Performance Exploration of Optical Wireless Video Communication Based on Adaptive Block Sampling Compressive Sensing
Abstract
:1. Introduction
2. Design and Principle
3. Results
3.1. Simulation Analysis
3.2. Optical Wireless Video Transmission Experiment
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FPGA | field programmable gate array. |
D2D | Device-to-Device. |
LDPC | Low-Density Parity-Check. |
BER | Bit Error Rate. |
PSNR | peak signal-to-noise ratio. |
SSIM | structural similarity index. |
APD | Avalanche Photo Diode. |
EDFA | erbium-doped fiber amplifier. |
GTP | Giga Transceiver Protocol. |
SR | Spectral Residual. |
ETC | encryption-then-compression. |
GMSD | gradient magnitude similarity deviation. |
NMSE | normalized root mean square error. |
Appendix A. Summary Table of Simulation and Experimental Results
Sampling Rate | BCS-SPL | 2DCS | MS_SPL_DDWT | ABS-SPL | ||||
---|---|---|---|---|---|---|---|---|
- | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM |
0.1 | 24.66 | 0.714 | 26.65 | 0.774 | 30.81 | 0.931 | 31.90 | 0.936 |
0.2 | 27.65 | 0.811 | 30.52 | 0.869 | 32.96 | 0.945 | 33.26 | 0.944 |
0.3 | 29.66 | 0.862 | 33.34 | 0.915 | 33.02 | 0.950 | 34.91 | 0.954 |
0.4 | 31.28 | 0.896 | 35.78 | 0.940 | 37.21 | 0.966 | 37.48 | 0.966 |
0.5 | 32.99 | 0.924 | 37.57 | 0.954 | 38.40 | 0.971 | 41.15 | 0.978 |
0.6 | 34.71 | 0.945 | 39.18 | 0.965 | 39.78 | 0.977 | 43.04 | 0.985 |
0.7 | 36.96 | 0.964 | 40.34 | 0.970 | 41.47 | 0.983 | 45.27 | 0.989 |
0.8 | 39.72 | 0.979 | 40.94 | 0.972 | 43.52 | 0.988 | 47.44 | 0.993 |
Sampling Rate | BCS-SPL | 2DCS | MS_SPL_DDWT | ABS-SPL | ||||
---|---|---|---|---|---|---|---|---|
- | NMSE | GMSD | NMSE | GMSD | NMSE | GMSD | NMSE | GMSD |
0.1 | 0.0126 | 0.12 | 0.008 | 0.10 | 0.0025 | 0.020 | 0.0024 | 0.014 |
0.2 | 0.0063 | 0.084 | 0.0033 | 0.054 | 0.0022 | 0.018 | 0.0017 | 0.01 |
0.3 | 0.004 | 0.060 | 0.0017 | 0.030 | 0.0019 | 0.016 | 0.0012 | 0.007 |
0.4 | 0.0027 | 0.042 | 0.001 | 0.019 | 7 × 10−4 | 0.005 | 6.5 × 10−4 | 0.004 |
0.5 | 0.0018 | 0.031 | 6 × 10−4 | 0.012 | 5 × 10−4 | 0.003 | 3 × 10−4 | 0.0026 |
0.6 | 0.0012 | 0.019 | 4 × 10−4 | 0.008 | 4 × 10−4 | 0.002 | 1 × 10−4 | 0.002 |
0.7 | 7 × 10−4 | 0.012 | 3 × 10−4 | 0.006 | 3 × 10−4 | 0.0016 | 1 × 10−4 | 0.0013 |
0.8 | 4 × 10−4 | 0.006 | 3 × 10−4 | 0.003 | 2 × 10−4 | 0.001 | 6.6 × 10−5 | 8.2 × 10−4 |
Index | BCS-SPL | 2DCS | MS_SPL_DDWT | ABS-SPL |
---|---|---|---|---|
PSNR | 32.98 dB | 36.33 dB | 36.97 dB | 38.56 dB |
SSIM | 0.9168 | 0.957 | 0.9638 | 0.9755 |
References
- Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021. White Paper. 2017. Available online: http://www.czechmarketplace.cz/news/cisco-visual-networking-index-global-mobile-data-traffic-forecast-update-2016-2021-white-paper (accessed on 25 September 2024).
