Secrecy Rate Bounds in Spatial Modulation-Based Visible Light Communications under Signal-Dependent Noise Conditions
Abstract
:1. Introduction
- We assess the secrecy rate for SM-based VLC under non-negativity and average optical intensity constraints. We derive a lower bound using the uniform selection (US) mechanism and an upper bound using the dual expression of the secrecy rate, with closed-form expressions for both bounds. Numerical results confirm the reliability of these bounds.
- We analyze SM-based VLC with constraints on non-negativity, average optical intensity, and peak optical intensity. Closed-form expressions for the secrecy rate bounds, including the peak optical intensity constraint, are derived. Numerical results demonstrate that the bounds are tightly constrained.
- We evaluate the asymptotic performance of the secrecy rate at high optical intensity. The difference between the lower and upper bounds is minimal at high signal-to-noise ratios (SNR).
- To enhance secrecy performance, we employ the channel-adaptive selection (CAS) method and the greedy selection (GS) method for active transmitter selection. The GS method outperforms both the CAS and US methods, as demonstrated by numerical results.
- We investigate the impact of friendly optical jamming on the secrecy rate. The results show that optical jamming significantly improves the secrecy rate, particularly at higher power levels.
2. System Model
- Nonnegativity: The input signal in (1) is a nonnegative random variable representing the optical signal’s intensity. Consequently, we have
- Peak optical intensity constraint: The input signal is typically subject to a peak optical intensity constraint, imposed by practical and safety limitations.
- Average optical intensity constraint: Since VLC requires constant illumination, the average optical intensity must remain stable over time but can be adjusted to meet user needs. Thus, the average optical intensity constraint is described as
3. Secrecy Rate for SM-Based VLC with Constraints (3) and (5)
3.1. Lower Bound of Secrecy Rate
3.2. Upper Bound of Secrecy Rate
3.3. Asymptotic Behavior Analysis
4. Secrecy Rate for SM-Based VLC with Constraints (3)–(5)
4.1. Lower Bound of Secrecy Rate
4.2. Upper Bound of Secrecy Rate
4.3. Asymptotic Behavior Analysis
5. Secrecy Methods for Enhancing Performance
5.1. Channel-Adaptive Selection Technique
Algorithm 1 The CAS technique | |
1: | Input: , and M. |
2: | Output: The k-th index of LED. |
3: | Get Alice’s, Bob’s, and Eve’s locations. |
4: | Calculate the probability of every LED being selected utilizing (35). |
5: | . |
6: | Produce a randomly generated r in the interval . |
7: | if then |
8: | The 1st index is chosen. |
9: | then |
10: | The k-th index is chosen. |
11: | end if |
12: | for choosing a different index for the subsequent particular time. |
5.2. Greedy Selection Technique
Algorithm 2 The GS technique | |
1: | Input: , and M. |
2: | Output: The m-th index of LED. |
3: | Get Alice’s, Bob’s, and Eve’s locations. |
4: | . |
5: | if then |
6: | The m-th index is chosen. |
7: | end if |
8: | Iterate the above steps 2–6 for choosing a different index for the subsequent particular time. |
6. Secrecy-Rate Enhancement-Based Optical Jamming
7. Scenarios with Multiple Receivers
8. Numerical Results
8.1. SM-Based VLC with Constraints (3) and (5)
8.2. SM-Based VLC with Constraints (3)–(5)
