
Citation: Ustinov, A.V.; Porfirev, A.P.;

Khonina, S.N. Interference Generation

of a Reverse Energy Flow with

Varying Orbital and Spin Angular

Momentum Density. Photonics 2024,

11, 962. https://doi.org/10.3390/

photonics11100962

Received: 12 September 2024

Revised: 9 October 2024

Accepted: 10 October 2024

Published: 14 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Interference Generation of a Reverse Energy Flow with Varying
Orbital and Spin Angular Momentum Density
Andrey V. Ustinov 1,*, Alexey P. Porfirev 1,2 and Svetlana N. Khonina 1,2

1 Image Processing Systems Institute, National Research Centre “Kurchatov Institute”, Molodogvardeyskaya
Str. 151, 443001 Samara, Russia; porfirev.alexey@ipsiras.ru (A.P.P.); khonina@ipsiras.ru (S.N.K.)

2 Samara National Research University, Moskovskoye Shosse 34, 443086 Samara, Russia
* Correspondence: andr@ipsiras.ru

Abstract: This paper presents a novel method for generating and shaping reverse energy flow through
the interference of light fields from a minimal number of point light sources. Until now, reverse
energy flow has only been observed using complex light fields, such as optical vortices or cylindrical
vector beams, limiting the formation of reverse energy flow near the optical axis. We demonstrate
both analytically and numerically that unbounded regions of reverse energy flow can be achieved
with just two point light sources, positioned asymmetrically at specific angles (e.g., 90 or 45 degrees)
and with particular polarization states. The results indicate that the relative reverse energy flow can
be enhanced by increasing the number of sources to three or four, adjusting their polarization, or
introducing a vortex phase singularity. The presence of an initially embedded asymmetry in the fields
under consideration leads to the formation of a non-uniform distribution of spin and orbital angular
momentum density. Variations in the polarization state, as well as the introduction of a vortex phase
singularity, allow for changing the distribution of angular momentum density while maintaining
the presence of a reverse energy flow. We also explore the feasibility of implementing the obtained
results using sectional phase diffractive optical elements, which will enhance the energy efficiency of
the generated fields compared to point sources.

Keywords: energy flow; angular momentum; polarization; multi-beam interference; Richards–
Wolf formulas

1. Introduction

Great interest in the study of a wide variety of structured laser beams [1–7] is associ-
ated with various features of the characteristics of these optical fields, such as amplitude-
phase distribution, polarization state, coherence, etc. Various properties of laser beams
are in demand in various applications. For example, laser beams with a vortex phase
singularity [8–12] are successfully used in optical tweezers and spanners [13–15], for multi-
plexing of optical data transmission channels [16–18], optical imaging and microscopy [19–21],
as well as for laser processing and patterning of various materials [22–25]. Vector beams
with inhomogeneous polarization are also used to solve the problem of overcoming the
diffraction limit in optical microscopy, laser material processing, optical trapping and ma-
nipulation of nano- and microparticles, holography, and optical communications [26–35].

It should be noted that for various applications, a combination of both the phase
and polarization distribution of the generated light field may be important. This makes it
possible to control characteristics of the electromagnetic field, such as the energy flow and
Poynting vector density [36–39], orbital and spin angular momentum (OAM and SAM)
density [40–49], optical forces distribution [50–54], as well as their interrelation [55–63].
Thus, controlling the amplitude-phase and polarization state of the generated light field
allows one to influence various characteristics of the field required in specific situations.

Currently, one of the primary methods for shaping structured vector beams involves
the use of metasurfaces [64–67]. However, these devices are still complex and expensive
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to manufacture for widespread use. A more common approach involves combining two
orthogonally polarized light fields using diffractive optical elements (DOEs), spatial light
modulators (SLMs), or digital micromirror devices (DMDs) [68–72]. Another method is
the multi-beam interference of light fields with different polarization states from coher-
ent sources [73–77]. In this scenario, various vector structured beams can be formed by
adjusting the position of the sources and the polarization/focusing characteristics of the
shaped light beams [78]. This method does not require the use of special optical elements
but allows for dynamic control of the field’s polarization structure.

We propose a simple method for shaping a reverse energy flow caused by the interfer-
ence of light fields from a small number (two or three) of point light sources. Reverse energy
flow refers to the direction of energy flow being opposite to the propagation direction of the
beam [79]. This method can be utilized to move dielectric nanoparticles with absorption in
the opposite direction to the laser beam’s propagation, exerting a greater force compared to
similar particles without absorption [80,81].

Previously, the potential for generating a reverse energy flow using circularly polar-
ized optical vortex beams [82] and cylindrical vector beams [83–85] has been demonstrated.
Typically, in these cases, the regions of the formation of the inverse energy flow are located
near to the optical axis and are bounded (size is approximately of the order of the wave-
length). To elongate the region of energy backflow, annular apertures [86,87] and specific
phase or polarization distributions [88,89] have been suggested.

