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Abstract

:

In a laser diode (LD) system with optical injection, the effects of gain saturation of the LD on the orbital instability of the system are analyzed numerically. For the optical injection LD system without signal application, it is shown that the effect of optical injection is suppressed in the system with gain saturation and small optical injection, and that a higher amount of optical injection is necessary to obtain similar dynamics. Next, in the optical injection LD system with a pseudo-random signal applied to the LD drive current, it is confirmed that when the dynamics are a periodic window between chaotic and chaotic regions, chaotic dynamics are actualized as the standard deviation of the applied signal becomes larger. Furthermore, it is suggested that this phenomenon can be explained by linear stability analysis, and it is shown by introducing randomly varying tentative gain coefficients that gain fluctuations that lead to an expansion of the chaotic region. Hence, the results of this study provide research on the effects of gain saturation on chaotic oscillation in LDs with pseudo-random signals applied and contribute to the generation of more complex chaotic signals, chaotic secure communication, and random number generation.
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1. Introduction


A laser diode (LD) can oscillate chaotically owing to optical injection from other LDs or optical feedback from itself [1,2,3,4,5,6]. This oscillation, called laser chaos, has high-speed, broadband, and chaos-specific properties, and is expected to be applied to decision-making [7,8], high-speed random number generation [9,10,11], and optical chaotic secure communication [4,12,13,14,15].



For these applications, it is important to quantify and control the strength of the properties of laser chaos. For example, one of the key properties of laser chaos is orbital instability. Orbital instability refers to a small disturbance in the dynamics that increases exponentially after a small amount of time [16,17]. This can be quantified using the Lyapunov exponent [17], but its use in experimental systems is difficult because all the equations describing the dynamics and their exact parameters should provide their strict values. For this reason, attempts are being made to estimate the Lyapunov exponent from the time series of dynamic variables [18,19,20].



In this work, the focus is on controlling the strength of the orbital instability of LDs. Several attempts have been made to generate higher-bandwidth laser chaos using optical injection from other LDs [21] or complex chaotic signals using multiple feedbacks [22]. The former is expected to improve the bit rate for communication or random number generation, and the latter is expected to be applied to optical chaotic secure communication because this can make it difficult to estimate the delay time, which is a signature of the feedback given.



Other methods have been proposed to control the strength of the orbital instability of laser-chaos-specific properties by applying an electrical signal to the drive current of the LD and changing the parameters of the signal [23,24,25]. We proposed the use of pseudo-random [24] and external chaotic signals [25] applied to the LD drive current, and showed that these signals can increase the orbital instability of laser chaos. In these studies through numerical simulations, we assumed a drive current near the threshold of the LD, and did not consider the effects of the gain saturation of the LD in the rate equations that describe the characteristics of the LD. However, further improvement in orbital instability requires an increase in drive current and the application of signals with a wider dynamic range. Since the gain of an actual laser saturates as the optical intensity increases, it is essential to take into account the effect of gain saturation [26,27] when describing the dynamics of a laser with a strong optical intensity using rate equations, just as it is for a laser with a weak optical intensity. The effects of gain saturation in optical injection LDs have been studied for some time [1]. For example, nonlinear dynamics with respect to frequency detuning and injection intensity have been investigated in a previous study [28]. In addition, various dynamics of chaotic lasers have been studied using rate equations that include the effects of gain saturation [29,30,31,32,33]. Most of these studies are mainly on LD systems with optical feedback or optical injection, and to the best of the author’s knowledge, there are no studies that have investigated the effect of gain saturation in LD systems with pseudo-random signals applied.



In this study, an optical injection system is considered a laser chaotic system, and an electrical pseudo-random signal is applied to the drive current of the LD on the injecting LD. The orbital instability of this system is analyzed numerically. First, the Lyapunov exponent is estimated from the rate equations of the LD and shown with the bifurcation diagram, and the effects of the drive current amplitude and gain saturation are discussed. Then, it is confirmed that when a pseudo-random signal is applied to the LD, the strength of the orbital instability can be varied similarly to when the gain saturation of the LD is taken into account, and the phenomenon in the periodic window is also discussed.