8.3. SM-Based VLC with the US, CAS, and GS Techniques
8.4. SM-Based VLC with Optical Jamming
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
References
- Matthaiou, M.; Yurduseven, O.; Ngo, H.Q.; Morales-Jimenez, D.; Cotton, S.L.; Fusco, V.F. The Road to 6G: Ten Physical Layer Challenges for Communications Engineers. IEEE Commun. Mag. 2021, 59, 64–69. [Google Scholar] [CrossRef]
- Ishikawa, N.; Sugiura, S.; Hanzo, L. 50 Years of Permutation, Spatial and Index Modulation: From Classic RF to Visible Light Communications and Data Storage. IEEE Commun. Surv. Tutor. 2018, 20, 1905–1938. [Google Scholar] [CrossRef]
- Di Renzo, M.; Haas, H.; Ghrayeb, A.; Sugiura, S.; Hanzo, L. Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation. Proc. IEEE 2014, 102, 56–103. [Google Scholar] [CrossRef]
- Yang, P.; Di Renzo, M.; Xiao, Y.; Li, S.; Hanzo, L. Design Guidelines for Spatial Modulation. IEEE Commun. Surv. Tutor. 2014, 17, 6–25. [Google Scholar] [CrossRef]
- Wen, M.; Zheng, B.; Kim, K.J.; Di Renzo, M.; Tsiftsis, T.A.; Chen, K.-C.; Al-Dhahir, N. A Survey on Spatial Modulation in Emerging Wireless Systems: Research Progresses and Applications. IEEE J. Sel. Areas Commun. 2019, 37, 1949–1972. [Google Scholar] [CrossRef]
- Li, J.; Dang, S.; Wen, M.; Li, Q.; Chen, Y.; Huang, Y.; Shang, W. Index Modulation Multiple Access for 6G Communications: Principles, Applications, and Challenges. IEEE Netw. 2023, 37, 52–60. [Google Scholar] [CrossRef]
- Al-Moliki, Y.M.; Alresheedi, M.T.; Abas, A.F.; Mahdi, M.A.; Khoon, N.E. OFDM-Based Time-Domain Optical MIMO with General-Numbered LED Configurations. Opt. Quantum Electron. 2023, 55, 1093. [Google Scholar] [CrossRef]
- Rohner, S.; Raza, D.; Puccinelli, D.; Voigt, T. Security in Visible Light Communication: Novel Challenges and Opportunities. Sens. Transducers 2015, 192, 9–15. [Google Scholar]
- Blinowski, G. Security Issues in Visible Light Communication Systems. In Proceedings of the 13th IFAC and IEEE Conference on Programming Devices and Embedded Systems, Cracow, Poland, 13–15 May 2015; Elsevier Science Direct: Amsterdam, The Netherlands, 2015; Volume 48, pp. 234–239. [Google Scholar]
- Hamamreh, J.M.; Furqan, H.M.; Arslan, H. Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey. IEEE Commun. Surveys Tutor. 2019, 21, 1773–1828. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Wang, J.; Wu, Y.; Lin, M.; Cheng, J. Physical-Layer Security for Indoor Visible Light Communications: Secrecy Capacity Analysis. IEEE Trans. Commun. 2018, 66, 6423–6436. [Google Scholar] [CrossRef]
- Che, Z.; Fang, J.; Jiang, Z.L.; Li, J.; Zhao, S.; Zhong, Y.; Chen, Z. A Physical-Layer Secure Coding Scheme for Indoor Visible Light Communication Based on Polar Codes. IEEE Photon. J. 2018, 10, 7907313. [Google Scholar] [CrossRef]
- Chen, J.; Shu, T. Statistical Modeling and Analysis on the Confidentiality of Indoor VLC Systems. IEEE Trans. Wirel. Commun. 2020, 19, 4744–4757. [Google Scholar] [CrossRef]
- Kumar, P.; Garg, A.; Gupta, A. PLS Analysis in an Indoor Heterogeneous VLC/RF Network Based on Known and Unknown CSI. IEEE Syst. J. 2021, 15, 68–76. [Google Scholar] [CrossRef]