In this paper, we analytically and numerically demonstrate that unbounded regions
of the reverse flow can be formed using only two point light sources located at equal
distances from the origin of the coordinate system (see scheme in Figure 1). This is an
important difference from the works [90,91], where interference patterns generated by
four plane waves with linear polarization were considered. The magnitude of the reverse
flow depends on both the angles between the radius vectors directed to the sources and
on the polarization states of the sources. An important factor for the formation of the
reverse flow is the asymmetric position of the two point sources, i.e., at an angle of 90 or 45
degrees between the radius vectors, depending on the polarization state. For two co-planar
beams (located on the diameter of the circle), which were considered in the work [78], it is
impossible to obtain a reverse energy flow.
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Figure 1. Results of numerical simulation for two point sources located in perpendicular directions
with the same x-linear polarization. Top row: input field (left), longitudinal component of the
Poynting vector Pz (blue for positive values, pink for negative) and longitudinal component of
external OAM Lz (turquoise for positive values, pink for negative). Bottom row: components of the
SAM density distribution (light shade corresponds to positive values, dark shade to negative). The
bottom line shows the correspondence between the field intensity E and the distribution of Pz in the
focal plane (left) and along the optical axis (right).

Thus, the light fields under investigation initially have a broken symmetry, which
leads to the formation of a non-uniform angular momentum density [92]. Introducing a
phase difference does not change the fact of the presence of a reverse energy flow, but can
be used to vary the distribution of angular momentum. We also study the possibility of
implementing the obtained results using sectional phase DOEs. This approach will enhance
the energy efficiency of the generated fields in comparison to point sources.

2. Theoretical Background

There are various approaches to calculating the propagation and focusing of vector
beams, for example, the method of expansion in plane waves [93,94] and vector Rayleigh–
Sommerfeld integrals [95–97] convenient for calculating the field in the near diffraction
zone [98]. In the far diffraction zone or focal region, Richards–Wolf formulas [99,100]
are often used. Obviously, in all cases, the task of calculation and analysis is simpli-
fied if there is a possibility of obtaining an analytical solution [101,102]. In particular,
in the works [103,104], an analysis of the formation of a reverse energy flow for vortex
beams with different polarizations was performed based on the point complex source
method [105,106]. However, in this paper, we consider solutions that are simple for ex-
perimental implementation (for example, a set of holes in a screen [78] or segments in an
annular slit [86], supplemented by a lens), which are difficult to describe analytically. In
this case, it is logical to use the Richards–Wolf formulas.

The components of the electric and magnetic field vectors in the case of tight focusing
are calculated using the Richards–Wolf formulas [99]. In a spherical coordinate system,
they are given by the expressions:

[
E(r,φ, z)
H(r,φ, z)

]
= − i f

λ

Θ∫
0

2π∫
0

T(θ)F(θ,ϕ)

[
PE(θ,ϕ)
PH(θ,ϕ)

]
exp[ik(r sin θ cos(ϕ−φ) + z cos θ)] sin θdθdϕ (1)

where

PE(θ,ϕ) =

 A(θ,ϕ) C(θ,ϕ)
C(θ,ϕ) B(θ,ϕ)
−D(θ,ϕ) −E(θ,ϕ)

( cx(θ,ϕ)
cy(θ,ϕ)

)
,

PH(θ,ϕ) =

 C(θ,ϕ) −A(θ,ϕ)
B(θ,ϕ) −C(θ,ϕ)
−E(θ,ϕ) D(θ,ϕ)

( cx(θ,ϕ)
cy(θ,ϕ)

)
,

(2)
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A(θ,ϕ) = 1 + cos2 ϕ(cos θ− 1) ,
B(θ,ϕ) = 1 + sin2 ϕ(cos θ− 1) ,
C(θ,ϕ) = sinϕ cosϕ(cos θ− 1) ,
D(θ,ϕ) = cosϕ sin θ,
E(θ,ϕ) = sinϕ sin θ .

(3)

In the above expressions (r, ϕ, z) are cylindrical coordinates in the focal region,
(θ, ϕ) are spherical angular coordinates at the exit of the pupil of the focusing system,
sin (Θ) = NA is the numerical aperture of the system, F(θ, ϕ) is the transmission (input)
function, T(θ) is the apodization function, k = 2π/λ is the wave number, λ is the radiation

wavelength, f is the focal length, and
(

cx(θ,ϕ)
cy(θ,ϕ)

)
is the polarization vector. We do not

assume that it is standardized. For the focal plane, z is 0.
The longitudinal component of the Poynting vector (we do not calculate the transverse

ones in this work, since they do not form a reverse flow) is defined by the formula:

Pz Re
[

Ex H∗
y − Ey H∗

x

]
= Re

[
E∗

x Hy − E∗
y Hx

]
. (4)

Taking the real part in this expression corresponds to the classical definition. However,
recent studies have revealed that the imaginary part of this component plays a role in the
transverse force acting on optically trapped particles [107]. In most cases, the impact of the
imaginary part is minimal compared to the real part [108,109]. Therefore, in this paper, we
focus on the classical version represented by Equation (4).

