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Abstract: This article explores the transformative impact of digital engineering on photonic technolo-
gies, emphasizing advancements in laser processing through digital models, artificial intelligence
(AI), and freeform optics. It presents a comprehensive review of how these technologies enhance
efficiency, precision, and control in manufacturing processes. Digital models are pivotal for predicting
and optimizing thermal effects in laser processing, thereby reducing material deformation and defects.
The integration of AI further refines these models, improving productivity and quality in applications
such as micromachining and cladding. Additionally, the combination of AI with freeform optics
advances laser technology by enabling real-time adjustments and customizable beam profiles, which
enhance processing versatility and reduce material damage. The use of digital twins is also examined
as a key development in laser-based manufacturing, offering significant improvements in process
optimization, defect reduction, and system efficiency. By incorporating real-time monitoring, machine
learning, and physics-based modeling, digital twins facilitate precise simulations and predictions,
leading to more effective and reliable manufacturing practices. Overall, the integration of digital
twins, AI, and freeform optics into laser processing marks a significant progression in manufacturing
technology. These advancements collectively enhance precision, efficiency, and adaptability, resulting
in improved product quality and reduced operational costs. The continued evolution of these tech-
nologies is expected to drive further advancements in manufacturing practices, offering more robust
solutions for complex production environments.

Keywords: digital models; artificial intelligence (AI); freeform optics; digital twins; laser processing;
manufacturing efficiency; photonics

1. Introduction

Digital engineering represents a new paradigm in the design and development of
industrial systems, where traditional engineering approaches are integrated with digital
technologies to create more precise, adaptive, and efficient manufacturing processes. At the
core of digital engineering are the use of digital twins, big data, artificial intelligence (AI),
and the Internet of Things (IoT), which allow for the simulation and optimization of pro-
duction before it even begins in the physical world [1]. This field is particularly relevant for
high-precision processes, such as photonic technologies, where both accurate simulations
and reproducible experimental data are crucial for effective design and optimization [2–4].

A key aspect of digital engineering is the use of digital models (or digital twins) that
can accurately represent the behavior of physical objects and processes. These models
integrate large volumes of data obtained from sensors, control systems, and other real-time
sources, converting them into what is known as “smart data” [5]. This enables predictive
maintenance, adaptive control, and process optimization, which is particularly important
in complex and dynamic industries such as aviation and automotive manufacturing [6,7].

Lasers serve as a fundamental tool within the realm of photonics, which encompasses
the generation, manipulation, and detection of photons for various applications, including
data transmission, sensing, and material processing. As a specific application of photonics,
laser technology utilizes coherent light to achieve high precision and control in material
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processing tasks [8]. By leveraging lasers for diverse tasks, including advanced mate-
rial modification, this technology drives progress in various fabrication and processing
techniques [9–12]. This capability enables advanced manipulation and modification of
materials, driving progress in various fabrication and processing techniques. The inte-
gration of laser systems with digital technologies, such as computer-aided design (CAD)
and real-time process monitoring, significantly enhances their functionality. This synergy
provides highly accurate digital control, supports adaptive manufacturing processes, and
facilitates the implementation of Industry 4.0 principles. Consequently, it drives innova-
tions in automated and precision-driven production environments, leading to more efficient
and adaptable manufacturing systems [13–15].

Laser processing plays a central role in advanced manufacturing systems due to its
high precision, speed, and ability to work with a wide range of materials, from metals to
polymers and ceramics. When combined with digital technologies such as modeling and
AI, laser processing becomes more controllable and efficient [16]. Key aspects include the
use of digital models to predict the thermal effects of laser processing, which allows for
the optimization of heating and cooling processes, preventing material deformation and
defects. The use of freeform optics and AI-based feedback systems enables precise control
of energy distribution, improving processing quality and reducing the risk of material
damage [17].

Laser technologies are employed to alter surface structures, synthesize nanostructures,
and develop smart materials that can adapt to changing operational conditions. In this
context, the integration of data obtained during laser processing, such as temperature, laser
scan speed, and processing quality, into digital twins is crucial for enhancing manufacturing
efficiency. Digital twins are virtual replicas of physical processes that allow for real-time
monitoring and simulation of these processes. By collecting and analyzing data from
sensors and other real-time sources, digital twins enable precise adjustment of processing
parameters and contribute to the development of new materials and processes. This
approach not only improves the accuracy and efficiency of manufacturing but also supports
the creation of adaptive, high-performance materials that respond effectively to varying
conditions [18,19].

The main purpose of this article is to provide systematized information on the transfor-
mative role of digital engineering in photonic technologies, focusing on how digital models
enhance efficiency and precision, reviewing the integration of AI and freeform optics, and
analyzing the application of digital twin technology for improved control and effectiveness.
This analysis is intended to highlight the advancements and future directions in the inte-
gration of digital engineering into photonic technologies. The novelty of this review lies
in its emphasis on the unique integration of digital twins, AI, and freeform optics, which
collectively enhance precision, efficiency, and versatility in laser-based manufacturing.

2. The Role of Digital Models in Enhancing Laser Processing Efficiency and Precision

Designing systems based on digital models plays a crucial role in improving the
efficiency and precision of laser machining processes. The use of digital models enables the
prediction of thermal effects during processing, helping to optimize heating and cooling
cycles, thereby preventing material deformation and the occurrence of defects. Laser
machining is accompanied by localized intense heating, causing complex thermal effects
within the material [20]. Through predictive modeling, it is possible to gain a deeper
understanding of the material’s behavior under laser exposure, including heat transfer,
phase transitions, and temperature distribution across the surface. This allows for more
precise control of parameters such as laser power, its spatial distribution, and scanning
speed, leading to reduced thermal distortion [21,22].

Numerical modeling techniques, such as the finite element method (FEM), are widely
used to simulate the thermal behavior of materials during laser machining. These models
predict temperature gradients, heat-affected zones, and cooling rates, helping to avoid
excessive heating and subsequent deformation. Integrating such models into the process
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allows for the optimization of key parameters to preserve material integrity, minimize
the risk of defects such as cracks or residual stresses, and improve the overall quality of
the final product. Predictive modeling also opens up possibilities for real-time process
monitoring and adaptive control of laser machining to achieve consistent and high-quality
results [23].

Digital simulations provide a high degree of accuracy by modeling complex phe-
nomena, enabling the optimization of parameters before physical trials. Moreover, they
significantly enhance efficiency by allowing rapid iteration without the resource constraints
of physical experiments, thus reducing material waste and operational costs while im-
proving the quality of results. However, calibration against physical experiments remains
essential to validate these simulations and ensure their reliability [24,25].