2. Chaotic Laser System with Optical Injection and Pseudorandom Signal


The chaotic system considered in this study is shown in Figure 1, where the optical output of LD1 is injected into LD2 in one direction by the optical isolator (ISO). LD1 and LD2 are driven by the power supplies PS1 and PS2, respectively, whereas a pseudo-random signal is applied to LD1 by a random generator (RG1). The dynamics of this LD system are described by the following rate equations [32]:


     d  A 1   ( t )    d t    =   1 2     G 1  −   1  τ  p 1       A 1   ( t )  ,  



(1)






     d  ϕ 1   ( t )    d t    =   1 2    α 1    G 1  −   1  τ  p 1      ,  



(2)






     d  N 1   ( t )    d t    =  J 1  −     N 1   ( t )    τ  N 1     −  G 1   A 1 2   ( t )  ,  



(3)






     d  A 2   ( t )    d t    =   1 2     G 2  −   1  τ  p 2       A 2   ( t )  +  κ inj   A 2   ( t −  τ inj  )  cos  [  ω 2   τ inj  +  ϕ 2   ( t )  −  ϕ 1   ( t −  τ inj  )  ]  ,  



(4)






     d  ϕ 2   ( t )    d t    =   1 2    α 2    G 2  −   1  τ  p 2      −  κ inj      A 1   ( t −  τ inj  )     A 2   ( t )     sin  [  ω 2   τ inj  +  ϕ 2   ( t )  −  ϕ 1   ( t −  τ inj  )  ]  ,  



(5)






     d  N 2   ( t )    d t    =  J 2  −     N 2   ( t )    τ  N 2     −  G 2   A 2 2   ( t )  ,  



(6)




where   A ( t )   is the amplitude,   ϕ ( t )   is the phase of the electric field, and   N ( t )   is the carrier density. Equations (1)–(3) describe the dynamics of the LD1, and Equations (4)–(6) describe those of the LD2. The subscripts 1 and 2 indicate LD1 and LD2, respectively. G,  α ,   τ p  , and   τ N   denote the gain factor, linewidth enhancement factor, photon lifetime, and carrier lifetime, respectively. The optical injection coefficient is


   κ inj  =     ( 1 −  r 0 2  )   r inj     r 0   τ in     ,  



(7)




where   r inj  ,   r 0  , and   τ in   denote the ratio of optical injection into LD2 to the output of LD1, the reflectance of the inner cavity, and the time it takes for light to make a round trip through the inner cavity, respectively. Moreover,   τ inj   is the time it takes for light to be injected from LD1 to LD2. J denotes the drive current, which is given below for LD1 and LD2.


   J 1  =  [ 1 +  (  J ratio  − 1 )  R  ( t )  ]  ·  J th  ,  



(8)






   J 2  =  J ratio  ·  J th  ,  



(9)




where   J th   is the threshold current and   J ratio   is a constant. A pseudo-random signal   R ( t )   generated by the Mersenne Twister [34] and Box–Muller method [35] is applied to the drive current of LD1, and its mean and standard deviation are 1 and  σ , respectively, and the distributions follow a normal distribution.



Moreover, the gain G is saturated by the intensity of the LD, as shown in the following equation [32]:


  G =    g ( N  ( t )  −  N 0  )   1 +   ε ξ | A  ( t )  |  2     ,  



(10)




where g,   N 0  ,  ε , and  ξ  denote the differential gain factor, carrier density at transparency, nonlinear gain factor, and confinement factor, respectively.



For simplicity, the same internal parameters for LD1 and LD2 are used in the numerical simulations with the following values [32]:   g = 8.1 ×  10  − 13      m 3   s  − 1     ,   α = 5.0  ,    λ 0  = 2 π c / ω = 1550  nm  ,    τ p  = 2.0  ps  ,    τ N  = 2.0  ns  ,    r 0  = 0.556  ,    τ in  = 8.0  ps  ,    N 0  = 1.1 ×  10 24    m  − 3    ,    τ inj  = 5.0  ns  , and   ξ = 0.36  . Note that   J ratio  ,   r inj  ,  ε , and  σ  are variables.




3. Orbital Instability and Gain Saturation


The Lyapunov exponent is used to quantify the orbital instability in chaotic systems [18,36]. By denoting the small changes in the dynamic variables   A ( t )  ,   ϕ ( t )  , and   N ( t )   of LD2 as    δ A   ( t )   ,    δ ϕ   ( t )   , and    δ N   ( t )   , respectively, and expressing them using linearized equations, we obtain the following from Equations (4)–(6):


         d  δ A   ( t )    d t           d  δ ϕ   ( t )    d t           d  δ N   ( t )    d t        =  J inj        δ A   ( t )         δ ϕ   ( t )         δ N   ( t )       ,  