The symmetry breaking in the beam structure leads to the formation of a non-uniform
distribution of the angular momentum density. In particular, the SAM density distribution
may be calculated by the following formula [110]:

S =

Sx
Sy
Sz

 ≃ Im

E∗
y Ez − E∗

z Ey

E∗
z Ex − E∗

x Ez
E∗

x Ey − E∗
y Ex

. (5)

Note that the longitudinal component of the SAM typically dominates and is associated
with the presence of circular polarization in the generated field [111–113]. This allows
trapped particles to rotate around their axis in the transverse plane. However, at sharp
focusing, transverse components of the SAM may also exist [43,44,114,115], causing the
particles to rotate around their axis in the direction of the light propagation. The coexistence
of both transverse and longitudinal components [116] can result in the intricate 3D rotation
of trapped particles.

Taking into account the spin–orbit interaction, we also consider the longitudinal
component of the external OAM density distribution, associated with the breaking of the
axisymmetric structure of the field [117,118]:

Lz ≃ Re
[

xE∗
z Ex − yE∗

y Ez

]
. (6)

Note that a non-zero value for expression (6) indicates a shift in the longitudinal
component of the focused field, which, in turn, results in the emergence of the spin Hall
effect of light [55,62,63,116,117].

3. Analytics and Numerical Illustrations for Two Point Sources
3.1. A Single Point Source

If we consider a single point source as F(θ, ϕ) with the center at the point (θ0,ϕ0),
radial dimension ∆θ and angular dimension ∆ϕ, then based on Equations (1) and (2) at
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z = 0 (in the focal plane), we can write approximate expressions (the factor in front of the
integral is omitted):

E∗
x R∆ϕ exp(−ikr sin θ0 cos(ϕ0 −φ))×

[
A(ϕ0)c∗x(ϕ0) + C(ϕ0)c∗y(ϕ0)

]
,

E∗
y R∆ϕ exp(−ikr sin θ0 cos(ϕ0 −φ))×

[
C(ϕ0)c∗x(ϕ0) + B(ϕ0)c∗y(ϕ0)

]
,

Hx R∆ϕ exp(+ikr sin θ0 cos(ϕ0 −φ))×
[
C(ϕ0)cx(ϕ0)− A(ϕ0)cy(ϕ0)

]
,

Hy R∆ϕ exp(+ikr sin θ0 cos(ϕ0 −φ))×
[
B(ϕ0)cx(ϕ0)− C(ϕ0)cy(ϕ0)

]
,

(7)

where R = ∆θT(θ0) sin θ0.
If we substitute the components of the fields defined by Equation (7) into Equation (4)

and take into account Equation (3), we obtain

Pz = (R∆ϕ)2 cos θ0

(
|cx(ϕ0)|

2 +
∣∣cy(ϕ0)

∣∣2). (8)

This is a positive value, which means that there can be no reverse energy flow with a
single point source. In addition, the value in Equation (8) does not depend on r and φ, i.e.,
it is the same across the entire focal plane.

3.2. Two Point Sources

With two or more sources, Equation (7) remains true for each of them separately
(taking into account their parameters), and the total electric and magnetic fields will be
equal to their sum. To simplify the expressions, we will assume that ∆θ and ∆ϕ are the
same for all sources, and that they themselves are located on one ring with a radius θ0.
In this case, the multiplier R∆ϕ will be the same for all fields and will not be written
down in the following expressions. Exponential factors for two sources will no longer be
reduced, and a dependence on r and φ will appear. The right side of Equation (4) after the
transformations will be equal to

E∗
x Hy − E∗

y Hx =
(
|cx1|2 +

∣∣cy1
∣∣2 + |cx2|2 +

∣∣cy2
∣∣2) cos θ0+

+eipα[(B1 A2 − C1C2)cx1c∗x2 + (B1C2 − C1B2)cx1c∗y2−
−(C1 A2 − A1C2)cy1c∗x2 −(C1C2 − A1B2)cy1c∗y2

]
+

+e−ipα
[
(A1B2 − C1C2)c∗x1cx2 − (A1C2 − C1 A2)c∗x1cy2+

+(C1B2 − B1C2)c∗y1cx2 −(C1C2 − B1 A2)c∗y1cy2

]
(9)

where p = kr sin θ0; α = cos(ϕ1 −φ)− cos(ϕ2 −φ). If the quantities cx(ϕ) and cy(ϕ) are
real, then the procedure for taking the real part is simplified, and as a result we obtain the
following expression for Pz:

Pz =
(

c2
x1 + c2

y1 + c2
x2 + c2

y2

)
cos θ0+

+ cos pα
[
(A1B2 + B1 A2 − 2C1C2)

(
cx1cx2 + cy1cy2

)
+

+(C2(A1 − B1) + C1(B2 − A2))
(
cy1cx2 − cx1cy2

)] (10)

In its explicit form it looks like

Pz =
(

c2
x1 + c2

y1 + c2
x2 + c2

y2

)
cos θ0+

+ cos
[
2kr sin θ0 · sin ϕ1−ϕ2

2 sin
(
ϕ1+ϕ2

2 −φ
)]

×

×
[(

cx1cx2 + cy1cy2
)(

2 cos θ0 + (1 − cos θ0)
2 sin2(ϕ1 −ϕ2)

)
+

+0.5
(
cy1cx2 − cx1cy2

)
(1 − cos θ0)

2 sin 2(ϕ1 −ϕ2)
]
.