Studies underscore the significance of digital models in enhancing laser machining pro-
cesses by improving precision and optimizing key parameters. Short and ultrashort pulsed
laser microdrilling, for instance, relies on digital models to analyze the effects of process
parameters on hole quality, such as pulse width and scanning speed, thereby improving
the precision and surface integrity of drilled holes [26]. In laser beam cutting, digital mod-
els are essential for understanding and optimizing cut quality characteristics, including
geometrical and metallurgical aspects, to achieve better cutting performance [27]. Addi-
tionally, the use of digital models in understanding the effects of laser-induced shockwaves
highlights their role in predicting processing outcomes and enhancing surface properties.
These models are crucial for accurately forecasting how shockwaves influence material
surfaces, thus enabling precise control over surface treatment processes and optimizing the
effectiveness of non-ablative surface modifications [28].

Digital models are essential for optimizing laser processing techniques by enabling
precise predictions and adjustments of process parameters. For example, numerical sim-
ulations of laser annealing in aluminum alloys can forecast the impact of localized laser
heating on properties such as hardness and microstructure [29]. Finite element (FE) mod-
eling of anisotropic behavior in sheet metals under heat treatment provides a thorough
framework for predicting material responses, which is key for enhancing formability [30].
Ref. [31] focused on the use of digital models to optimize the laser surface treatment of
high-strength aluminum alloys, improving their formability in car manufacturing. An FE
model was developed to simulate the laser treatment process under various conditions.
The thermal cycles derived from these simulations were validated through physical ex-
periments. The FE model effectively predicted how laser parameters, such as speed and
temperature, influenced the material’s softening. Figure 1 illustrates the peak tempera-
ture distribution and hardness distribution on the blank during the multiple rectangular
path strategy at a traverse speed of 5 mm/s under maximum softening conditions with
a peak temperature of 430 ◦C. The use of digital models to predict thermal processes and
structural changes enhances the accuracy of laser treatments. Predicting thermal processes
and structural changes in materials by modeling temperature fields enhances the accuracy
of laser treatments. Algorithms used to calculate the power density distribution of the
laser beam ensure that desired thermal effects and uniform temperature fields are achieved
during treatment [32]. Freeform optics enable customized heating patterns. In simulations,
power density can be modeled as either constant or variable over time. For instance, in
Ref. [33], the simulation assumed the heat source moved at a constant speed relative to
the stationary sample. Data management was handled using a parametric subprogram in
ANSYS Multiphysics, with the power density distribution visualized in Figure 2.
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Figure 2. Schematic representation of the treatment process: temperature field in the heat-affected
zone (left) and laser beam power density distribution (right). The red arrow indicates the laser spot
movement direction across the material surface [33].

Models that predict hardness and depth of processing zone during laser surface hard-
ening are confirmed against experimental data, offering insights into phase evolution and
microstructure changes [34]. Advances in modeling laser surface hardening include stream-
lined methods for real-time process optimization, enhancing accuracy and efficiency [35].
Additionally, advanced computational methods, including machine learning, further im-
prove simulation accuracy and process control [36]. Multiphysics modeling of pulsed laser
surface treatments allows detailed analysis of heat flux and surface morphology, contribut-
ing to optimized processing parameters [37]. Lastly, volumetric models of temperature
distribution in laser hardening processes provide detailed insights into temperature profiles
and phase changes, crucial for precise process control [38].

The importance of digital models in laser processes is highlighted, emphasizing their
role in optimizing for techniques such as welding and additive manufacturing. These mod-
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els are crucial for assessing the mechanical, metallurgical, and geometrical characteristics of
laser-processed materials, thereby improving industrial applications [39]. Progress in laser
beam welding process modeling underscores the critical role of digital tools in meeting
the complex demands of modern materials and welding processes. This includes various
aspects of weld joint modeling and monitoring, demonstrating the need for advanced
digital methods to enhance welding technology [40]. Advancements in digital modeling
significantly enhance the understanding and optimization of laser welding processes. So,
numerical simulations are instrumental in analyzing oscillating laser welding, providing
detailed insights into temperature fields and flow dynamics, which clarify phenomena such
as defect formation and solidification behaviors [41]. Furthermore, dimensional analysis
provides a systematic approach to digital modeling in welding processes, offering a method
to relate welding variables and refine experimental design through matrix operations [42].

In the field of laser-assisted welding, digital models are crucial for analyzing and
improving the joining of dissimilar materials, such as aluminum and steel. These models
help manage the formation of brittle intermetallic compounds by optimizing factors such
as beam power and scanning speed to achieve an ultrathin diffusion zone with minimal
intermetallic layers [43,44]. The development of multiphysical simulation models is also
critical for high-speed micro-welding. These models, which simulate laser beam propa-
gation, heat transfer, and phase changes, provide insights into welding defects and help
optimize machining parameters to prevent issues such as the humping effect [45]. Similarly,
the Mass-of-Fluid model advances the simulation of compressible multiphase flows in
laser-based processes, enhancing the accuracy of predictions related to phase changes and
fluid dynamics [46]. Further, innovations in digital modeling have significantly improved
the monitoring and control of laser and laser-arc hybrid welding processes. These models
facilitate a better understanding of complex physical phenomena, such as laser beam inter-
actions, molten pool dynamics, and defect formation, thus aiding in achieving high-quality
welds [47].

In metal additive manufacturing, digital models using particle methods are essential
for simulating processes such as powder bed fusion (PBF) and directed energy deposition
(DED). These models enhance process control by accurately representing fluid flows and
thermal dynamics at the powder or melt pool scale [48]. Figure 3 illustrates the different
scales in modeling these processes and the fundamental physical phenomena at the powder
scale. It shows how the interaction between the external heat source (e.g., laser or electron
beam) and the material leads to energy absorption, conduction, convection, and radiation.
The beam melts the powder particles, forming a liquid melt pool that solidifies as it cools.
The energy input can also vaporize the top layer and generate a gas flow above the liquid
surface. The melt pool behavior is influenced by thermo-hydrodynamic effects such as
heat transfer, surface tension, and Marangoni convection. Rapid phase changes at the
solid-liquid interface affect grain boundary formation and can lead to mechanical failures
such as cracking due to significant thermal stresses and extreme cooling rates [49,50]. This
highlights the need for high-fidelity modeling that incorporates metallurgical, thermal, and
mechanical effects.

