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Abstract: Optical wireless video transmission technology combines the advantages of high data rates,
enhanced security, large bandwidth capacity, and strong anti-interference capabilities inherent in
optical communication, establishing it as a pivotal technology in contemporary data transmission
networks. However, video data comprises a large volume of image information, resulting in sub-
stantial data flow with significant redundant bits. To address this, we propose an adaptive block
sampling compressive sensing algorithm that overcomes the limitations of sampling inflexibility in
traditional compressive sensing, which often leads to either redundant or insufficient local sampling.
This method significantly reduces the presence of redundant bits in video images. First, the sampling
mechanism of the block-based compressive sensing algorithm was optimized. Subsequently, a wire-
less optical video transmission experimental system was developed using a Field-Programmable
Gate Array chip. Finally, experiments were conducted to evaluate the transmission of video optical
signals. The results demonstrate that the proposed algorithm improves the peak signal-to-noise ratio
by over 3 dB compared to other algorithms, with an enhancement exceeding 1.5 dB even in field
tests, thereby significantly optimizing video transmission quality. This research contributes essential
technical insights for the enhancement of wireless optical video transmission performance.

Keywords: space optical communication; video transmission technology; image saliency; field-
programmable gate array; peak signal-to-noise ratio

1. Introduction

Since its emergence, wireless data transmission have become increasingly prevalent
due to their cost-effectiveness, high degree of flexibility, and ease of implementation. Video
data, as a critical component of Internet of Things (IoT) services, represent a significant area
of research, particularly in the context of ensuring reliable transmissions within wireless
networks. According to a recent report by Cisco [1], mobile video traffic accounted for
up to 78% of global mobile data traffic in 2021, reflecting the growing imperative for opti-
mized video transmission strategies within wireless communication infrastructures. The
sequential nature of video, consisting of consecutive images, places considerable demands
on transmission links due to its substantial data volume. To address these challenges,
researchers have extensively explored various strategies to optimize the use of limited
transmission bandwidth while maintaining high-quality video delivery. Traditional video
compression techniques remain the most commonly employed approach [2,3]; however,
these methods often require redundant coding, which not only increases computational
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complexity but also adds unnecessary redundancy to the compressed data stream, thereby
diminishing overall transmission efficiency [4]. To address the high data volume inherent in
video transmission, media practitioners have developed applications that leverage Device-
to-Device (D2D) communication to offload cellular network traffic, thereby alleviating the
burden on the downlink transmission of operational networks. From this perspective, refer-
ence [5] reported a 30% performance gain for users. References [6,7] addressed the uplink
allocation challenge for video streams by iteratively optimizing the application layer’s
bandwidth allocation strategy. This line of research and development aims to circumvent
challenges at the operational layer, yet it does not address the underlying issue of exces-
sive data volume. An innovative approach to video transmission involves compressive
sensing [8], which combines data compression and acquisition into a unified process. S.
Zheng et al. proposed an efficient video-uploading system based on compressive sensing
for terminal-to-cloud networks [9]. L. Li et al. developed a new compressive sensing
model and corresponding reconstruction algorithm [10], creating an image communication
system for IoT monitoring applications that addresses sensor node transmission resource
constraints. Furthermore, we chose optical wireless communication (OWC) as our transmis-
sion medium [11-13] because of its advantages, such as high transmission speed, abundant
spectrum availability, and strong security features [14,15]. N. Cvijetic et al. combined
Low-Density Parity-Check (LDPC) coding with channel interleaving in OWC video trans-
mission experiments, evaluating the improvement effects of this coding structure on video
transmission [16]. Z. Hong et al. proposed a residual distribution-based source-channel
coding scheme, enhancing the channel error resistance in video transmission, achieving a
Bit Error Rate (BER) of 0.0421 in underwater OWC video transmission experiments.