(11)
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Even after assuming that the polarization coefficients are real numbers, Equation (11)
still remains quite complex. Therefore, below we will consider some specific cases where
simplifications are possible.

3.3. Proportional Relationships of Polarization Coefficients

One of the simplifications of Equation (10) is provided under the condition (we assume
cx1 ̸= 0):

cy1cx2 − cx1cy2 = 0 ⇔ cy2 =
cy1cx2

cx1
. (12)

Since the determinant of the components of the polarization vectors is zero, this
condition corresponds to proportional relationships of the polarization coefficients. In this
case, instead of Equation (11), we obtain

Pz =
(

c2
x1 + c2

y1 + c2
x2

(
1 + c2

y1/c2
x1

))
cos θ0+

+ cos
[
2kr sin θ0 sin ϕ1−ϕ2

2 sin
(
ϕ1+ϕ2

2 −φ
)]

×

×
(

cx1cx2 + c2
y1cx2/cx1

)[
2 cos θ0 + (1 − cos θ0)

2 sin2(ϕ1 −ϕ2)
] (13)

For convenience, we introduce the following notations:

U(ϕ1,ϕ2,φ) = cos
[
2kr sin θ0 sin ϕ1−ϕ2

2 sin
(
ϕ1+ϕ2

2 −φ
)]

,

Q1(ϕ1,ϕ2) = 2 cos θ0 + (1 − cos θ0)
2 sin2(ϕ1 −ϕ2).

(14)

Note that the value Q1(ϕ1,ϕ2) is always positive.
Let us rewrite Equation (13) as follows:

Pz =

(
c2

x1 + c2
y1 + c2

x2

(
1 +

c2
y1

c2
x1

))
cos θ0 + U(ϕ1,ϕ2,φ)Q1(ϕ1,ϕ2)

(
cx1cx2 + c2

y1
cx2

cx1

)
. (15)

If cx1, cx2, cy1 are positive, then cy2 is also positive. The extrema of Equation (15) will be
at ϕ2 −ϕ1 = 90◦ (the sources are located in perpendicular directions) and U(ϕ1,ϕ2,φ) = ±1.
In explicit form:

(Pz)max
min

=

(
c2

x1 + c2
y1 + c2

x2

(
1 +

c2
y1

c2
x1

))
cos θ0 ±

(
cx1cx2 + c2

y1
cx2

cx1

)
(1 + cos2 θ0). (16)

Note that with sharp focusing, i.e., when cos θ0 −−−−→
θ0→90◦

0, the minimum of this

expression is negative, which corresponds to the appearance of a reverse energy flow.
Usually, when describing the phenomenon of reverse flow, an important characteristic

is not only its magnitude but also its ratio to the largest possible value of the forward
flow [84,86].

If we introduce the notation q1 =
cx1cx2+c2

y1cx2/cx1

c2
x1+c2

y1+c2
x2

(
1+c2

y1/c2
x1

) , then the ratio of the minimum

value of the energy flow to the maximum value will be equal to:

η =
(Pz)min
(Pz)max

=
cos θ0 − q1(1 − cos θ0)

2

cos θ0 + q1(1 − cos θ0)
2 . (17)

As can be seen from Equation (17), at θ0 = 90◦, the minimum negative relative value
η = −1 (the greatest presence of reverse energy flow) is achieved regardless of q1. If some
value θ0 is defined, then the minimum of the ratio η will be at the maximum achievable
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value of q1 (the derivative with respect to q is negative). It can be shown that the maximum
value q1 = 0.5 is achieved at cx1/cx2 = 1 (regardless of cy1). Then, the ratio will be equal to:

η = − (1 − cos θ0)
2

(1 + cos θ0)
2 . (18)

Thus, the best results are achieved with equal cx2 = cx1 and arbitrary cy1. However,
taking into account Equation (12), we obtain that cy2 = cy1cx2/cx1 = cy1.

This means that for two point sources with the same polarization, located in per-
pendicular directions (ϕ2 −ϕ1 = 90◦), there is always a reverse energy flow. Its relative
magnitude increases with increasing angle θ0 (i.e., focusing sharpness) and reaches an
extremum of η = −1 at θ0 = 90◦.

Although there are studies in which the ratio η reached higher values (|η| ≥ 1) [83,84],
the regions of the reverse flow in these cases had either a finite area or an infinite area,
but of measure zero with respect to the entire focal plane [86,88,89]. In the case under
consideration, the interference generation method provides theoretically infinite regions
of the reverse flow, the fraction of which is close to half of the total focal plane. A similar
situation was described in works [90,91], where the interference of four plane waves was
considered and limited rectangular regions of the reverse flow were formed. The fraction
of these regions was approximately half of the focal region. In this work, the difference
lies not only in the exhaustive analysis of the conditions for achieving the reverse flow
during the interference of fields formed by several point sources (taking into account their
positions and polarization states), but also the possibility of forming unlimited strip regions
of the reverse flow.