In Figure 3, the following abbreviations are used: FEM (Finite Element Method) and
FVM (Finite Volume Method) are numerical techniques for solving partial differential
equations in engineering and fluid dynamics, respectively. CFD (Computational Fluid
Dynamics) analyzes fluid flows through numerical methods, while SPH (Smoothed Particle
Hydrodynamics) is a mesh-free method for simulating fluids. LBM (Lattice Boltzmann
Method) provides a discrete approach to fluid dynamics. CA (Cellular Automata) models
complex systems using discrete time and space; MC (Monte Carlo) employs random
sampling for numerical results; and PF (Phase Field) simulates phase transitions and
microstructure evolution in materials.
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Figure 3. Various scales of analysis in modeling metal additive manufacturing processes (top) and
key physical phenomena in and around the melt pool region at the powder scale (bottom) [48].

Additionally, residual stress modeling in selective laser melting has progressed, pro-
viding insights into stress balancing techniques and contributing to the development of
more reliable additive manufacturing processes [51]. Finally, simulations of melt pool
behavior during additive manufacturing are essential for optimizing part quality. These
models detail the flow and heat transfer in the melt pool, highlighting key physical theories
and assumptions to improve the accuracy and reliability of component qualification [52].
Overall, these advancements in digital modeling are crucial for enhancing the efficiency,
quality, and application of laser and additive manufacturing technologies.

Thus, the use of digital models significantly enhances the efficiency and precision of
laser processing. These models enable the prediction of thermal effects, optimizing heating
and cooling cycles to prevent material deformation and defect formation. Simulating
complex thermal phenomena such as heat transfer and phase transitions allows for precise
control of key parameters such as laser power and scanning speed, reducing thermal
distortion and improving process outcomes. Numerical modeling techniques, including
finite element methods, play a crucial role in predicting temperature gradients and heat-
affected zones, enabling real-time monitoring and adaptive control. The integration of
digital models into laser and additive manufacturing processes not only improves process
management but also enhances the quality and performance of the final products.

3. Integration of Digital Models and AI in Laser Material Processing

Examinations of optimization techniques for laser beam machining (LBM) demonstrate
how digital models enhance process efficiency and sustainability by allowing precise
predictions and adjustments of various parameters [53]. The variety of LBM optimization
methods includes both classical algorithms and modern approaches based on AI, such
as simulation, modeling, and hybrid methods. Each of these approaches has its own
advantages and limitations, which are detailed in the article. Classical methods include
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Design of Experiments (DoE) and Response Surface Methodology (RSM), which involve
systematic parameter changes and analysis of their industrial performance. Evolutionary
algorithms, such as Genetic Algorithms (GA), and nature-inspired methods such as Particle
Swarm Optimization (PSO), enable the exploration of extensive parameter spaces and
finding optimal solutions. Recent advances in AI, including machine learning and neural
networks, further extend the capabilities of optimization by more effectively addressing
multi-objective problems.

Integrating digital technologies such as CAD and AI with laser technology enhances
various industrial applications. For instance, in aerospace manufacturing, laser technology
is utilized for precision cutting and welding of complex components, such as turbine blades
and structural parts. The integration of CAD allows for detailed design specifications,
while AI optimizes the cutting process, ensuring high precision and efficiency [54]. In
automotive production, lasers are applied for cutting, welding, and surface treatment of
automotive parts, including body panels and exhaust systems. By utilizing AI, manufactur-
ers can predict and prevent defects in real time, improving product quality and reducing
scrap rates [55]. In medical device manufacturing, laser machining enables the creation of
intricate designs for medical implants, such as stents and prosthetics. The combination
of digital models and AI assists in tailoring products to specific patient needs, enhancing
performance and safety [56]. In additive manufacturing, digital twins and AI optimize
laser processes in 3D printing, allowing for real-time adjustments and improved material
properties during production, which is crucial for applications [57,58]. CAD systems con-
nected to manufacturing processes facilitate the rapid production of complex parts using
laser technology, such as custom tooling and fixtures, showcasing the synergy between
digital design and laser manufacturing [59]. Multifunctional laser processing integrates
various laser processes into a single manufacturing cell to achieve flexibility and increased
productivity, demonstrating how digital models can improve laser technologies by optimiz-
ing processes [60]. Research indicates that deep learning methods can be used for real-time
material identification, improving quality control and processing speed in manufacturing
environments [61]. These applications illustrate the transformative potential of combining
laser technology with digital innovations.

Optimization in LBM involves parameters such as laser power, cutting speed, and
gas pressure, which balance material removal, surface temperature, and thermal damage.
This is crucial for industries such as aerospace and medicine, where high efficiency and
precision are vital. The review also points to future research directions, including the
development of AI methods and hybrid approaches, which could lead to more advanced
LBM systems. Challenges such as the need for accurate data for training AI models, the
interpretability of results, and the complexity of applying optimization technologies in
industry are explored. It highlighted the innovative aspects of laser machining optimization
methods, showcasing how modern techniques enhance precision, quality, and efficiency in
manufacturing processes [53].

Mathematical modeling approaches in laser micromachining, such as response surface
methodology and heat flow models, help in optimizing process parameters and predicting
the results [62]. Studies on laser microdrilling highlight the critical role of digital models
in comprehending key variables and steering future research efforts [63]. Pulsed laser
drilling benefits from digital models to enhance productivity and quality across diverse
materials [64]. Digital models are also pivotal in predicting quality and performance in the
drilling of structural ceramics, assisting in the refinement of drilling techniques [65]. Finite
element simulations are critical in additive manufacturing, with digital models providing
insights for process optimization [66].

The integration of machine learning with digital models in laser machining enables
real-time process adjustments and enhances predictive accuracy [67]. The effectiveness of
neural networks in this field depends on three key factors: (i) the availability of computing
power, (ii) the quality and quantity of training data, and (iii) advancements in neural
network architecture and algorithms. As these factors improve, the capabilities of neural
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networks for modeling laser machining processes are expected to grow significantly. The
current focus has shifted from optimizing individual laser parameters to utilizing neural
networks for predictive surface visualizations and managing complex effects such as
diffraction. A significant future development would be the creation of a neural network
capable of modeling all aspects of laser machining across various materials and laser
settings. Such a network, trained on extensive experimental data, would integrate all
relevant light-matter interactions, including heating, ablation, and ionization, as well as
light propagation effects such as diffraction and interference. This advanced model would
facilitate simulations that are processed several orders of magnitude faster than traditional
methods. Figure 4 demonstrates the concept of an advanced neural network designed to
model all parameters of laser machining rapidly and accurately.
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laser machining [67].