- Pham, T.V.; Pham, A.T. On the Secrecy Sum-Rate of MU-VLC Broadcast Systems with Confidential Messages. In Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague, Czech Republic, 20–22 July 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Yin, L.; Haas, H. Physical-Layer Security in Multiuser Visible Light Communication Networks. IEEE J. Sel. Areas Commun. 2018, 36, 162–174. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, H.; Sun, J. On Physical-Layer Security in Multiuser Visible Light Communication Systems with Non-Orthogonal Multiple Access. IEEE Access 2018, 6, 34004–34017. [Google Scholar] [CrossRef]
- Su, N.; Panayirci, E.; Koca, M.; Yesilkaya, A.; Poor, H.V.; Haas, H. Physical Layer Security for Multi-User MIMO Visible Light Communication Systems with Generalized Space Shift Keying. IEEE Trans. Commun. 2021, 69, 2585–2598. [Google Scholar] [CrossRef]
- Pan, G.; Ye, J.; Ding, Z. On Secure VLC Systems With Spatially Random Terminals. IEEE Commun. Lett. 2017, 21, 492–495. [Google Scholar] [CrossRef]
- Ma, S.; Dong, Z.-L.; Li, H.; Lu, Z.; Li, S. Optimal and Robust Secure Beamformer for Indoor MISO Visible Light Communication. J. Light. Technol. 2016, 34, 4988–4998. [Google Scholar] [CrossRef]
- Mostafa, A.; Lampe, L. Optimal and Robust Beamforming for Secure Transmission in MISO Visible-Light Communication Links. IEEE Trans. Signal Process. 2016, 64, 6501–6516. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Rezki, Z.; Ghrayeb, A.; Alouini, M.S. On the Input Distribution and Optimal Beamforming for the MISO VLC Wiretap Channel. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7–9 December 2016; IEEE: New York, NY, USA, 2016; pp. 970–974. [Google Scholar]
- Arfaoui, M.A.; Rezki, Z.; Ghrayeb, A.; Alouini, M.S. On the Secrecy Capacity of MISO Visible Light Communication Channels. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; IEEE: New York, NY, USA; pp. 1–7. [Google Scholar]
- Mostafa, A.; Lampe, L. Physical-Layer Security for MISO Visible Light Communication Channels. IEEE J. Sel. Areas Commun. 2015, 33, 1806–1818. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Yu, Y.-C.; Lu, D.-S.; Su, D.-P. Secure Beamforming for MISO Visible Light Communications with ISI and NLoS Components. IEEE Wirel. Commun. Lett. 2024, 13, 908–912. [Google Scholar] [CrossRef]
- Mostafa, A.; Lampe, L. Securing Visible Light Communications via Friendly Jamming. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014; IEEE: New York, NY, USA; pp. 524–529. [Google Scholar]
- Zaid, H.; Rezki, Z.; Chaaban, A.; Alouini, M.S. Improved Achievable Secrecy Rate of Visible Light Communication with Cooperative Jamming. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 4–16 December 2015; IEEE: New York, NY, USA; pp. 1165–1169. [Google Scholar]
- Pham, T.V.; Hayashi, T.; Pham, A.T. Artificial-Noise-Aided Precoding Design for Multi-User Visible Light Communication Channels. IEEE Access 2019, 7, 3767–3777. [Google Scholar] [CrossRef]
- Pham, T.V.; Pham, A.T. Energy Efficient Artificial Noise-Aided Precoding Designs for Secured Visible Light Communication Systems. IEEE Trans. Wirel. Commun. 2021, 20, 653–666. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Hong, L.-H.; Liu, N.; Yang, H.-N.; Feng, P.; Ren, J. Secrecy Analysis and Optimization for IRMA- and Jammer-Aided Visible Light Communications. IEEE Wirel. Commun. Lett. 2024, 13, 1908–1912. [Google Scholar] [CrossRef]
- Pham, T.V.; Pham, A.T.; Ishihara, S. Design of Energy-Efficient Artificial Noise for Physical Layer Security in Visible Light Communications. IEEE Trans. Green Commun. Netw. 2024, 8, 741–755. [Google Scholar] [CrossRef]