Figures 1 and 2 display the results of numerical modeling for two point sources located
in perpendicular directions with the same polarization. For linear polarization (Figure 1),
we also showed (bottom row) a visual correspondence between the E field intensity and
the distribution of Pz in the focal plane (left) and along the optical axis (right). It is seen
that the regions of negative values of Pz coincide with the regions of minimal values of the
E field intensity.
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Figure 1.

Strictly speaking, circular polarization (Figure 2) is not covered in the analytical
discussion provided in this section, as one of the polarization coefficients is imaginary.
However, as depicted in Figure 2, in this scenario, there is also a reverse energy flow, nearly
equivalent to that achieved with linear polarization.
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The results were obtained using Equations (1)–(6) with the following parameters:
wavelength is λ = 1 µm, input field size is 200 µm × 200 µm, the output field size is
10 µm × 10 µm, numerical aperture NA = 0.99. Point sources in the calculations had a
radius equal to the wavelength λ.

As can be seen, the distribution of all quantities in both cases is one-dimensional, i.e.,
it represents stripes located at an angle of 45◦ (=90◦/2). This is quite expected based on the
geometry of the location of two point sources.

Comparison of Figures 1 and 2 shows that the energy flux distribution pattern Pz
and the η ratio are the same, although the polarization type in the sources changes. This
change has a minor effect on the OAM distribution pattern and a much more significant
effect on the SAM distribution. For linear polarization (Figure 1), the averaged values in
each component are zero, while for circular polarization (Figure 2), they have a positive
value (this is also expected, since the right-handed, i.e., “positive”, circular polarization
is considered).

Note that for ϕ2 −ϕ1 = 180◦ (co-planarly located sources) the value Pz will always
be non-negative. For such an arrangement, it is equal to Pz = cos θ0(c2

x1 + c2
x2 + 2 cos

(2kr sin θ0 cos(φ−ϕ2))cx1cx2); and this expression is non-negative, since the coefficient for
cx1cx2 is no greater than two in modulus. Various field characteristics obtained during the
interference of co-planarly located sources with different polarization states were examined
in detail in [78].

3.4. Orthogonal States of Polarization

Another option for simplifying Equation (10) arises when both cx and cy are nonzero
and the equality holds:

cx1cx2 + cy1cy2 = 0 ⇔ cy2 = − cx1cx2

cy1
. (19)

Equation (19) corresponds to orthogonal polarization states. In this case, instead of
Equation (13), we obtain:

Pz =

(
c2

x1 + c2
y1 + c2

x2

(
1 + c2

x1
c2

y1

))
cos θ0+

+ cos
[
2kr sin θ0 sin ϕ1−ϕ2

2 sin
(
ϕ1+ϕ2

2 −φ
)]

×

× 1
2

(
cy1cx2 + c2

x1
cx2
cy1

)
(1 − cos θ0)

2 sin 2(ϕ2 −ϕ1)

(20)

Taking into account Equation (14) and introducing the notation

Q2(ϕ1,ϕ2) = 0.5(1 − cos θ0)
2 sin 2(ϕ2 −ϕ1), (21)

let us rewrite Equation (20) as follows:

Pz =

[
c2

x1 + c2
y1 + c2

x2

(
1 +

c2
x1

c2
y1

)]
cos θ0 + U(ϕ1,ϕ2,φ)Q2(ϕ1,ϕ2)

(
cy1cx2 + c2

x1
cx2

cy1

)
(22)

The bracket in the second term of Equation (22) is positive. The maximum of Pz
will be when U(ϕ1,ϕ2,φ) = 1, and Q2(ϕ1,ϕ2) reaches its maximum value, that is, when
ϕ2 −ϕ1 = 45◦ (the maximum is equal to 0.5(1− cosθ0)

2). Substituting into Equation (22) gives

(Pz)max =

[
c2

x1 + c2
y1 + c2

x2

(
1 +

c2
x1

c2
y1

)]
cos θ0 +

1
2
(1 − cos θ0)

2

(
cy1cx2 + c2

x1
cx2

cy1

)
. (23)
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Similarly, the minimum of Pz will be when Q2(ϕ1,ϕ2) is still maximum, and
U(ϕ1,ϕ2,φ) = −1. This minimum is equal to

(Pz)min =

[
c2

x1 + c2
y1 + c2

x2

(
1 +

c2
x1

c2
y1

)]
cos θ0 −

1
2
(1 − cos θ0)

2

(
cy1cx2 + c2

x1
cx2

cy1

)
. (24)

From Equation (24), it follows that the minimum will be negative only in the non-
paraxial case, when cos θ0 −−−−→

θ0→90◦
0.

In the general case, the expression for determining the exact boundary θ0 required to
form a reverse flow is cumbersome, so we will give it only for the case cx1 = 0:

cos θ0 <
2
(

c2
y1 + c2

x2 + cy1cx2

)
− 2
√

c2
y1 + c2

x2(cy1 + cx2)

2cy1cx2
. (25)

The ratio of the minimum value to the maximum value is as follows:

η =
(Pz)min
(Pz)max

=
cos θ0 − q2(1 − cos θ0)

2

cos θ0 + q2(1 − cos θ0)
2 , (26)

where q2 = 1
2

cy1cx2+c2
x1cx2/cy1

c2
x1+c2

y1+c2
x2

(
1+c2

x1/c2
y1

) .