In this paper, we present an adaptive block sampling compressed sensing algorithm
that refines the traditional sampling rate allocation mechanism by integrating image
saliency features. The simulation results demonstrate that the proposed algorithm en-
hances the peak signal-to-noise ratio (PSNR) of reconstructed images by more than 3 dB
compared to conventional methods, with corresponding improvements in the structural
similarity index (SS5IM) ranging from 1% to 6%. To further evaluate the algorithm’s perfor-
mance in optical wireless video transmission, we developed a spatial optical wireless video
transmission system utilizing space laser communication technology. The system employs
Artix-7 series field programmable gate array (FPGA) chips to implement the optical video
transceiver circuit, incorporating optical antennas, Avalanche Photo Diode (APD) receivers,
erbium-doped fiber amplifiers (EDFA), and other essential components for conducting
spatial optical video transmission experiments. The optical signal transmission was carried
out using the Giga Transceiver Protocol (GTP), achieving transmission rates between 0.8
and 6.6 Gbps. Experimental findings reveal that the proposed algorithm improves PSNR
by over 1.5 dB and SSIM by more than 1%, thus confirming its effectiveness in optimizing
the quality of reconstructed images.

2. Design and Principle

The algorithm initially performs block-by-block compressed sensing processing on
the input image I with an adaptive sampling rate based on the saliency information of
different image blocks. We utilize a fixed-size block and an adaptive block sampling rate
mechanism for compressed sensing processing. The traditional block-based compressed
sensing algorithm [17] applies a fixed sampling rate to different blocks. Figure 1 illustrates
an example of a natural image divided into 4 x 4 blocks. The amount of information
contained in different blocks in the figure is obviously different. Some blocks contain
complex elements such as buildings, clouds, and plants, while most others consist primarily
of a simple sky background with minimal data. When different blocks are sampled at
a fixed rate, blocks with large amounts of information will be undersampled, leading
to insufficient image reconstruction quality, while blocks with less information will be
oversampled, resulting in redundant use of storage resources. In the actual block-based
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compressed sensing algorithm, more image blocks are generated, further amplifying the
differences in information content across the blocks.

-

Figure 1. Image segmentation diagram.

To enable adaptive sampling across different blocks, this paper introduces saliency
information [18] as the foundation for determining the sampling rate allocation of each
block. We proposed an Adaptive Block Sampling (ABS-SPL) compressed sensing algorithm
based on the SPL algorithm [19]. The basic architecture of this approach is illustrated in
Figure 2.
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Figure 2. Adaptive block sampling compressed sensing algorithm flow.

First, a saliency model for the image is constructed using a multi-scale spectral resid-
ual approach. The Spectral Residual (SR) technique serves as an analytical method that
efficiently identifies salient regions by extracting and integrating frequency domain infor-
mation. The theoretical foundation of this method posits that the logarithmic spectrum
of the spectral amplitude, obtained through the Fourier transform of the image, follows
a linear distribution trend. This consistent statistical pattern is indicative of the image’s
inherent redundancy. By eliminating the redundant components from the logarithmic
spectrum and retaining only the differential information, it becomes possible to accurately
identify salient regions within the image. The following section elaborates on the detailed
implementation steps of the multi-scale spectral residual analysis model.

Given an image I, the Gaussian pyramid method is applied to generate L images of
I5,6 =1,...,L at different scales based on the original image. A Fourier transform is then
performed on I;(x,y) to obtain the amplitude spectrum As(u, v) and the phase spectrum
Ps(u,v) at these L scales,

_(j27tux j2moy

N L T " 9s(00)
Fs(u,v) = VN Zl Zl Ij(x,y)e M N = Ag(u,v)eibs(
x=1ly=
As(u,0) = [R2(,0) + [2(u,0)]"/ : 1)

Is(u,0) )

Ps(u,v) = arctan( Ry (1,0)
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A logarithmic operation is performed on the amplitude spectrum As(u, v) to obtain
the logarithmic amplitude spectrum Ls(u,v),

Ls(u,v) = 1g[As(u,v)]. 2

The logarithmic amplitude spectrum L;(u, v) is mean filtered (5 x 5 filter domain) to
obtain Ls(u,v), and then compared with the logarithmic amplitude spectrum Ls(u, v), the
spectral residual E;(u, v) at L scales is obtained, respectively,

Es(u,v) = Ls(u,v) — Ls(u,0). (3)

Combine Es(u,v) and ¢s5(u, v), then perform an inverse Fourier transform to obtain
I5(x,y). Subsequently, apply a Gaussian filter g(x,y) to I§(x,y) to produce the significant
feature maps S; at L scales.