(11)




where   J inj   is the Jacobian matrix. Then, the matrix is described by


         J inj  =                   G 2   ( 1 −  ε 2   ξ 2   A 2 2   ( t )  )    2 ( 1 +  ε 2   ξ 2   A 2 2   ( t )  )    −   1  2  τ  p 2           −  κ inj   A 1   ( t −  τ inj  )   S inj   ( t )           g 2  N  ( t )    2 ( 1 +  ε 2   ξ 2   A 2 2   ( t )  )              −  α 2   G 2   ε 2   ξ 2   A 2   ( t )    1 +  ε 2   ξ 2   A 2 2   ( t )     +  κ inj      A 1   ( t −  τ inj  )     A 2 2   ( t )      S inj   ( t )       −  κ inj      A 1   ( t −  τ inj  )     A 2   ( t )      C inj   ( t )          α  g 2    2 ( 1 +  ε 2   ξ 2   A 2 2   ( t )  )              − 2  g 2   ( N  ( t )  −  N 0  )   A 2   ( t )     ( 1 +  ε 2   ξ 2   A 2 2   ( t )  )  2         0      −   1  τ  N 2     −     g 2   A 2 2   ( t )    2 ( 1 +  ε 2   ξ 2   A 2 2   ( t )  )         ,     



(12)




where    S inj   ( t )  = sin  [  ω 2   τ inj  +  ϕ 2   ( t )  −  ϕ 1   ( t −  τ inj  )  ]    and    C inj   ( t )  = cos  [  ω 2   τ inj  +  ϕ 2   ( t )  −  ϕ 1   ( t −  τ inj  )  ]   . The norm is as follows:


  D  ( t )  =    δ A 2   ( t )  +  δ ϕ 2   ( t )  +  δ N 2   ( t )    .  



(13)




By considering this ratio, the Lyapunov exponent is calculated from the following [18]:


  λ =   1  N  τ inj      ∑  j = 1  N  ln     D j   ( t +  τ inj  )     D j   ( t )     .  



(14)




Note that a time series of   5  μ s   with a sampling interval of   10  ps   is used in the calculations in this study.



Figure 2 shows the bifurcation diagram of the optical intensity of LD2 and the corresponding Lyapunov exponent. No pseudo-random signal is applied, and   R ( t ) = 1  . The ratio of drive current to threshold is varied as    J ratio  = 1.1   (Figure 2a,c) and    J ratio  = 1.3   (Figure 2b,d). In Figure 2a,c, the nonlinear gain factor is set to   ε = 2.5 ×  10  − 23     m 3    to account for saturation effects, whereas in Figure 2b,d,   ε = 0   without considering gain saturation effects. The blue dots show the maxima of optical intensity versus the amount of optical injection, and the red circles show the Lyapunov exponent. The optical intensity increases with the drive current, but gain saturation effects are observed in Figure 2a,c. In all cases, as   r inj   increases from 0, the LD goes from stable oscillation to periodic oscillation and shows chaotic behavior. In addition, an unstable periodic oscillation called a periodic window is observed between the chaotic and chaotic regions. The Lyapunov exponent also corresponds to the state of oscillation, taking a zero or negative value in the case of stable or periodic oscillation and a positive value in the case of chaotic oscillation. Owing to the increase in drive current, the bifurcation diagram and Lyapunov exponent appear to be significantly affected by the effects of gain saturation. When   r inj   is sufficiently large in all cases, stable or periodic oscillations are observed owing to injection locking.



Figure 3 shows the Lyapunov exponents for the optical injection coefficient   r inj   and nonlinear gain factor  ε . Figure 3a–d correspond to    J ratio  = 1.1  ,    J ratio  = 1.3  ,    J ratio  = 1.5  , and    J ratio  = 3.0  , respectively. In Figure 3a, we can observe a periodic window at around    r inj    ∼0.03 at   ε = 0  . This window gradually shifts toward the positive direction of   r inj   with increasing  ε . This slope increases with   J ratio  . Figure 3b–d show windows at   r inj   of ∼0.04,   r inj   of ∼0.05, and   r inj   of ∼0.11, respectively, and their width increases and shifts toward the positive direction of   r inj  . This is because gain saturation suppresses the effect of optical injection in the region where the system has a small optical injection, requiring a higher amount of optical injection to achieve similar dynamics. This also suggests that the effect of gain saturation must be taken into account when the drive current is not set near threshold.