Similar to the case considered in the previous section, at θ0 = 90◦, the minimum
negative relative value η = −1 (the greatest presence of reverse energy flow) is achieved,
regardless of q2. If some value θ0 is defined, then the minimum of the ratio η will be at
the maximum achievable value q2 = 0.5 (at cy1/cx2 = 1, regardless of cx1). Then, instead of
Equation (26), we obtain the following expression:

η = − (1 − cos θ0)
2 − 4 cos θ0

(1 + cos θ0)
2 . (27)

The relation defined by Equation (27) is not so good as in Equation (18). Moreover,
if cos θ0 > 3 − 2

√
2 (θ0 < 80◦7′), then the minimum will be positive, so that the reverse

flow is present only when focusing at large angles (θ0 > 80◦7′).
Thus, for two point sources with orthogonal polarization, a reverse energy flow is

formed if they are located in directions at 45 degrees (ϕ2 −ϕ1 = 45◦) and there is a sharp
focusing (θ0 > 80◦7′). The relative magnitude of the reverse flow reaches an extremum
η = −1 at θ0 = 90◦. Note that this analysis is valid only for real polarization coefficients,
i.e., it is not applicable to elliptical polarization.

Figures 3 and 4 show the results of numerical simulation for two point sources with
orthogonal polarization states. The angle between the sources is 45 degrees. The theoretical
considerations provided in this section align with the results depicted in Figure 3.

In this case, the distribution of all values also takes the form of stripes located at an
angle of 22.5◦ (=45◦/2). Since both cases actually exhibit linear polarization (although in
Figure 4 it is non-uniform), the distributions of the SAM density projections have a mean
equal to zero. The value of η for Figure 3 is worse than for Figure 1, which corresponds to
the given Equations (18) and (27).

Although the relative values of the reverse flux η in this situation are worse than those
obtained in the previous paragraph (as theoretically predicted in Equations (18) and (27)),
the combination of the locations of several point sources, considering both configurations,
can be utilized for various variations of the generated interference fields.
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in Figure 1.
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izations (radial and azimuthal). The angle between the sources is 45 degrees. The labels and colors
correspond to the labels and colors in Figure 1.

4. Interference Formation of Reverse Flow in Different Configurations of Point
Light Sources

From the results presented above, it follows that by arranging the point light sources
and choosing their polarization states, it is possible not only to form regions with a reverse
energy flow but also to vary the density of the angular momentum distribution. An
additional degree of freedom is the combination of the two configurations considered above.

4.1. Three Point Light Sources

Figures 5–7 show the results of numerical modeling for the case of three point sources
with orthogonal polarization states. The angles between the sources are 45 degrees. The
results reveal a significant increase in the complexity of the distribution structures being
analyzed. The areas of reverse flow become segregated, with the exception of the circular
polarization case (Figure 6).
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Figure 6. Results of numerical simulation for three point sources with orthogonal circular polariza-
tions. The labels and colors correspond to the labels and colors in Figure 1.

The case shown in Figure 5 is interesting because the relative magnitude of the reverse
flow η increased significantly. We can assume that there is one pair of point sources with
an angle of 90 degrees between them and two sources with an angle of 45 degrees. Due to
this, the value of η is better than for the previously considered cases, although it is smaller
in absolute value than the algebraic sum of η from each pair. Even more important is that
the stripes in the pictures are not strictly straight, which also affected the distribution of
OAM and SAM density. At the same time, Sx retained a striped structure at an angle of
22.5◦, and Sz at an angle of 67.5◦. Note that the areas with negative values Pz are closed.

Using three point sources with orthogonal circular polarizations impaired the value
of the relative return flux η compared to two identical polarizations. This is most likely
explained by the fact that a pair of points with opposite circular polarization with an angle
of 45 degrees between the points does not give a reverse flux and, therefore, adding a third
point impaired the result. The stripes in the distributions of Pz and Lz remained straight,
while all the components of the SAM became more complex in structure. Note that the
transverse components Sx and Sy have large areas with positive values, while in the case of
Sz the average value is zero.
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The results for the relative reverse flux η in Figure 7 are better than those in Figure 4
for the two orthogonal polarizations, but not by much. The distribution for Pz and SAM
has a mosaic structure, while the OAM density pattern retains straight lines. The average
values of all SAM components are zero.

Note that it is possible to extend the considered configurations to other quadrants
(see Figure 8). This extension also alters the interference structure, but the presence of the
reverse flow η remains in roughly the same proportion as for the three sources.
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Point light sources provide a low level of energy. Therefore, in the next section, we
will discuss alternating orthogonal polarization states for non-point sources.