F§(u,0) = exp[Es(u,v) + ¢s(u,v)]
N j2mux  j27toy

Y Euwo)e M N - @

1ov=1

Ss(x,y) = Ii(x,y) * g(x,y)

1
Ig(x,y) = MN

M=

u

The salient feature maps S; at different scales are combined using a fusion algorithm
to generate the final saliency map S. The fusion weight w; is determined by the square
of the contrast difference between the salient areas in the saliency feature map and the
entire image. Finally, binary segmentation is applied to the final saliency map to obtain
templates for salient and non-salient areas, which are then used to allocate compressed
sensing sampling rates. The final result of the salient image processing is presented in
Figure 3.

ws = [fMax(sé) _fMeun(SJ)]2/5 =12,...,L

L
S= ¥ (ws x Sy)
5=1

®)

(d)

Figure 3. Saliency map acquisition; (a) original image; (b) saliency map obtained in Gaussian domain

7 x 7; (c) saliency map obtained in Gaussian domain 5 x 5; (d) saliency map obtained in Gaussian
domain 3 x 3.

The salient signal of an image represents the amount of information contained within
the image, and the quantity of salient signals in each block indicates the distribution
of image features. A high distribution of salient pixel signals indicates that the block
contains a substantial amount of features, typically corresponding to the textured regions
of the image. Conversely, a smaller number of salient pixels represents regions with fewer
distinct features, usually corresponding to smoother blocks in block-based compressed
sensing. Therefore, the saliency of an image can serve as a metric for pixel activity, with the
complexity of the image block’s texture quantified by the amount of salient signals. This
allows for a reasonable allocation of the sampling rate based on these factors. The following
section introduces the specific implementation method of block adaptive sampling.
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We conducted experiments using a 256 x 256 resolution image, with a block size of
16 x 16 pixels and 256 bytes of information per data block. The image was then sampled
based on these parameters

Let p; = B represent the proportion of significant signals in the image blocks, Where
s; denotes the number of salient pixels within the block, and B; represents the total number
of pixels in the block and then determine the adaptive sampling rate r; for each image block
based on the salient image,

r= (R - Rmin) n- pz ©6)

Z pi + Rmm

i=1

Through calculation, the difference det between the current adaptive sampling rate
mean and the total sampling rate is obtained, allowing for the determination of the final
sampling rate 7;,

M:

det = R — mean(y r;). (7)

i=1

#i = r; + det. 8)

Here, R represents the total sampling rate, Rynin denotes the minimum sampling rate
threshold, det indicates the difference between the mean adaptive sampling rate and the
total sampling rate, and n represents the number of image blocks.

To ensure that the adaptive sampling rate does not fall below an acceptable level, the
minimum sampling rate threshold is specifically defined as follows,

_ [R/2,0<R<01
Runin {0.05, 01<R<1 ©)

Based on the sampling rate array » = {rq, 1y, ..., 1, } for each block, the size M; x M;
of the sampling matrix is first determined.

M; = round(sqrt(r; x N?)). (10)

where N; is a fixed block size. According to the size of each block sampling matrix, a
discrete cosine transform algorithm is used to generate a sparse matrix, and finally, a
sampling matrix array ¢ = {¢1, ¢2,..., ¢n} is generated. The image is compressed based
on the sampling matrix, and the final compressed data ¢ = {¢1, ¢2,..., ¢» } is obtained by
data splicing.

