams by manipulating the tilts and phases of the CBC (T&P-CBC) of hexagonal architecture.
(3) Results: The specially arranged T&P-CBC shows typical properties of OAM, such as annular
profiles for the zero diffraction order and 1st-order replicas in the far field and correlation coefficients
of 1% between different OAM-CBC fields. (4) Conclusions: The differences between classical OAM
beams and OAM-CBC are substantial due to hexagonal lattice properties. Moreover, applications
in free space optical communications are feasible as T&P CBC fulfills the main conditions and
requirements for OAM generation.

Keywords: laser beams; coherent beam combining; optical angular momentum; vortex beams;
free-space optical communications

1. Introduction

Coherent beam combination (CBC) technology, including filled aperture CBC (FA-CBC)
and tiled aperture CBC (TA-CBC) [1–11], has been developed in the last two decades, mainly
for applications in laser weapons [4,12] and high-energy physics [6,10]. FA-CBC offers
high efficiency and robustness, but it is limited by the number of emitters (not higher than
12 beams for a high-average-power system [13]). In contrast, TA-CBC offers direct scalability
beyond hundreds of combined beams, but has low practical efficiency [5,10,11] and diffi-
culty scaling to high average powers. Both technologies require effective adaptive optics
subsystems for outdoor applications, such as laser weapons and free-space optical com-
munications (FSOC), over long propagation distances in horizontal directions [8,9,14,15]
and/or in Earth–satellite FSOC links [16–18].

Since the 1990s, optical angular momentum (OAM) beams have been examined the-
oretically and experimentally, attracting [19–23] growing interest in material processing,
optical tweezing and FSOC [16,18,23–28]. The benefits of OAM technology include prop-
agation invariance as ‘diffraction-free’ solutions of paraxial wave equations, enhanced
resilience to atmospheric turbulence and orthogonality, enabling potential increases in
FSOC channel bandwidth thanks to spatial multiplexing. However, its scalability in power
and practical realization in laboratory and outdoor applications are problematic for a
single-aperture output.

The purpose of this study was to merge both technologies, that is, to search for the
possibilities of CBC technology for the generation of OAM beams (OAM-CBC). Preliminary
results were presented in [29], where a segmented vortex wavefront was constructed in the
near field owing to a special helix-like stepped phase shift in the hexagonal lattice. Here, we
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develop this approach for a special tilted and phased CBC (T&P-CBC) concept, enabling the
effective construction of segmented vortex wavefronts in the near field. Section 2 describes
the semi-analytical model of CBC propagation and the OAM-CBC concept. The main
results, analysis, and discussion are presented in Section 3, and conclusions are drawn in
Section 4.

2. Tilted and Phased CBC for Optical Angular Momentum Generation

Here, we give only a brief description of the analysis method. The full mathematical
model is described in detail in [30,31]. To start, we provide the main characteristics of
CBC hexagonal architecture (see Figure 1). The center and chief ray directions of each
(l, n)-th emitter/beam of the CBC are defined by the geometry of the hexagonal lattice;
Ncr is the number of crowns; Nlat = 3Ncr (Ncr + 1) + 1 is the number of emitters; a is the
half period of the lattice; ra is the sub-aperture radius; f.f. = ra/a is the filling factor; and
f is the focal length. In the classical CBC configuration, each chief ray is directed to the
common focal point F, with a spherical segmented wavefront of the CBC lattice of the
radius f. The diffraction profiles of CBC in the far field are characterized by the Airy radius
rAiry = 0.61λ/NAlat and Fresnel range ZFresnel = λ/NAlat

2, where NAlat = (Ncr + 1/2)2a/f. is
the numerical aperture of the lattice and λ is the wavelength.
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via tilted and phased CBC.

We applied a truncated Gaussian beam as a ‘prototype’ optical field. To simplify
calculations, we used the once-determined and calculated approximate solution of a trun-
cated Gaussian beam for the given beam radius w1 at the aperture and truncation level
εtr = exp(−2(ra/w1)2) (see [32]), which is valid over a wide range of propagation distances
in the vicinity of focal point F. Note that the ratio of the Rayleigh range of an individual
beam to the caustics length defined by the Fresnel range is proportional to Ncr

2. Typically,
for long-distance propagation, the Rayleigh range is comparable to f (‘collimation case’),
whereas the Fresnel range is Nlat times shorter. We calculated the coherent sum of all input
beams for the specific distribution of phases and tilts for a chosen plane near focal point F.

Evidently, various T&P-CBC realizations exist in the (1 + 3) × Nlat dimensional space
of the control parameters. The exploration of this subject is far beyond the scope of this
study. Here, we focus on the OAM-CBC case. We define a specific segmented vortex
wavefront with a step-like helix phase and tilt vector [θx, θy] in the near field as follows:
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The OAM-CBC amplitude BmOAM with the given mOAM—optical angular momentum
number can be described as follows:

BmOAM = ∑
l,n

Al,n exp[ikΦl,n] where Φl,n =
rl,n

2

f
+ mOAM

φl,n

k
(1)

Here, l and n are the indices of the sub-aperture, Al,n is the amplitude of the (l, n)
sub-aperture, rl,n and φl,n are the radius to the lattice center and the azimuth angle of each
sub-aperture, f is the focal length, and k is the wavenumber.