4. Orbital Instability and Applied Pseudorandom Signal


Next, let us consider the case where a pseudo-random signal is applied to the drive current of LD1. The Lyapunov exponents for the optical injection amount and the standard deviation of the applied signal are shown. Figure 4a–d correspond to    J ratio  = 1.1  ,    J ratio  = 1.3  ,    J ratio  = 1.5  , and    J ratio  = 3.0  , respectively. Figure 4((a-1)–(d-1)) and Figure 4((a-2)–(d-2)) show the case where saturation effects are taken into account (  ε = 2.5 ×  10  − 23     m 3   ) and the case where saturation effects are not taken into account (  ε = 0  ). As in Figure 3, for    J ratio  = 1.1  ,    J ratio  = 1.3  ,    J ratio  = 1.5  , and    J ratio  = 3.0  , the periodic windows are observed at around   r inj   of ∼0.03,   r inj   of ∼0.04,   r inj   of ∼0.05, and   r inj   of ∼0.11, respectively. In the windows,  λ  increases with  σ . In other words, the chaotic oscillations hidden in the periodic windows are revealed by the applied signal. On the other hand,  λ  decreases in regions where  λ  is large at  σ  of ∼0, i.e., in chaotic regions even without an applied signal. This is in agreement with what we showed in [24].



To further consider this phenomenon, the narrow chaotic region at  σ  of ∼0 is the focus. When gain saturation is not considered, this region appears at   r inj   of ∼0.11 (Figure 4(a-2)) and   r inj   of ∼0.18 (Figure 4(b-2)). With the addition of the effect of gain saturation, the regions shift to    r inj    ∼0.09 (Figure 4(a-1)) and    r inj    ∼0.14 (Figure 4(b-1)), respectively, and at the same time, they become larger. A similar phenomenon can be slightly observed in Figure 3a,b. These narrow chaotic regions expand as the standard deviation of the applied signal  σ  increases, whereas  λ  decreases (Figure 4). This explains how the window region changes to chaos as  σ  increases. That is, the regions of chaos on both sides of the window expand as  σ  increases. This makes the window region narrower as it is eclipsed, resulting in an increase in orbital instability in the window region.




5. Discussion


Here, a linear stability analysis [1,20] is performed to explain this phenomenon. In Equations (4)–(6), the stable solutions are defined as    A ′   ( t )  =  A s ′   ,   A  ( t )  =  A s   ,    ϕ ′   ( t )  =  (  ω s ′  −  ω th  )  t  ,   ϕ  ( t )  =  (  ω s  −  ω th  )  t  , and   N  ( t )  =  N s   . Using them in the rate equations, we obtain the following as    ω s  ≫  ω s  −  ω s ′   :


   ω th   τ inj  =  ω s   τ inj  +  κ inj   τ inj     A s ′   A s      1 +  α 2    sin  (  ω s   τ inj  +  tan  − 1   α )  .  



(15)







Equation (15) is represented by    ω s   τ inj   , and the solutions correspond to the oscillation modes of the laser system. In other words, the stable solutions are the intersections of the constant on the left side and the function on the right side, shown in Figure 5. The black, blue, and red lines indicate optical injection rates   r inj   of 0.001, 0.01, and 0.1, respectively. Since    r inj  ∝  κ inj   , the amplitude of the sinusoidal term depends on the injection coefficient   κ inj  . If   κ inj   is sufficiently small (   r inj  = 0.001 , 0.01  ), Equation (15) is expected to have at most a finite number of solutions, i.e., the laser dynamics are expected to exhibit stable, periodic or quasi-periodic oscillations. On the other hand, if   κ inj   is sufficiently large (   r inj  = 0.1  ), then Equation (15) has an infinite number of solutions, and the laser dynamics are expected to be chaotic. Since the number of solutions converges as   κ inj   increases, the complexity of the laser dynamics should also gradually converge.



To verify the above prediction, we return to Figure 2, which is a bifurcation diagram plotted against the injection rate   r inj  . For example, in Figure 2a, when the injection rate is low, the laser output oscillates periodically and the corresponding  λ  is small. As the injection rate increases, the dynamics become more complex and the LD oscillates chaotically. However, as   r inj   is further increased, a periodic window is observed in the chaotic region and the corresponding Lyapunov exponent becomes small. This result appears to contradict the above prediction, but chaotic dynamics can be observed within the periodic window by perturbing the amplitude of the sinusoidal term on the right side of Equation (15). For example, the LD1 output   A ′   is perturbed by a pseudo-random signal, as considered in Section 4. As the variance   σ 2   increases, as shown in Figure 4(a-1,a-2), the LD dynamics evolves into chaos. If   r inj   is small or no injection locking has occurred, we obtain a positive  λ  and actualize the potential chaotic dynamics of LD2 as predicted above. Equation (15) provides other candidate solutions by the perturbation of   A s ′  , so that chaotic dynamics are actualized even when the intrinsic system is in a periodic window.