After receiving the data, even if the bytes are not received completely, the receiving
end can restore the block grouping of the data through the relative position relation-
ship of the frame header, frame tail, and row number to obtain the compressed data
7 = {J1,¥2,...,Jn}. Using the known sampling matrix and sampling rate matrix, the
image reconstruction can be completed. The reconstruction algorithm of BCS-SPL couples
the complete image Wiener filter smoothing processing with the sparsity enhancement
threshold processing in the domain of the complete image sparse transformation and uses
the Landweber method to iterate between smoothing and threshold operations. The recon-
struction algorithm in this paper is based on the same principle as BCS-SPL. The Landweber
iterative steps are used for blocks at different sampling rates, and the measurement matrix
@; based on the current block is used. The specific reconstruction process is as Table 1:
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Table 1. Adaptive block sampling compressed sensing image reconstruction process.

Function
T =Re(¥, {@i1<i<n} ¥)
for each block i
~(0 ~
x,( ) = quTyi
j=0
do

x\) = Block DWT1(z())
0 = Wiener(x(f))

=2

2 = Block_DWT(21))

for each block i
N 7 — g2V
=20+ ol 7 - W‘z‘]?)
) — qoBlock_DWT_l(?%E]))

x0) = Threshold(f(j))
7 = Block_DWT-1(x())
For each block i
=30+ ol (7 - iF))
pU+1) — | zG+1) _ 30
j=i+1 i

Until’D(f) _ DU*U’ <102

%=z

The aforementioned calculation process represents a 2D image reconstruction algo-
rithm based on adaptive sampling rate block compressed sensing. In this context, Wiener(.)
refers to a Wiener filter that adapts pixel-by-pixel using a 3 x 3 neighborhood, while Thresh-
old(.) denotes the threshold processing within the BCS-SPL algorithm. The application of
this algorithm results in the accurate reconstruction of the image.

3. Results
3.1. Simulation Analysis

We utilize the SPL algorithm, the 2DCS algorithm, and the MS-SPL-DDWT algorithm
as benchmarks for comparison. The SPL algorithm [19], a classical block compressed
sensing approach, combines Wiener smoothing with Landweber iteration, offering superior
processing performance. The 2DCS algorithm [20] is an encryption-then-compression
(ETC) approach that enhances the error correction capability of reconstruction through
its encryption process. In addition to enhancing the confidentiality of information trans-
mission, it also significantly optimizes the overall quality of the reconstructed image. The
MS-SPL algorithm [21] allocates appropriate sampling rates to the wavelet coefficients of
images at different scales, significantly enhancing the reconstruction quality compared to
previous methods. We selected these three algorithms for comparison with the algorithm
proposed in this paper, utilizing PSNR, SSIM, gradient magnitude similarity deviation
(GMSD), and normalized root mean square error (NMSE) as evaluation metrics. The PSNR
metric [22] quantifies the peak error between the reconstructed image and the original
image, providing a measure of the data discrepancy between the two images. The SSIM
metric [23] evaluates the similarity between the reconstructed image and the original image
by considering three key aspects: brightness, contrast, and structure. Elevated values of
these two parameters reflect an improved quality of image reconstruction. The NMSE
metric [24] and GMSD metric [25] serve as error metrics that quantify the discrepancies
between the original and reconstructed images. Lower values for these two metrics indicate
a better reconstruction quality. After conducting simulations, the test results are as follows:
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As illustrated in Figure 4a—d, using a sampling rate of 0.5 as an example, the PSNR of
the reconstruction result achieved by the algorithm proposed in this paper exceeds 41 dB,
which is approximately 3 dB higher than that of other algorithms. From the perspective of
the SSIM index, the reconstruction result of the algorithm proposed in this paper is slightly
higher than that achieved by the MS-SPL algorithm. The results of these two algorithms
are close to 98%, which is over 2% higher than those of the other algorithms. Regarding
the two error parameters, NMSE and GMSD, in the low sampling rate range (0.1-0.3),
the algorithm proposed in this paper outperforms other algorithms significantly, with
error rates generally 1-6% lower than those of the other methods. As the sampling rate
increases, the reconstruction results of the MS-SPL algorithm gradually converge, but its
error remains slightly higher than that of the algorithm proposed in this paper. Analysis
indicates that the algorithm proposed in this paper offers substantial enhancements in
image reconstruction quality, particularly at lower sampling rates. By efficiently allocating
sampling rates across different blocks, the algorithm improves data utilization efficiency
and assigns higher subsampling rates to blocks containing more complex scenes. For more
detailed data on Figure 4, please refer to Tables A1l and A2 in Appendix A.
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Figure 4. Comparison of reconstructed image results: (a) PSNR index statistics of the reconstructed im-
age, (b) SSIM index statistics of the reconstructed image, (c) NMSE index statistics of the reconstructed
image, and (d) GMSD index statistics of the reconstructed image.