Next, we the calculate vortex tilt vector [θx, θy] by the gradient ∇Φl,n as follows:

∇Φl,n =
[
θx,l,n , θy,l,n

]
=

[
rl,n cos φl,n

f + mOAM
sin φl,n

krl,n
, rl,n sin φl,n

f − mOAM
cos φl,n

krl,n

]
(2)

Note that for mOAM ̸= 0, the geometrical-optics caustics of the OAM-CBC vortex
segmented wavefront has a coiling non-linear helix shape with an inner hole (lower right
part of Figure 1) corresponding to the evolving hexagonal helix of the CBC in the near field
(upper left part in Figure 1). The coiling helix for mOAM = 0 transforms into a distinct focal
point F for the classical spherical CBC case. This phenomenon is a direct geometrical-optics
interpretation of vanishing irradiance at r = 0 and an annular amplitude distribution in
caustics for the vortex OAM beam.

3. Results

We tested the proposed OAM-CBC concept for a large hexagonal lattice consisting of
Ncr = 6 outer crowns (Nlat = 127 emitters), assuming very dense packing (f.f. = 0.99). To
neglect the peculiarities of diffraction, we assumed low truncation losses εtr = 0.05. Thus,
an ‘almost’ Gaussian beam was emitted by an individual emitter with a very low power
content at higher diffraction orders in the caustics region. The hexagonal architecture of the
CBC reflects the six-folded symmetry of the 1st diffraction orders (see Figure 2).
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Figure 2. Two-dimensional maps of OAM-CBC irradiance distributions (in logarithmic scale) in the
far field for optical angular momentum number; (a) mOAM = 0; (b) 2; (c) 4; (d) 6; Nlat = 127, f.f. = 0.99,
εtr = 0.05.

The basic compliance between the geometrical-optics caustics (Figure 1) and wave op-
tics demonstrate a dominant annular profile in the zero-order diffraction area (Figures 2–4).
In Figure 2, the irradiance maps for mOAM > 0 (Figure 2b–d) exhibit the expected properties
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of the conjunction of CBC and OAM beams. The zero-diffraction order has a nearly annular
shape and the 1st diffraction orders resemble its replicas.

Photonics 2024, 11, x FOR PEER REVIEW 4 of 7 
 

 

Figure 2. Two-dimensional maps of OAM-CBC irradiance distributions (in logarithmic scale) in the 
far field for optical angular momentum number; (a) OAMm  = 0; (b) 2; (c) 4; (d) 6; Nlat = 127, f.f. = 0.99, 
εtr = 0.05. 

The basic compliance between the geometrical-optics caustics (Figure 1) and wave 
optics demonstrate a dominant annular profile in the zero-order diffraction area (Figures 
2–4). In Figure 2, the irradiance maps for OAMm  > 0 (Figure 2b–d) exhibit the expected 
properties of the conjunction of CBC and OAM beams. The zero-diffraction order has a 
nearly annular shape and the 1st diffraction orders resemble its replicas. 

The typical dependencies of the far field profiles and power-in-bucket (PIB) curves 
for OAM-CBC are shown in Figures 3 and 4. 

 
Figure 3. Irradiance profiles in the far field for OAMm  ϵ [0, 8]; f.f. = 0.99, εtr = 0.05, Nlat = 127. 

 

Figure 4. Power-in-bucket curves for OAMm  ϵ [0, 8]; f.f. = 0.99, εtr = 0.05, Nlat = 127. 

With an increase in OAMm , the amplitude profiles worsen with flattening and dissipa-
tion of power density out of the low diffraction lobes (Figures 3 and 4). Moreover, above 

Figure 3. Irradiance profiles in the far field for mOAM ϵ [0, 8]; f.f. = 0.99, εtr = 0.05, Nlat = 127.

Photonics 2024, 11, x FOR PEER REVIEW 4 of 7 
 

 

Figure 2. Two-dimensional maps of OAM-CBC irradiance distributions (in logarithmic scale) in the 
far field for optical angular momentum number; (a) OAMm  = 0; (b) 2; (c) 4; (d) 6; Nlat = 127, f.f. = 0.99, 
εtr = 0.05. 

The basic compliance between the geometrical-optics caustics (Figure 1) and wave 
optics demonstrate a dominant annular profile in the zero-order diffraction area (Figures 
2–4). In Figure 2, the irradiance maps for OAMm  > 0 (Figure 2b–d) exhibit the expected 
properties of the conjunction of CBC and OAM beams. The zero-diffraction order has a 
nearly annular shape and the 1st diffraction orders resemble its replicas. 

The typical dependencies of the far field profiles and power-in-bucket (PIB) curves 
for OAM-CBC are shown in Figures 3 and 4. 