In the field of ultrafast laser machining, deep learning techniques have greatly im-
proved real-time feedback and precision [68]. As shown in Figure 5, a convolutional neural
network (CNN) analyzes camera images captured during the laser machining process. This
CNN identifies material types (e.g., silica and nickel), counts the number of laser pulses,
and assesses laser fluence, enabling real-time adjustments and enhancing machining ac-
curacy. By monitoring and adjusting for experimental noise, such as fluctuations in laser
fluence, this approach allows for more precise and adaptive laser processing, especially for
complex multi-material structures.

The integration of deep learning methods for predicting three-dimensional surface
profiles of target materials represents a notable advancement in ultrafast laser machin-
ing [69]. Neural networks are employed to convert laser intensity distribution profiles
into predicted 3D surface profiles of the processed material. This approach accounts for
complex nonlinear interactions and diffraction effects. Training the network requires a
specialized experimental setup with laser intensity distribution control and a setup for
accurate measurement of the target surface after machining. This method allows for more
precise prediction of surface shape and improved accuracy in laser processing.

Figure 6 illustrates the approaches for data collection used in training the neural
network. It features a Digital Micromirror Device (DMD), which enables precise modulation
of the laser beam by controlling an array of tiny mirrors. This technology enhances
patterning and engraving capabilities, contributing to higher efficiency in laser processing
applications. The application of computational intelligence and AI in laser materials
processing highlights how digital models and AI algorithms contribute to effective process
modeling and optimization [70].
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Figure 6. Illustration of data collection approaches for neural network training, including:
(a) schematic of the setup for controlling laser intensity distribution; (b) method for measuring
surface profiles after machining; (c) examples of data showing processed surfaces with measurements
in nanometers [69].

AI techniques in LBM highlight the critical role of digital models in advancing process
modeling and achieving optimal results. LBM, which includes applications such as cutting,
grooving, turning, milling, and drilling, is characterized by its complex and non-linear be-
havior due to varying input variables—system, material, and process parameters—and their
impact on output variables such as geometry, surface roughness, and material removal rate.
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AI has proven to be a crucial tool in addressing these challenges, with methods such as
artificial neural networks (ANN), fuzzy logic (FL), and metaheuristic optimization algorithms
enhancing the accuracy of predictions and the quality of laser-machined components. These
AI techniques significantly improve process modeling, parameter optimization, and overall
machining efficiency and precision. Future research should focus on advancing AI method-
ologies and exploring hybrid approaches to further enhance LBM processes and tackle their
inherent complexities [71].

Digital models play a crucial role in optimizing laser cladding (LC) processes, enabling
precise control over coating quality and process parameters, which directly impacts the final
product [72,73]. Figure 7 shows the laser scanning patterns: transverse and longitudinal.
LC involves applying a material layer to a surface using a high-powered laser beam, with
applications spanning the aerospace, automotive, medical, and energy industries. The
integration of AI into LC significantly enhances this technology. AI, particularly through
machine learning, leverages data from sensors and cameras to predict and manage the
quality of the deposited material, optimizing parameters such as laser power, feed rate,
and powder flow rate. By enhancing process optimization, machine learning models
enable precise control over the cladding process, reducing development time and costs.
The application of AI in laser cladding not only improves efficiency and accuracy but also
transforms manufacturing practices, facilitating the production of complex and high-quality
components [74].
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Figure 7. Laser scanning patterns in laser cladding (LC): (a) transverse LC with scanning directions
perpendicular to loading; (b) longitudinal LC with scanning directions parallel to loading. In
this context, d represents the corrosion depth, and S denotes the corrosion slope length of the
specimens [73].

To build upon the integration of AI, digital models offer further precision in controlling
LC processes. These models enable the refinement of both traditional and intelligent
optimization methods, such as neural networks and genetic algorithms, allowing for better
management of key parameters such as laser power, feed rate, and powder flow rate.
Through simulations, they help fine-tune the process, ensuring consistent, high-quality
coating outcomes [75]. In [76], a back propagation (BP) neural network was applied to
predict the dilution rate of AlCoCrFeNi coatings in laser cladding (Figure 8). The model
demonstrated that, with optimal process parameters, the coating formed a simple body-
centered cubic (BCC) solid solution phase with equiaxed grains and no significant element
segregation. In laser-directed energy deposition (DED-LB), real-time monitoring and
feedback systems are supported by these models, allowing for immediate adjustments
based on sensor data to maintain process stability and prevent defects [77]. Additionally,
digital models can be crucial in advancing wear-resistance when cladding nickel-based
coatings by simulating the effects of material additives, such as ceramic phases and solid
lubricants, thereby enhancing performance under extreme conditions [78].
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As a result, digital models significantly enhance the efficiency and accuracy of laser
processing by enabling precise optimization and adjustments through both traditional and
AI-based methods. They improve productivity and quality in micromachining, drilling, and
cladding, and support the development of advanced materials. The integration of digital
models and AI results in more efficient, accurate, and cost-effective manufacturing practices.

4. Enhancing Laser Processing with AI and Freeform Optics Integration

The application of AI in conjunction with freeform optics and feedback systems enables
precise control over energy distribution in laser processing. This integration enhances
processing quality by optimizing beam profiles and adjusting parameters in real-time,
significantly reducing the risk of material damage. AI-driven feedback systems analyze
data from sensors to fine-tune the input of laser energy and focus, ensuring consistent and
high-quality results. By leveraging advanced algorithms, these systems adapt to varying
material properties and processing conditions, leading to improved accuracy and efficiency
in laser applications.

AI systems improve power distribution in laser processing through real-time adjust-
ments based on sensor feedback. For example, these systems can modify laser power output
and beam intensity in response to changes in material characteristics, such as thickness or
thermal conductivity. Similar approaches are discussed in [79], where AI-based algorithms
are employed for optimizing laser performance by continuously monitoring system param-
eters. By continuously monitoring the interaction between the laser and the material, AI
algorithms can optimize energy delivery to achieve uniform heating and minimize the risk
of overheating or underheating. This adaptability is particularly important when working
with complex materials, as shown in [80], which highlights the potential of deep learning
and model predictive control for self-tuning laser systems. Such techniques allow for more
effective management of thermal gradients and stresses, ultimately resulting in higher
precision during processing.