3.2. Optical Wireless Video Transmission Experiment

We utilized the Artix-7 series FPGA chip as the processor to design a spatial optical
wireless video transmission system. As depicted in Figure 5, the compressed sensing
algorithm is first employed on the PC to process the image sequence on a frame-by-
frame basis. Subsequently, the compressed image sequence is transmitted to the device
transmitter as a video stream via Camera-Link. After the FPGA captures the video
stream frame by frame, the image data are internally cached and encoded. The opto-
electronic transceiver module (Small Form Pluggable, SFP, manufactured by Shenzhen
XYT-Tech Co., Ltd., Shenzhen, China) subsequently converts the electrical signal into an
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optical signal. This optical signal is then amplified by an EDFA before being transmitted
through the optical system. At the receiving end, an APD detector module serves as
the optical signal receiver. The collected optical signal is conveyed to the SFP optical
module on the receiving FPGA board via the optoelectronic conversion module. The
FPGA then converts the image into a Camera-Link video stream, which is sent to the
PC for frame-by-frame reconstruction. Ultimately, the reconstructed image sequence is
compiled into a video. We utilized the Artix-7 series 7a100t-fgg484 model FPGA as the
main control chip and set the GTP transmission rate to 1.25 Gbps for the experiment.
To ensure the equipment’s lightness and miniaturization, we opted for a highly inte-
grated modular EDFA (BG-EDFA-M3-C1-N-15dBm, 0.95M-1m-FC/APC, manufactured
by BEOGOLD Technology Co., Ltd., Xiamen, China). For the APD module, we selected
the LSIAPDT-5200 InGaAs APD detector (manufactured by Lightsensing Co., Ltd., Bei-
jing, China), which offers a superior response at the 1550 nm wavelength. The optical
system incorporated a transmissive optical antenna with a 1550 nm communication band
and a 25 mm aperture.

Restruction
video frame

Origrinal
video frame

S image
/
1’“ Restruction

Camera-Link

CS image
Compress

Anlenna

- : & /x
Optical Wireless APD
Tramw
Optical /'
Anlenna
APD /v‘

Figure 5. Principle of space optical wireless video transmission.

Figure 6 depicts the spatial optical wireless video transceiver prototype constructed
based on the design principles outlined in Figure 5, which was used to conduct a dual-end
video data transmission experiment in an atmospheric environment. Figure 6a presents the
overall front view of the device, while Figure 6b illustrates the external interface from the
rear. Figure 6¢,d provide schematic representations of the device connections during the
spatial optical wireless video transceiver experiment. The device is equipped with GTP
high-speed transceivers, an RJ45 Gigabit Ethernet interface, and an SDR26 Camera-Link
video transceiver interface. The optical signal transceiver supports rates ranging from 0.8 to
6.6 Gbps, thereby fulfilling the requirements for processing and converting spatial optical
wireless video transceiver input from various interfaces.

A video sequence consisting of 500 frames was captured and processed using the four
algorithms previously compared on the PC. A spatial optical wireless video transmission
experiment was then conducted over a terminal distance of 20 m. We conducted a series of
experiments on video transmission utilizing varying frame rates, revealing that alterations
in frame rate did not produce a statistically significant effect on video quality metrics.
Following calibration, a spatial optical power meter was used to measure the transmitter’s
optical power, which was recorded as 9.3 dBm, while the APD receiver’s optical power
was measured at —24.7 dBm. The sampling rate for the compressed sensing algorithm was
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uniformly set to 0.5, and the PSNR and SSIM metrics of the reconstruction results were
statistically analyzed on a frame-by-frame basis. The experimental results are presented in
Figure 7.