- Shen, H.; Deng, Y.; Xu, W.; Zhao, C. Secrecy-Oriented Transmitter Optimization for Visible Light Communication Systems. IEEE Photon. J. 2016, 8, 7905914. [Google Scholar] [CrossRef]
- Cho, S.; Chen, G.; Coon, J.P. Enhancement of Physical Layer Security with Simultaneous Beamforming and Jamming for Visible Light Communication Systems. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2633–2648. [Google Scholar] [CrossRef]
- Mukherjee, P. Secret-Key Agreement for Security in Multi-Emitter Visible Light Communication Systems. IEEE Commun. Lett. 2016, 20, 1361–1364. [Google Scholar] [CrossRef]
- Al-Moliki, Y.M.; Alresheedi, M.T.; Al-Harthi, Y. Improving Availability and Confidentiality via Hyperchaotic Baseband Frequency Hopping Based on Optical OFDM in VLC Networks. IEEE Access 2020, 8, 125013–125028. [Google Scholar] [CrossRef]
- Al-Moliki, Y.M.; Alresheedi, M.T.; Al-Harthi, Y. Design of Physical Layer Key Generation Encryption Method Using ACO-OFDM in VLC Networks. IEICE Trans. Commun. 2020, E103.B, 969–978. [Google Scholar] [CrossRef]
- Al-Moliki, Y.M.; Alresheedi, M.T.; Al-Harthi, Y.; Alqahtani, A.H. Robust Lightweight Channel-Independent OFDM-Based Encryption Method for VLC-IoT Networks. IEEE Internet Things J. 2022, 9, 4661–4676. [Google Scholar] [CrossRef]
- Alresheedi, M.T.; Al-Moliki, Y.M.; Al-Harthi, Y.; Alqahtani, A.H. Dynamic Hyperchaotic Key Generation Using Optical Orthogonal Frequency Division Multiplexing-Based Visible Light Communication Networks. IEEJ Trans. Elec. Electron. Eng. 2022, 17, 695–704. [Google Scholar] [CrossRef]
- Soltani, M.; Rezki, Z. Optical Wiretap Channel with Input-Dependent Gaussian Noise under Peak-and Average-Intensity Constraints. IEEE Trans. Inf. Theory 2018, 64, 6878–6893. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Yu, P.F.; Fu, X.T.; Wang, J.B.; Lin, M.; Cheng, J.; Alouini, M.S. Secrecy-Capacity Bounds for Visible Light Communications with Signal-Dependent Noise. IEEE Trans. Wirel. Commun. 2023, 22, 7227–7242. [Google Scholar] [CrossRef]
- Li, H.; Wang, F.; Zhang, J.; Liu, C. Secrecy Performance Analysis of MISO Visible Light Communication Systems with Spatial Modulation. Digit. Signal Process. 2018, 81, 116–128. [Google Scholar] [CrossRef]
- Wang, F.; Li, R.; Zhang, J.; Shi, S.; Liu, C. Enhancing the Secrecy Performance of the Spatial Modulation Aided VLC Systems with Optical Jamming. Signal Process. 2019, 157, 288–302. [Google Scholar] [CrossRef]
- Ge, H.; Dai, J.; Huang, B.; Wang, J. Secrecy Rate Analysis for Visible Light Communications Using Spatial Modulation. In Proceedings of the IEEE 21st International Conference on High Performance Computing and Communications (HPCC), Zhangjiajie, China, 10–12 August 2019; IEEE: New York, NY, USA, 2019; pp. 1241–1248. [Google Scholar]
- Wang, J.-Y.; Ge, H.; Lin, M.; Wang, J.-B.; Dai, J.; Alouini, M.-S. On the Secrecy Rate of Spatial Modulation-Based Indoor Visible Light Communications. IEEE J. Sel. Areas Commun. 2019, 37, 2087–2101. [Google Scholar] [CrossRef]
- Al-Moliki, Y.M.; Alresheedi, M.T.; Al-Harthi, Y.; Alqahtani, A.H. Channel-Independent Quantum Mapping-Substitution OFDM-Based Spatial Modulation for Physical-Layer Encryption in VLC Networks. Veh. Commun. 2024, 45, 100706. [Google Scholar] [CrossRef]