4.2. Segmented Annular-Shaped Polarization-Phase Elements

In this section, we consider ring segments instead of point sources, which can reduce
the relative magnitude of the reverse energy flow but increase the total amount of energy
entering the focal region. In this case, we use orthogonal polarization states similar to the
previous section with continuation to other quadrants. As can be seen from the results
shown in Figures 9–11, the presence of the reverse energy flow is preserved everywhere,
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although its relative magnitude η decreased in absolute value, which is associated with the
increase in point regions to ring segments.
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Figure 10. Results of numerical simulation for a segmented ring distribution with orthogonal circular
polarizations. The labels and colors correspond to the labels and colors in Figure 1.

For orthogonal linear polarizations (Figure 9), the distribution pattern of Pz has a rota-
tional symmetry of the 4th order. The OAM and SAM density distributions are noticeably
less symmetrical and have zero values on average. For orthogonal circular polarizations
(Figure 10), the distribution patterns Pz and Lz have a rotational symmetry of the 8th order.
Moreover, there is a ring of negative values of Pz in the central part.

When using orthogonal cylindrical polarizations (Figure 11), in contrast to previous
cases, a rather high value of η is observed. This observation likely correlates with previously
obtained results on the presence of a reverse flow for beams with radial and azimuthal
polarizations with orders greater than one [84,85].
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As can be seen from the examples provided, when a ring structure is used, the distri-
bution of Pz can be noticeably altered by changing the polarization type. However the SAM
and OAM density distributions do not change qualitatively. Nevertheless, the distribution
of OAM density can be significantly changed by adding a spiral phase plate (SPP) [119].
The complex transmission function of the SPP is described by the phase function exp(imφ),
where m is the order of the vortex phase singularity. Consequently, the energy flow struc-
ture should also undergo changes [88]. The corresponding calculation results are presented
in Figures 12–14.
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As can be seen, the most noticeable consequence of introducing a positive charge
vortex phase was a change in the OAM density distribution; at m = 0 (left columns), an
equal number of positive and negative values is observed, which leads to a zero average
OAM, but in the presence of a vortex phase m = 1 (middle column), the clear majority
of values became positive, and at a higher charge m = 2 (right column), the number and
relative magnitude of positive values also increases.

However, a more interesting effect of introducing a vortex phase singularity is the
enhancement of the relative reverse energy flux η for linear and circular polarization types
(Figures 12 and 13), especially in the case of m = 2. Maximization of the relative reverse
flux for a second-order vortex phase was previously observed for uniform circular [83] and
linear [86] polarization. Such maximization is achieved by concentrating the reverse energy
flux at the central point of the focal plane (on the optical axis). A demonstration of a similar
effect for alternating orthogonal polarization states is shown in this work for the first time.
For orthogonal cylindrical polarizations (Figure 14), introducing a vortex phase singularity
leads to a shift of regions with negative values of Pz from the center to the periphery, which
affects a decrease in the absolute value of η.

5. Discussion

In Section 3, it is analytically shown that the greatest relative value of the reverse flow
is obtained when two points are located with a longitude difference of 90 degrees and
the same linear polarization at these points. The question arises: Is it possible to improve
the result by adding points? Since it has already been proven that the linear polarization
can be arbitrary, and it is the difference in the directions of the points that is important,
then, taking into account the form of Equations (1)–(4) and (7), for the sake of simplifying
the calculations, we will place 4 points in positions with directions of 0, 90, 180, and
270 degrees, respectively. The polarization vector at all points will be taken equal to the
linear x-polarization. Calculations according to Equation (7) yield the following values of
the field components:

E∗
y = Hx = 0 f or all dots;

D1 : E∗
x = e−ipx cos θ0, Hy = eipx;

D2 : E∗
x = e−ipy, Hy = eipy cos θ0;

D3 : E∗
x = eipx cos θ0, Hy = e−ipx;

D4 : E∗
x = eipy, Hy = e−ipy cos θ0;

where p = k sin θ0.

. (28)

5.1. Two Sources

The main results are in Section 3.1, but for ease of analysis, we will write down all
the expressions here. For a pair of points (D1, D3) and for a pair of points (D2, D4), the
difference in directions is 180 degrees, and the energy flow values will only be non-negative,
as mentioned above. For pairs (D1, D2) and (D3, D4), we obtain the same expressions for
the flow

Pz = 2 cos θ0 + cos p(y − x)(1 + cos2 θ0). (29)

The ratio of the maximum and minimum values is

η =
minPz

maxPz
= − (1 − cos θ0)

2

(1 + cos θ0)
2 . (30)

5.2. Three Sources

Let us see if adding a third point will improve things. Consider the triple (D1, D2, D3).
We obtain the following expression for the energy flow

Pz = cos θ0 + 4 cos2 px cos θ0 + 2 cos px cos py(1 + cos2 θ0). (31)
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Finding the maximum value is obvious:

cos px cos py = 1 ⇒ maxPz = 5 cos θ0 + 2(1 + cos2 θ0). (32)

Finding the minimum is not at all trivial. Omitting the details, we write the final
expression:

minPz =

{
− sin4 θ0

4 cosθ0
, cosθ0 ≥ 2 −

√
3,

5 cos θ0 − 2(1 + cos2 θ0), else.
. (33)

At the transition point, continuity is maintained.
A comparison of the ratio η (minimum of Pz to its maximum) for two and three points

is provided in Table 1.