Traditional approaches often rely on fixed parameters and adjustments based on oper-
ator experience, which can be time-consuming and lead to inconsistencies. In contrast, the
integration of freeform optics and AI offers substantial improvements in both efficiency
and quality. AI-driven systems can quickly analyze extensive datasets to pinpoint optimal
processing conditions, resulting in faster setup times and enhanced operational through-
put [81]. Additionally, freeform optics allow for customized beam profiles that improve
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laser-material interactions, leading to enhanced surface finishes and greater precision com-
pared to standard optics [82]. This modern integration not only streamlines the processing
workflow but also increases the repeatability and reliability of laser applications.

Recent advancements in technologies such as quantum computing and deep learning
algorithms have significantly enhanced control and precision in laser processing. Quantum
computing provides real-time optimization capabilities for complex multi-criteria decision-
making, which is critical for laser manufacturing [83]. Deep learning algorithms improve
prediction and data analysis by effectively capturing intricate nonlinear relationships
between parameters, enabling neural networks to forecast outcomes and adjust parameters
in real time for optimal results [84]. Additionally, deep learning enhances quality control
automation, allowing for quicker and more precise identification of defects and deviations,
making laser processing more adaptive and efficient [85].

Moreover, the use of AI enables predictive maintenance by analyzing trends in sensor
data to foresee potential issues before they affect production. This proactive approach not only
extends the lifespan of the equipment but also reduces downtime and operational costs. Addi-
tionally, AI-driven systems facilitate the customization of processing parameters for different
materials and geometries, enhancing versatility and precision in complex applications.

As highlighted in [86], future manufacturing sites will increasingly leverage AI and the
Internet of Things (IoT) to automate processes, with lasers playing a crucial role due to their
capability for digital control and the generation of large volumes of data for AI training. This
advancement will enhance prediction and optimization in industrial applications, thereby
improving efficiency and reducing errors. Laser processing involves numerous tunable
parameters, which complicates the identification of optimal settings for specific objectives.
Currently, parameters are selected based on expert experience, a method that does not
scale for future mass customization needs. Therefore, it is crucial to transfer this expertise
into cyberspace and focus on utilizing automated data acquisition systems combined
with AI to bridge this technological gap. Figure 9 illustrates the data collection cycle for
determining optimal laser processing parameters, which includes selecting parameters,
processing, analyzing with measurement equipment, and recording data. After numerous
cycles, optimal parameters can be identified. A digital neural network (DNN) can then
function as a simulator, providing real-time predictions and reducing the need for physical
experiments. Addressing traditional laser processing issues such as speed, quality, and
energy consumption is essential for advancing both AI and laser technologies. Research
efforts are focused on improving processing speed and accuracy, enhancing material quality,
reducing energy consumption, integrating AI for real-time monitoring, and developing
new laser technologies for specific industrial applications, which will not only enhance
laser processing but also accelerate AI development by providing richer datasets and more
sophisticated control mechanisms [86].

Integrating AI-enabled post-quantum models into quantum cyber-physical systems
(QCPS) involves the convergence of cyber components, AI models, and post-quantum cryp-
tography algorithms to assess the overall performance and efficiency of these systems. This
integration provides valuable insights into how these elements interact, highlighting both
the opportunities and challenges associated with their combined use. Ref. [87] explores
this integration in detail, emphasizing how AI methodologies combined with quantum
computing can enhance cyber-physical systems (CPS) by improving security measures, op-
timizing resource allocation, and increasing operational efficiency, while addressing critical
issues such as quantum decoherence and the interpretability of AI models. Overcoming
these challenges will be crucial for advancing QCPS and revolutionizing various sectors of
the economy and society.
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The integration of AI-driven and data-based approaches for optimizing laser process-
ing parameters highlights the growing role of AI in enhancing manufacturing efficiency [88].
Ref. [89] specifically emphasizes the importance of combining AI and scientific simulations
in CPS for laser manufacturing. It notes that optimizing laser processing, characterized by
numerous adjustable parameters, previously relied heavily on human expertise. To meet fu-
ture demands for mass customization and advanced manufacturing, adopting data-driven
approaches and advanced simulations is essential. This integration represents a signifi-
cant advancement in laser processing, combining theoretical and experimental knowledge
to improve both the efficiency and accuracy of laser applications, thereby substantially
enhancing the performance and capabilities of laser processing systems. Studies on the
microscopic mechanisms of ultrafast laser ablation and predictive simulation methods
illustrate the impact of digital engineering. Advances in deep learning-based simulators
for optimizing laser drilling parameters have led to more energy-efficient and accurate
processing techniques [90]. The exploration of GHz burst mode femtosecond lasers aims to
improve ablation efficiency and quality, addressing the limitations of conventional meth-
ods [91]. Overall, these developments underscore the transformative potential of digital
engineering and AI in advancing precision manufacturing and material processing, reflect-
ing a broader trend toward integrating sophisticated computational models and advanced
technologies [92]. Figure 10 illustrates an experiment where the laser beam’s intensity
and spatial profile are digitally controlled to drill a hole. An in-situ camera captures the
ablated hole, and image processing is used to detect the hole’s edge and calculate a scalar
evaluation value. This evaluation, along with the laser settings, is fed into a Bayesian
optimization algorithm, which determines the next set of parameters. The process iterates
to optimize the drilling of circular and elliptical holes.
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Figure 10. Bayesian optimization for laser drilling: (I) Digital control of intensity and beam pro-
file; (II) hole observation and evaluation; (III) optimization algorithm adjusts parameters. The
abbreviations are as follows: HWP: half-wave plate, TFP: thin film polarizer, SLM: spatial light
modulator [92].