- Fan, D.; Zhao, H.; Zhang, C.; Liu, H.; Wang, X. Anti-Recompression Video Watermarking Algorithm Based on H.264/AVC. Mathematics 2023, 11, 2913. [Google Scholar] [CrossRef]
- Yang, L.; Wang, R.; Xu, D.; Dong, L.; He, S. Centralized Error Distribution-Preserving Adaptive Steganography for HEVC. IEEE Trans. Multimed. 2023, 26, 4255–4270. [Google Scholar] [CrossRef]
- Saini, D.K.J.B.; Kamble, S.D.; Shankar, R.; Kumar, M.R.; Kapila, D.; Tripathi, D.P.; de, A. Fractal video compression for IOT-based smart cities applications using motion vector estimation. Meas. Sens. 2023, 26, 100698. [Google Scholar] [CrossRef]
- Zhan, C.; Hu, H.; Wang, Z.; Fan, R.; Niyato, D. Unmanned Aircraft System Aided Adaptive Video Streaming: A Joint Optimization Approach. IEEE Trans. Multimed. 2020, 22, 795–807. [Google Scholar] [CrossRef]
- He, C.; Xie, Z.; Tian, C. A QoE-Oriented Uplink Allocation for Multi-UAV Video Streaming. Sensors 2019, 19, 3394. [Google Scholar] [CrossRef] [PubMed]
- Yamada, R.; Tomeba, H.; Sato, T.; Nakamura, O.; Hamaguchi, Y. Uplink Resource Allocation for Video Transmission in Wireless LAN System. In Proceedings of the 2022 IEEE 8th World Forum on Internet of Things (WF-IoT), Yokohama, Japan, 26 October–11 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, X.-P.; Chen, J.; Kuo, Y. A High-Efficiency Compressed Sensing-Based Terminal-to-Cloud Video Transmission System. IEEE Trans. Multimed. 2019, 21, 1905–1920. [Google Scholar] [CrossRef]
- Li, L.; Wen, G.; Wang, Z.; Yang, Y. Efficient and Secure Image Communication System Based on Compressed Sensing for IoT Monitoring Applications. IEEE Trans. Multimed. 2020, 22, 82–95. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Hasan, M.K.; Jang, Y.M. The Role of Optical Wireless Communication Technologies in 5G/6G and IoT Solutions: Prospects, Directions, and Challenges. Appl. Sci. 2019, 9, 4367. [Google Scholar] [CrossRef]
- Haas, H.; Elmirghani, J.; White, I. Optical wireless communication. Philos. Trans. R. Soc. A 2020, 378, 20200051. [Google Scholar] [CrossRef] [PubMed]
- Tavakkolnia, I.; Jagadamma, L.K.; Bian, R.; Manousiadis, P.P.; Videv, S.; Turnbull, G.A.; Samuel, I.D.W.; Haas, H. Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communications. Light Sci. Appl. 2021, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Ni, X.; Chen, C.; Li, B.; Zhang, X.; Liu, Y.; Tong, S.; Liu, Z.; Jiang, H. Performance of M-PAM FSO communication systems in atmospheric turbulence based on APD detector. Opt. Express 2018, 26, 23819–23830. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.-R.; Kuo, H.-C.; Cheng, C.-H.; Wu, Y.-C.; Huang, Y.-M.; Liou, F.-J.; Lee, Y.-C. Ultrafast 2 × 2 green micro-LED array for optical wireless communication beyond 5 Gbit/s. Photon. Res. 2021, 9, 2077–2087. [Google Scholar] [CrossRef]
- Cvijetic, N.; Wilson, S.G.; Zarubica, R. Performance Evaluation of a Novel Converged Architecture for Digital-Video Transmission Over Optical Wireless Channels. J. Lightw. Technol. 2007, 25, 3366–3373. [Google Scholar] [CrossRef]
- Gan, L.; Do, T.T.; Tran, T.D. Fast compressive imaging using scrambled block Hadamard ensemble. In Proceedings of the European Signal Processing Conference, Lausanne, Switzerland, 25–29 August 2008. [Google Scholar]
- Zhu, Y.; Liu, W.; Shen, Q. Adaptive Algorithm on Block-Compressive Sensing and Noisy Data Estimation. Electronics 2019, 8, 753. [Google Scholar] [CrossRef]
- Mun, S.; Fowler, J.E. Block compressed sensing of images using directional transforms. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009. [Google Scholar]
- Zhang, B.; Xiao, D.; Zhang, Z.; Yang, L. Compressing Encrypted Images by Using 2D Compressed Sensing. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications, Zhangjiajie, China, 10–12 August 2019. [Google Scholar]
- Fowler, J.E.; Mun, S.; Tramel, E.W. Multiscale block compressed sensing with smoothed projected Landweber reconstruction. In Proceedings of the 2011 19th European Signal Processing Conference, Barcelona, Spain, 29 August–2 September 2011; pp. 564–568. [Google Scholar]
- Poobathy, D.; Chezian, M. Edge Detection Operators: Peak Signal to Noise Ratio Based Comparison. IJ Image Graph. Signal Process. 2014, 10, 55–61. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Pęksiński, J.; Mikołajczak, G. The Synchronization of the Images Based on Normalized Mean Square Error Algorithm. Adv. Multimed. Netw. Inf. Syst. Technol. 2010, 80, 15–24. [Google Scholar]
- Xue, W.; Zhang, L.; Mou, X.; Bovik, A.C. Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index. IEEE Trans. Image Process. 2014, 23, 13996537. [Google Scholar] [CrossRef] [PubMed]
Function |
---|
for each block i j = 0 do for each block i For each block i |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yao, H.; Dong, K.; Song, Y.; Liu, T.; Cao, Z.; Wang, W.; Zhang, Y.; Jiang, K.; Liu, Z. Performance Exploration of Optical Wireless Video Communication Based on Adaptive Block Sampling Compressive Sensing. Photonics 2024, 11, 969. https://doi.org/10.3390/photonics11100969
Li J, Yao H, Dong K, Song Y, Liu T, Cao Z, Wang W, Zhang Y, Jiang K, Liu Z. Performance Exploration of Optical Wireless Video Communication Based on Adaptive Block Sampling Compressive Sensing. Photonics. 2024; 11(10):969. https://doi.org/10.3390/photonics11100969
Chicago/Turabian StyleLi, Jinwang, Haifeng Yao, Keyan Dong, Yansong Song, Tianci Liu, Zhongyu Cao, Weihao Wang, Yixiang Zhang, Kunpeng Jiang, and Zhi Liu. 2024. "Performance Exploration of Optical Wireless Video Communication Based on Adaptive Block Sampling Compressive Sensing" Photonics 11, no. 10: 969. https://doi.org/10.3390/photonics11100969
APA StyleLi, J., Yao, H., Dong, K., Song, Y., Liu, T., Cao, Z., Wang, W., Zhang, Y., Jiang, K., & Liu, Z. (2024). Performance Exploration of Optical Wireless Video Communication Based on Adaptive Block Sampling Compressive Sensing. Photonics, 11(10), 969. https://doi.org/10.3390/photonics11100969