Table 1. Comparison of the ratio η for two and three points located in directions at 90 degrees.

θ0 θ0→0◦ 30◦ 45◦ 60◦ 74◦27’ 90◦

2 points −θ0
4/16

56
√

3 − 97 ≈
≈ −0.005

12
√

2 − 17 ≈
≈ −0.029 − 1

9 ≈ −0.111 − 1
3 ≈ −0.333 –1

3 points −θ0
4/36

7
√

3−15
48·26 ≈

≈ −0.0023

3
√

2−5
56 ≈

≈ −0.013
− 9

160 ≈ −0.056 − 3
13 ≈ −0.231 –1

As can be seen from the results presented in Table 1, adding a third point impairs the
value of the ratio η. It is important to note that the results of Section 4.1 do not contradict
this statement, as they involve a different arrangement of points and polarizations. Other
triplets consistently yield the same outcome. For the triplet (D1, D3, D4), the expression
obtained is identical to Equation (33), and for the triplets (D1, D2, D4) and (D2, D3, D4), the
same result is also achieved.

5.3. Four Sources

If we take all four points, we obtain the following expression for the flow

Pz = 4 cos θ0

(
cos2 px + cos2 py

)
+ 4 cos px cos py(1 + cos2 θ0). (34)

The maximum is

cos px cos py = 1 ⇒ maxPz = 8 cos θ0 + 4(1 + cos2 θ0). (35)

This is 4 times more than for two points. Finding the minimum is more difficult, but
easier than for three points. The minimum will be under the following conditions:

cos px cos py = −1 ⇒ minPz = 8 cos θ0 − 4(1 + cos2 θ0) (36)

This is also 4 times greater than for two points. Therefore, the ratio of the minimum to
the maximum η is determined by the same formula (see Equation (30)) as for two points.
However, here the minimum is achieved in isolated areas (Figure 15), whereas for two
points, it occurs on straight lines (Figure 1).

Thus, it has been analytically shown that even with two light points located at a
90-degree angle, with the same polarization, it is possible to form a relative reverse energy
flow up to η = −1 in linear unbounded regions. It has been numerically shown that it is
possible to enhance the relative reverse energy flow (η < −1) by using point sources (at
least three) located at a 45-degree angle, with orthogonal polarization states. Additional
enhancement is possible by introducing a second-order vortex phase singularity.
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6. Conclusions

In this paper, we analytically and numerically investigated the possibility of forming
a reverse energy flow based on the interference of radiation from a minimum number of
point sources in order to obtain unbounded areas of the reverse flow. It is analytically
shown that it is possible to form a reverse energy flow in linear unbounded areas using only
two point sources located at an angle of 90 degrees, with the same polarization (achievable
relative reverse energy flow up to η = −1).

It is shown numerically that the relative reverse energy flow can be enhanced to obtain
values η < −1 by using at least three point sources located at an angle of 45 degrees with
orthogonal polarization states. It is also shown numerically that additional enhancement is
possible by introducing a second-order vortex phase singularity.

An important factor for the formation of the reverse flow is the asymmetric position
of several point sources, i.e., at an angle of 90 or 45 degrees. The presence of an initially
embedded asymmetry in the fields under consideration leads to the formation of a non-
uniform distribution of SAM and OAM density. Variations in the polarization state, as well
as the introduction of a vortex phase singularity, allow for changing the distribution of
angular momentum density while maintaining the presence of a reverse energy flow.

In conclusion, we would like to provide some insights into potential approaches for
experimentally investigating reverse energy flow. Ref. [120] demonstrates that reverse
energy flow can affect electrically neutral particles with non-zero conductivity, such as ZnO
particles. In this scenario, the size of these particles must be significantly smaller than the
wavelength. Furthermore, in Refs. [81,90,121], we have numerically shown that a Rayleigh
particle placed in the region of reverse energy flow will move in the direction opposite
to that of beam propagation. Additionally, for indirect experimental evidence of reverse
energy flow, the method proposed in Ref. [90] can be employed. This method relies on
measuring the energy flow distribution through the intensity distribution of the light field.
The observation of a very weak local maximum, known as the Arago spot, which is caused
by the diffraction of the forward flow by a circle 300 nm in diameter (the diameter of the
tube containing the reverse flow), has been suggested as an explanation for the existence of
reverse light energy on the optical axis.

The results obtained can be used in the field of laser manipulation of nano- and
microparticles. The generation of light fields with a non-uniform distribution of the
angular momentum density and the Poynting vector density can affect the nature of
the motion of particles trapped in different parts of such fields. The formation of such
complex optical traps is also interesting due to the fact that most real nano- and micro-
objects, for which one would like to use the methods of non-invasive laser manipulation,
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have a non-spherical shape. These objects include various biological entities (such as
spores, fungi, and cells) [122] and components of micromechanics, which are utilized in
the creation of micromotors and micropumps, as well as in the optical assembly of diverse
microplatforms. For instance, these microplatforms are crucial for the development of
reconfigurable microenvironments for biomedical research [123,124]. Precise control of the
distribution of the angular momentum of the formed optical trap will enable more accurate
manipulation of such objects.
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