In combination with freeform optics, AI-driven systems offer advanced solutions for
managing energy distribution in laser applications, resulting in significant improvements
in processing quality of materials. The development of application-adapted beam shaping
techniques, utilizing state-of-the-art optical elements, further enhances laser processing
by tailoring beam profiles to specific needs, thus improving quality and efficiency [93].
Design methods for freeform optics also facilitate more effective control of laser beam
profiles, addressing complex beam shaping challenges [94–96], and AI systems allow en-
hancing laser processing by optimizing beam profiles and dynamically adjusting laser
parameters in real-time. This ensures consistent energy distribution, which is critical for
high-quality results. For instance, AI algorithms adjust the focus and energy input based
on sensor data, improving overall processing accuracy [97]. Freeform optics, coupled with
AI, address the limitations of traditional Gaussian beam profiles. These advanced optical
designs enable precise tailoring of laser beams to meet specific processing requirements.
The use of freeform lenses and surfaces allows for customized beam profiles, which can
improve the efficiency and effectiveness of laser material processing [98,99]. Advancements
in beam shaping technologies have been discussed in the context of laser powder bed
fusion, emphasizing how tailored beam profiles can significantly impact process stability
and product quality [100]. The optimization of laser beam profiles to achieve specific
temperature distributions, such as in laser hardening processes, underscores the practi-
cal benefits of integrating digital models with advanced optical design [101]. Figure 11
illustrates the simulated temperature distribution at a depth of 0.1 mm in 42CrMo4 (AISI
4140) for both top-hat and optimized laser profiles. The top-hat profile consistently shows
a central temperature peak, while the optimized profile shifts this peak in the direction
of the feed motion, especially at higher speeds. The use of diffractive optics in aerospace
material processing has demonstrated significant advancements in precision and material
properties. This approach has improved the wear resistance of processed materials and
expanded the forming options for aluminum and titanium alloys, contributing to enhanced
manufacturing capabilities in the aerospace sector [102].
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AI-driven feedback systems analyze real-time data from sensors to fine-tune laser
operations. This capability helps maintain optimal performance by continuously adjusting
energy output and focus. The result is enhanced processing stability and reduced risk of
defects or inconsistencies. The AI role extends to predictive maintenance by analyzing
trends in sensor data to forecast potential issues before they disrupt production. This
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proactive approach enables timely interventions, extending equipment lifespan and reduc-
ing unexpected downtime and maintenance costs [103]. The integration of AI allows for
the customization of processing parameters to suit various materials and geometry. This
adaptability enhances the versatility of laser applications, making it possible to handle
complex tasks with greater precision and flexibility. Overall, integrating AI with freeform
optics and feedback systems represents a significant advancement in laser technology.
This combination not only enhances processing quality and efficiency but also supports
predictive maintenance and customization, resulting in more reliable and cost-effective
manufacturing solutions.

So, the integration of AI with freeform optics and feedback systems represents a major
advancement in laser technology, enhancing processing quality and efficiency while reduc-
ing risks associated with material damage. The ability to dynamically adjust processing
parameters and customize beam profiles for various materials and geometries further
extends the versatility and precision of laser applications. As the industry moves towards
more automated and intelligent manufacturing processes, the continued development of
these technologies will play a crucial role in achieving higher efficiency and adaptability in
complex production environments.

5. Applying Digital Twin Technology for Enhanced Control and Efficiency in
Laser Manufacturing

The integration of data into digital twins is a fundamental aspect of the development
and optimization of laser technologies. Laser technologies are utilized for modifying
surface structures, synthesizing nanostructures, and developing “smart” materials capa-
ble of adapting to changing operational conditions. These technologies require precise
control over processing parameters and continuous monitoring of various factors such
as temperature, laser scanning speed, and processing quality. To enhance manufacturing
efficiency, it is essential to integrate the data obtained during laser processing into digital
twins. A digital twin is a virtual model of a physical object or process that can be used
for analyzing and predicting its behavior under different conditions [104]. In the context
of laser processing, digital twins enable real-time tracking of process parameters, such as
temperature fields and laser beam distribution, as well as assessing processing quality and
the effectiveness of laser technologies [105].

The process of data integration into digital twins involves collecting and analyzing
information from sensors installed on equipment, such as thermocouples, speed sensors,
and cameras monitoring processing quality. This data is used to create and update virtual
models, allowing for simulations and predictions of material behavior under various laser
processing conditions. This approach not only enhances the understanding of the processes
occurring during laser processing but also aids in optimizing equipment parameters,
reducing defects, and improving overall manufacturing efficiency [106]. Furthermore, data
integration allows digital twins to adapt to changes in operational conditions, which is
critical for developing “smart” materials. These materials can alter their properties in
response to external factors such as temperature or mechanical stress. Using digital twins
for monitoring and managing such materials ensures a more accurate alignment of their
behavior with real-world conditions and enhances their functional characteristics [107].

Digital twin technology is rapidly becoming an essential tool for optimizing and
innovating laser-based manufacturing processes, particularly in the context of additive
manufacturing and laser processing systems. The integration of digital twins enables real-
time monitoring, predictive modeling, and adaptive control, which collectively improve
the quality, efficiency, and reliability of manufacturing systems. By creating virtual replicas
of physical processes and systems, digital twins allow for a comprehensive understanding
of process dynamics and provide a framework for the optimization of critical parameters
without extensive trial-and-error experimentation [108]. Below is an exploration of how
digital twins are applied in various laser-based manufacturing techniques, as discussed in
the selected studies.
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One of the primary areas where digital twins are proving valuable is in predicting
defects and optimizing the fabrication process of functional composite materials (FCMs)
using laser additive remanufacturing (LARM). A deep learning-empowered digital twin
model has been developed to predict both visible and invisible defects in the fabrication
process. This model utilizes a multi-task learning approach to predict key defects, such as
cracks and thermal damage, while simultaneously providing a dynamic visualization of
the manufacturing process, facilitating real-time monitoring and control [109].

Digital twins also play a critical role in laser material removal processes, particularly
in ultrafast laser systems. Molecular dynamics simulations are combined with machine
learning algorithms to model the laser-material interactions, enabling the optimization of
laser ablation processes. These simulations are then integrated into a digital twin, allowing
for accurate predictions and adjustments during the laser removal process. This approach
significantly improves the precision and adaptability of the laser system, as illustrated
in Figure 12, which depicts the digital twin framework and its connections with various
external manufacturing modules and technologies [110]. In the fabrication of laser-induced
graphene (LIG), digital twins assist in overcoming the complexities associated with the
integration of high-quality graphene materials into existing manufacturing processes. By
using a digital twin to simulate the graphitization process, manufacturers can optimize the
laser parameters necessary for producing LIG with desired properties, such as conductivity
and morphology. This method not only reduces the need for extensive preliminary testing
but also enhances the efficiency and accuracy of the laser fabrication process [111].
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In laser welding and cutting, particularly in keyhole-based processes, digital twins
enable fast-running simulations that account for the effects of laser defocusing and changes
in material reflectivity. This approach allows for the prediction of key parameters such as
cutting depth and heat-affected zone width, making it possible to optimize the laser process
in real-time with reduced computational cost [112]. Furthermore, in additive manufacturing
using Directed Energy Deposition (DED), digital twins are employed for real-time model
predictive control, where machine learning models predict temperature distributions and
optimize laser power profiles, thus improving part quality and consistency [113]. The
development of multiscale digital twins for laser-directed energy deposition (DED-L) is
another significant advancement. By coupling global and local models, digital twins can
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simulate both the overall heating of the part and the specific laser-powder interactions at
high resolution. This multiscale approach reduces the need for trial-and-error testing and
provides a detailed understanding of the process, thereby enhancing the accuracy of the
manufacturing process [114].