 
Figure 3. Irradiance profiles in the far field for OAMm  ϵ [0, 8]; f.f. = 0.99, εtr = 0.05, Nlat = 127. 

 

Figure 4. Power-in-bucket curves for OAMm  ϵ [0, 8]; f.f. = 0.99, εtr = 0.05, Nlat = 127. 

With an increase in OAMm , the amplitude profiles worsen with flattening and dissipa-
tion of power density out of the low diffraction lobes (Figures 3 and 4). Moreover, above 

Figure 4. Power-in-bucket curves for mOAM ϵ [0, 8]; f.f. = 0.99, εtr = 0.05, Nlat = 127.

The typical dependencies of the far field profiles and power-in-bucket (PIB) curves for
OAM-CBC are shown in Figures 3 and 4.

With an increase in mOAM, the amplitude profiles worsen with flattening and dis-
sipation of power density out of the low diffraction lobes (Figures 3 and 4). Moreover,
above mOAM > 5, the 2D maps resemble the aberrated and scattered partly coherent beams
with the minimum at the axis. These features are particularly highlighted for mOAM = 6
(Figure 2d), for which the six-fold symmetries of the vortex and hexagonal lattice overlap.

To examine the orthogonality of a set of OAM-CBC amplitude profiles in the far
field and their feasibility in FSOC, we calculated the correlation coefficients γm,k defined
as follows:

γm,k =
⟨BmBk

∗⟩√
⟨BmBm

∗⟩⟨BkBk
∗⟩

(3)

where ⟨BmBk
∗⟩ denotes the discrete 2D summation of BmBk

∗ over a finite area in the far
field; (15 × 15 rAiry in our case).
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The results of the γm,k calculations for a trail of nine configurations with mOAM ϵ [0, 8]
are collected in Table 1.

Table 1. Correlation coefficients for OAM-CBC amplitude profiles in the far field; mOAM ϵ [0, 8],
f.f. = 0.99, εtr = 0.05, Nlat = 127.

mOAM 0 1 2 3 4 5 6 7 8

0 1.00000 0.00844 0.00875 0.00924 0.00986 0.01000 0.10100 0.01200 0.01200
1 0.00844 1.00000 0.00484 0.00507 0.00541 0.00570 0.00848 0.08800 0.00701
2 0.00875 0.00484 1.00000 0.00530 0.00562 0.00599 0.00862 0.00681 0.09500
3 0.00924 0.00507 0.00530 1.00000 0.00592 0.00621 0.00918 0.00770 0.00768
4 0.00986 0.00541 0.00562 0.00592 1.00000 0.00669 0.00958 0.00761 0.00843
5 0.01000 0.00570 0.00599 0.00621 0.00669 1.00000 0.01000 0.00846 0.00868
6 0.10100 0.00848 0.00862 0.00918 0.00958 0.01000 1.00000 0.01100 0.01200
7 0.01200 0.08800 0.00681 0.00770 0.00761 0.00846 0.01100 1.00000 0.00987
8 0.01200 0.00701 0.09500 0.00768 0.00843 0.00868 0.01200 0.00987 1.00000

Nonperfect orthogonality is caused by the characteristics of the OAM-CBC concept
(discrete 2D array of hexagonal symmetry), numerical errors, the approximate solution of
the truncated Gaussian beam, and discrete summation over a limited area.

The values of γm,k were in the range [0.0048, 0.1]. For a narrow range of mOAM ϵ [0, 5]
the average correlation coefficient γm,k = 0.7%, whereas for a mOAM ϵ [0, 8] it increases to
1.5%. We suppose that a correlation coefficient of 1%, corresponding to the cross-channel
crosstalk, is acceptable for practical applications in FSOC. Thus, we can conclude that the
T&P-CBC sufficiently satisfies the main conditions and requirements of OAM generation.

4. Conclusions

Our numerical experiments demonstrated the feasibility of the merging of OAM and
CBC technologies. For a densely packed CBC hexagonal array, the vortex wavefront was
emulated with a step-like evolving helix of phase and tilt vectors in the near field.

i/ The irradiance maps for mOAM > 0 exhibit the expected properties of a combination
of CBC and OAM beams. The zero-diffraction order has a nearly annular shape and the 1st
diffraction orders resemble its replicas. However, the differences between classical OAM
beams and OAM-CBC are substantial owing to their hexagonal lattice properties.

ii/ The imperfect orthogonality of the OAM-CBC set is attributed to the specific char-
acteristics of the OAM-CBC concept (discrete 2D array of hexagonal symmetry), numerical
errors and discrete summation over a limited area. For the mOAM range of [0, 5], the
average correlation coefficient, corresponding to cross-channel crosstalk, is 0.7%, which is
acceptable for practical applications in FSOC.

We conclude that the proposed T&P-CBC concept fulfills the primary conditions and
requirements for OAM generation. In further research, we intend to examine the rules of
OAM-CBC algebra and the impact of lattice architecture parameters and imperfections.
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