- Cover, T.; Thomas, J. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Moser, S.M. Capacity Results of an Optical Intensity Channel with Input-Dependent Gaussian Noise. IEEE Trans. Inf. Theory 2012, 58, 207–223. [Google Scholar] [CrossRef]
Alice | Bob | |
---|---|---|
Locations |
P (dB) | ||
---|---|---|
65 | 0.468 | 0.467 |
70 | 0.467 | 0.467 |
75 | 0.467 | 0.4672 |
P (dB) | ||
---|---|---|
65 | 0.1765 | 0.1765 |
70 | 0.1765 | 0.1765 |
75 | 0.1765 | 0.1765 |
References | Noise Assumption | Secrecy Rate Bounds | Selection Techniques | Optical Jamming | Main Contribution |
---|---|---|---|---|---|
[11,12,13,14] | Signal-independent | Derived for SISO VLC | None | Not considered | Tight upper and lower bounds for secrecy capacity in SISO systems |
[15,16,17,18,19] | Signal-independent | Secrecy sum rates, 3D networks | Not specified | Not considered | Physical-layer security in multi-user VLC networks |
[20,21,22,23,24,25] | Signal-independent | Secrecy rate under secure beamforming | Not specified | Not considered | Secure beamforming in MISO VLC under CSI constraints |
[26,27,28,29,30,31] | Signal-independent | Secrecy rate maximization using jamming | Not specified | Jamming used | Jamming and AN-aided precoding to improve secrecy |
[32,33] | Signal-independent | Secrecy rate under secure beamforming and jamming | Not specified | Jamming used | Secure beamforming in MISO VLC under CSI constraints |
[34,35,36,37,38] | Signal-independent | Secret-key derivation | Not specified | Not considered | Key generation from physical-layer signals |
[39,40] | Signal-dependent | Secrecy performance in SISO VLC | Not specified | Jamming used | Investigate the secrecy rate for SISO VLC under signal-dependent noise |
[41] | Signal-independent | Secrecy rate bounds in SM VLC | Not specified | Not considered | Investigate the secrecy rate for SM-based VLC systems |
[42] | Signal-independent | Secrecy rate bounds in SM VLC | Not specified | Jamming used | Optical jamming scheme for enhancing secrecy in SM-VLC systems |
[43,44] | Signal-independent | Secrecy rate bounds in SM VLC | US, CAS, GS | Not considered | Improve secrecy rate for SM-VLC using transmitter selection |
This work | Signal-dependent | Secrecy rate bounds in SM VLC | US, CAS, GS | Jamming used | Improve secrecy rate for SM-VLC using transmitter selection and optical jamming under signal-dependent noise |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Moliki, Y.M.; Alqahtani, A.H.; Alresheedi, M.T.; Al-Harthi, Y. Secrecy Rate Bounds in Spatial Modulation-Based Visible Light Communications under Signal-Dependent Noise Conditions. Photonics 2024, 11, 934. https://doi.org/10.3390/photonics11100934
Al-Moliki YM, Alqahtani AH, Alresheedi MT, Al-Harthi Y. Secrecy Rate Bounds in Spatial Modulation-Based Visible Light Communications under Signal-Dependent Noise Conditions. Photonics. 2024; 11(10):934. https://doi.org/10.3390/photonics11100934
Chicago/Turabian StyleAl-Moliki, Yahya M., Ali H. Alqahtani, Mohammed T. Alresheedi, and Yahya Al-Harthi. 2024. "Secrecy Rate Bounds in Spatial Modulation-Based Visible Light Communications under Signal-Dependent Noise Conditions" Photonics 11, no. 10: 934. https://doi.org/10.3390/photonics11100934
APA StyleAl-Moliki, Y. M., Alqahtani, A. H., Alresheedi, M. T., & Al-Harthi, Y. (2024). Secrecy Rate Bounds in Spatial Modulation-Based Visible Light Communications under Signal-Dependent Noise Conditions. Photonics, 11(10), 934. https://doi.org/10.3390/photonics11100934