In seam tracking for laser welding, digital twins have been used to build a predictive
control model that reduces tracking errors. By utilizing Gaussian process modeling, the
system predicts future seam positions and compensates for potential errors, thus enhancing
the accuracy and robustness of the welding process [115]. Another critical application
of digital twins is in optimizing the Laser Powder Bed Fusion (LPBF) process to prevent
defects such as lack of fusion. A novel digital twin framework combining finite element
modeling with machine learning techniques, such as reinforcement learning, has been
developed. This framework allows real-time adjustments to process parameters based on
sensor data, thus minimizing defects and improving part quality [116]. In the realm of Laser
Metal Deposition (LMD), digital twins have been instrumental in predicting the geometry of
single tracks produced during the process. A digital twin that integrates machine learning
models with physics-based simulations was developed to provide accurate predictions
of track geometries, significantly reducing the experimental effort required for process
optimization [117]. Digital twins have been applied to improve the design and development
process of LMD equipment. Through virtual assembly, motion setting, and collision
detection, digital twins facilitate the efficient testing and debugging of LMD systems,
reducing the time and cost associated with their development. This highlights the role of
digital twins in advancing intelligent manufacturing systems [118].

The integration of Digital Twin technology in additive manufacturing processes, par-
ticularly DED-L and LPBF, represents a significant advancement in optimizing these tech-
niques and reducing costs associated with experimental testing. For DED-L, a multiscale
Digital Twin approach has been developed to address the high costs and time required for
trial-and-error testing. This approach involves coupling a global model, which simulates
the overall heating of the part, with a local model that focuses on specific regions of the
geometry. The local model uses a high-density mesh to accurately represent the interactions
between the laser and the powder, including the fast-cooling rates characteristic of DED-L.
By integrating the results from the global model, the Digital Twin captures the evolving
process conditions, which is crucial for simulating multi-clad depositions accurately. This
Digital Twin was validated with an industrial-grade DED-L machine, showing high cor-
relation with experimental data while maintaining reasonable computational costs [119].
In LPBF, a novel Digital Twin approach has been proposed to tackle the challenge of lack-
of-fusion defects. This research combines finite element modeling with machine learning
techniques, specifically recurrent neural networks and reinforcement learning, to predict
and address fusion issues in real-time. By varying process parameters and integrating
sensor data into the Digital Twin, the system can optimize the LPBF process by adjusting
parameters to avoid defects. This innovative Digital Twin architecture improves the control
and predictability of the fusion process, offering a more efficient alternative to traditional
trial-and-error methods [120]. These advancements illustrate how Digital Twin technology
can transform additive manufacturing by enhancing process control, reducing experimental
costs, and improving overall production quality.

For femtosecond laser inscription, digital twins offer an innovative solution to the
complexity of laser-matter interactions. A digital twin of the processed material predicts
the outcome of laser exposure, enabling the precise control of refractive index modulation.
This facilitates the creation of intricate patterns and waveplates with sub-micron resolution,
illustrating the power of digital twins in achieving high precision in laser processing [121].
In the broader field of ultrafast laser manufacturing, digital twins are used to bridge the
gap between the theoretical understanding of laser-matter interactions and their indus-
trial applications. By simulating the complex, nonlinear optical phenomena that occur
during laser processing, digital twins enhance the efficiency of micro- and nanofabrication
techniques, making them more applicable to industrial settings [122].
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Overall, digital twins represent a transformative approach in laser-based manufac-
turing, offering significant improvements in process optimization, defect reduction, and
system efficiency. Their ability to integrate real-time monitoring, machine learning, and
physics-based modeling allows for unprecedented levels of precision and control in ad-
vanced manufacturing environments.

6. Discussion

The integration of digital engineering into modern manufacturing has notably en-
hanced precision, efficiency, and adaptability through the application of digital twins,
AI, and advanced optical technologies. This discussion examines the impact of these
advancements on laser processing and manufacturing, their current applications, and
future potential.

Digital twins play a crucial role in optimizing manufacturing processes by creating
virtual models that reflect the real-time performance of physical systems. These models
utilize data from sensors to simulate and predict various parameters, improving process
control and reducing defects. In laser processing, digital twins enable accurate tracking of
factors such as temperature fields and laser beam distribution. By continuously updating
these virtual models, manufacturers can identify and address potential issues before they
affect production. This capability allows for better control and optimization of processing
parameters, leading to improved product quality and reduced material waste.

It is expected that digital twins will significantly enhance the efficiency and accuracy of
laser treatments on complex materials such as high-strength alloys and advanced ceramics.
These models will enable real-time monitoring and adjustments to laser parameters, such as
power and scanning speed, tailored specifically for the unique properties of these materials.
This adaptability will allow manufacturers to predict potential defects before they occur,
ultimately improving product quality and reducing waste. Moreover, the use of multiscale
modeling techniques will facilitate a comprehensive understanding of material behavior
during laser treatment, thus optimizing the process for specific challenges presented by
high-strength alloys and advanced ceramics.

The incorporation of AI into laser processing enhances process efficiency and preci-
sion by complementing traditional optimization methods with advanced computational
techniques. While classical methods such as DoE and RSM are useful, AI approaches
such as machine learning and neural networks offer more effective solutions for parameter
optimization. AI systems can dynamically adjust variables such as laser power, cutting
speed, and gas pressure in real time, leading to improved outcomes and fewer defects.
Additionally, AI-based predictive maintenance plays a crucial role in preventing equipment
failures, reducing performance issues, and minimizing unscheduled downtime. By mon-
itoring system health and performance, these systems can proactively address potential
problems before they impact production.

Additionally, practical considerations regarding the implementation of AI systems in
laser processing are crucial to understanding their impact. The time required to train neural
networks and prepare necessary datasets can vary significantly. Training duration depends
on factors such as the complexity of the network architecture, the size and quality of the
dataset, and the computational resources available. For instance, more intricate models may
require longer training periods, which can range from hours to days, while the preparation
of datasets can take anywhere from days to weeks, contingent upon data availability and
preprocessing needs. Efficient data management and optimization of training protocols
are essential to mitigate these challenges, ensuring that the integration of AI enhances the
speed and effectiveness of laser processing.