By introducing the saturation effect, we find that both   A s ′   and G fluctuate. The gain G is a function of optical intensity from Equation (10), and it provides complex oscillations in the chaotic system. As a result, the amplitude   A s   fluctuates as well, and Equation (15) obtains other candidate solutions. Even in regions where the dynamics are not chaotic near regions that exhibit chaotic dynamics, this fluctuation leads to a transition to chaotic dynamics and makes the chaotic region larger. The region with a large  λ  at   r inj   of ∼0.11 and  σ  of ∼0 in Figure 4(a-2) is expanded by the effect of gain saturation, as shown by   r inj   of ∼0.09 in Figure 4(a-1). To confirm that gain fluctuation leads to this chaotic region expansion, the following tentative gains are considered:


  G =    g ( N  ( t )  −  N 0  )   1 + δ ·  R ′   ( t )     ,  



(16)




where    R ′   ( t )    is the pseudo-random signal, the standard deviation is represented by   σ ′  , and the mean is the product of the optical intensity of the free-running LD and   ε ξ   (  ε = 2.5 ×  10  − 23     m 3   ). No pseudo-random signal is applied to the drive current of LD1, and   R ( t ) = 1  . Figure 6 shows the Lyapunov exponents for   r inj   and   σ ′   at a magnification factor of   δ = 1  . In Figure 6a,b,    J ratio  = 1.1   and    J ratio  = 1.3  , which are similar to those in Figure 4(a-2,b-2), respectively.



It can be seen that the random fluctuation of G has the same effect as that of   A ′  . Moreover, it can be confirmed that the effect of random fluctuation becomes stronger when the magnification  δ  is increased, so that the small area with a large Lyapunov exponent expands (Figure 7).




6. Conclusions


In this study, the orbital instability of an optical injection LD system with a pseudo-random signal applied to the drive current is analyzed numerically. To quantify the orbital instability, the Lyapunov exponent calculated from the linearized equation is used. First, for an optical injection LD system without an applied signal, we confirmed the effect of gain saturation on the Lyapunov exponent of the system, and showed that the effect of optical injection is suppressed in the system with gain saturation and small optical injection, and that a higher amount of optical injection is required to obtain similar dynamics. Next, for an optical injection LD system to which a pseudo-random signal is applied, it is confirmed that the chaotic dynamics are actualized as the standard deviation of the applied signal increase when the dynamics are in the periodic window between chaotic and chaotic regions. It is shown that this phenomenon can be observed even in systems in which gain saturation is considered. Furthermore, it is suggested that this phenomenon can be explained by linear stability analysis and shown that gain fluctuation leads to the expansion of the chaotic region by introducing a tentative gain coefficient that fluctuates randomly.
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Figure 1. Schematic of chaotic laser system with pseudorandom signal. 
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Figure 2. Bifurcation diagram (blue) and Lyapunov exponent (red) when    J ratio  = 1.1   (a,b) and    J ratio  = 1.3   (c,d) with (a,c) and without (b,d) gain saturation effect. 
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Figure 3. Lyapunov exponent as a function of the injection ratio and nonlinear gain factor when (a)    J ratio  = 1.1  , (b)    J ratio  = 1.3  , (c)    J ratio  = 1.5  , and (d)    J ratio  = 3.0  . 
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Figure 4. Lyapunov exponent as a function of the injection ratio and the standard deviation of the applied pseudorandom signal when (a)    J ratio  = 1.1  , (b)    J ratio  = 1.3  , (c)    J ratio  = 1.5  , and (d)    J ratio  = 3.0   with ((a-1)–(d-1)) and without ((a-2)–(d-2)) gain saturation effect. 
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Figure 5. Stable solutions diagram for the ratio of optical injection. Black, blue and red lines correspond to    r inj  = 0.001 , 0.01   and   0.1  , respectively. 






Figure 5. Stable solutions diagram for the ratio of optical injection. Black, blue and red lines correspond to    r inj  = 0.001 , 0.01   and   0.1  , respectively.



[image: Photonics 11 00954 g005]







[image: Photonics 11 00954 g006] 





Figure 6. Lyapunov exponent as a function of the injection ratio and the standard deviation of the tentative gain fluctuation when (a)    J ratio  = 1.1   and (b)    J ratio  = 1.3  . 






Figure 6. Lyapunov exponent as a function of the injection ratio and the standard deviation of the tentative gain fluctuation when (a)    J ratio  = 1.1   and (b)    J ratio  = 1.3  .



[image: Photonics 11 00954 g006]







[image: Photonics 11 00954 g007] 





Figure 7. Lyapunov exponent as a function of the injection ratio and the magnification of the tentative gain fluctuation when (a)    J ratio  = 1.1   and (b)    J ratio  = 1.3  . 
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