The economic efficiency of integrating AI into laser processing and broader manu-
facturing practices is a crucial consideration. While AI technologies require significant
investments in advanced data management systems and computational resources, they
offer substantial returns in terms of increased productivity, reduced operational costs,
and improved product quality. By enabling real-time data analysis and optimization of
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processing parameters, AI can minimize material waste and reduce cycle times, directly
impacting the bottom line. Furthermore, the predictive capabilities of AI contribute to
lower maintenance costs by facilitating proactive equipment management and reducing
downtime. For instance, industries implementing AI-driven predictive maintenance can
achieve substantial cost savings by addressing potential equipment failures before they
disrupt production. In summary, the initial costs associated with AI implementation can be
offset by long-term gains in efficiency and productivity, making it a worthwhile investment
for industries aiming to enhance their competitive edge.

Freeform optics have contributed significantly to the improvement of laser processing
capabilities. Traditional Gaussian beam profiles may not meet specific processing needs,
but freeform optics allow for customized beam profiles that enhance processing quality.
When combined with AI-driven systems, freeform optics enable precise control over energy
distribution, which improves both efficiency and accuracy. This integration supports
advanced beam shaping techniques necessary for applications such as laser-powder bed
fusion and aerospace material processing. The ability to tailor beam profiles to specific
requirements helps in achieving better results in material processing.

Looking to the future, the combination of AI and freeform optics holds great po-
tential for further advancements in laser processing. AI algorithms could enhance the
design and optimization of freeform optics, allowing for real-time adaptation of beam
profiles to varying material properties and processing conditions. This synergy could lead
to new applications in additive manufacturing, where customized energy deposition is
critical for the successful fabrication of complex geometries. Furthermore, the integra-
tion of advanced AI techniques, such as reinforcement learning, could enable systems
to learn from previous processing outcomes, continuously improving performance over
time. These innovations could reduce cycle times and improve the quality and mechanical
properties of laser-processed components, paving the way for more efficient and versatile
manufacturing processes.

In comparing these advanced technologies with traditional manufacturing methods,
several clear advantages emerge. Traditional approaches often rely on fixed processes and
empirical adjustments, which can lead to inefficiencies and variability in product quality.
In contrast, digital technologies facilitate real-time monitoring and adjustments, allowing
for immediate corrections and improvements. Digital twins and AI enhance the ability
to predict and adjust processing parameters, leading to higher precision and reduced
defects compared to traditional methods that may rely on trial and error. The integration
of AI allows for optimization of laser parameters in real time, significantly increasing the
efficiency of the manufacturing process, while digital systems can quickly adapt to changes
in production requirements or material properties.

These advancements are closely aligned with Industry 4.0 principles, which emphasize
the integration of digital technologies into manufacturing systems. Digital twins enable
real-time data analysis and predictive maintenance, while AI-driven optimization enhances
decision-making and reduces downtime. Freeform optics provide tailored solutions that
improve manufacturing flexibility, contributing to the creation of smart factories that
leverage IoT and advanced analytics for higher efficiency.

Despite these advancements, several challenges remain in the integration of digital
twins, AI, and freeform optics into laser processing. The complexity of optimizing numer-
ous parameters and managing large datasets requires advanced data management and
computational resources. Future research should focus on improving AI methods and
hybrid approaches to enhance real-time process adjustments and predictive maintenance.
Additionally, addressing the interpretability of AI models and integrating these technolo-
gies into industry standards will be important for broader adoption. The development
of new laser technologies designed for specific industrial needs will also be essential for
further progress.

The integration of digital twins, AI, and freeform optics in laser processing represents
a significant development in manufacturing. These technologies collectively improve preci-
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sion, efficiency, and adaptability, leading to higher-quality results and lower operational
costs. Digital twins provide a framework for accurate simulation and prediction, AI en-
hances optimization and real-time adjustments, and freeform optics enable precise beam
profiling. As these technologies continue to evolve, they will drive further advancements
in manufacturing practices, offering more reliable and effective solutions for complex
production environments.

7. Conclusions

The integration of digital engineering into manufacturing processes has introduced
substantial improvements in precision, efficiency, and adaptability. Key developments
in digital twins, artificial intelligence (AI), and advanced optical technologies, includ-
ing freeform optics, have significantly impacted the field of laser processing and other
manufacturing applications.

Digital twins have proven to be instrumental in enhancing manufacturing processes
by providing a virtual representation of physical systems. This approach allows for real-
time tracking and simulation of various parameters, which leads to better optimization
and reduced defects. The ability to predict and adjust process conditions before physical
production begins is a notable advantage, offering a deeper understanding of material
behavior and process dynamics.

AI has brought transformative changes to process optimization. By employing ma-
chine learning algorithms and neural networks, AI systems can analyze complex data sets
and adjust parameters in real-time. This capability improves process accuracy, reduces
material waste, and enhances overall efficiency. The application of AI in laser processing,
for instance, allows for fine-tuning of parameters based on real-time feedback, leading to
more consistent and high-quality results.

Freeform optics, when combined with AI, have introduced new possibilities for cus-
tomizing beam profiles and optimizing energy distribution. This integration supports
precise control over laser processing, addressing complex challenges such as beam shaping
and energy distribution. The developments in freeform optics enhance applications ranging
from laser-powder bed fusion to aerospace material processing, demonstrating their broad
impact across different manufacturing sectors.

Despite these advancements, challenges remain in effectively integrating and utilizing
these technologies. The complexity of managing numerous parameters and data points
requires ongoing research and refinement. Future research should focus on improving the
interpretability of AI models, exploring hybrid optimization methods, and developing new
laser technologies to address specific industrial needs. Addressing these challenges will be
crucial for maximizing the benefits of digital engineering in manufacturing.

Looking ahead, the continued evolution of digital twins, AI, and optical technologies
will likely drive further improvements in manufacturing practices. The integration of
these technologies is expected to enhance the adaptability and efficiency of manufacturing
processes, leading to more precise and reliable outcomes. Ongoing innovation and devel-
opment in these areas will be key to advancing the state of manufacturing technology and
meeting the demands of increasingly complex production environments.

In summary, the advancements in digital engineering, particularly through the use of
digital twins, AI, and freeform optics, have significantly improved manufacturing processes.
These technologies offer enhanced precision, efficiency, and adaptability, positioning them
as central components in the future of manufacturing. Continued research and development
will be essential to fully realize their potential and address existing challenges.

Furthermore, as these technologies evolve, they will play a pivotal role in shaping the
principles of Industry 4.0, fostering sustainable practices, and enhancing the global compet-
itiveness of manufacturing sectors. By integrating intelligent systems, manufacturers will
be better equipped to respond to dynamic market demands, ultimately contributing to a
more sustainable and efficient future.
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