Figure 6. Space optical wireless video transmission experiment; (a) diagram 1 of spatial optical
wireless video transmission system; (b) diagram 2 of spatial optical wireless video transmission
system; (c) diagram 1 of setup for spatial optical wireless video transmission experiment; (d) diagram

2 of setup for spatial optical wireless video transmission experiment.

- 090

100

200 300 400 500 100 200 300 400 500
Frame number Frame number

Figure 7. Optical wireless transmission reconstruction results of video generated from a total
of 500 frame image sequences: (a) PSNR index statistics (average value of the reconstructed im-
age for each frame: APS-SPL = 38.56 dB, MS-SPL = 36.97 dB, 2DCS = 36.33 dB, SPL = 32.98 dB),
(b) SSIM index statistics (average value of the reconstructed image for each frame: APS-SPL = 0.9755,
MS-SPL = 0.9638, 2DCS = 0.957, SPL = 0.9168).

Figure 7a demonstrates that the proposed algorithm performs effectively in spatial op-
tical wireless video transmission, with its reconstruction results showing a PSNR generally
more than 1.5 dB higher than those of the other algorithms. Similarly, Figure 7b indicates
that the proposed algorithm achieves SSIM values that are generally over 1% higher than
those of the comparison algorithms, thereby delivering superior video reception quality.
For more detailed data on Figure 7, please refer to Table A3 in Appendix A.

4. Summary and Discussion

This paper introduces a compressed sensing algorithm with an adaptive block
sampling rate, wherein the sampling rate for each block is determined based on the
proportion of significant information within the image blocks. This method enhances
the quality of compressed sensing reconstructed images while maintaining the same
data volume. Evaluation using image quality metrics reveals improvements of over 3 dB
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in PSNR and more than 2% in SSIM. Additionally, the NMSE and GMSD metrics are
reduced by 1% to 6%. A spatial optical wireless video transceiver system, based on an
FPGA master chip, was designed, and natural target video transmission experiments
were conducted using 500 frames of image sequences processed by the proposed al-
gorithm. The experimental results demonstrate that the algorithm maintains superior
image transmission performance in spatial optical wireless video transmission, with
PSNR improved by more than 1.5 dB and SSIM by over 1%. Furthermore, the spatial
optical video transmission system developed in this study exhibits excellent integra-
tion and cost efficiency, offering significant practical and commercial value. In future
research, the transmission rate and operational range of the communication system can
be further enhanced by optimizing the optical aperture and hardware configuration.
These improvements will facilitate the development of an outdoor long-range wireless
image transmission system.
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Abbreviations

FPGA  field programmable gate array.
D2D Device-to-Device.

LDPC  Low-Density Parity-Check.
BER Bit Error Rate.

PSNR  peak signal-to-noise ratio.
SSIM structural similarity index.
APD Avalanche Photo Diode.

EDFA  erbium-doped fiber amplifier.

GTP Giga Transceiver Protocol.
SR Spectral Residual.
ETC encryption-then-compression.

GMSD  gradient magnitude similarity deviation.
NMSE normalized root mean square error.
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Appendix A. Summary Table of Simulation and Experimental Results

Table Al. Summary of simulation results PSNR (dB) and SSIM index.

Sampling Rate BCS-SPL 2DCS MS_SPL_DDWT ABS-SPL

- PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
0.1 24.66 0.714 26.65 0.774 30.81 0.931 31.90 0.936
0.2 27.65 0.811 30.52 0.869 32.96 0.945 33.26 0.944
0.3 29.66 0.862 33.34 0.915 33.02 0.950 34.91 0.954
0.4 31.28 0.896 35.78 0.940 37.21 0.966 37.48 0.966
0.5 32.99 0.924 37.57 0.954 38.40 0.971 41.15 0.978
0.6 34.71 0.945 39.18 0.965 39.78 0.977 43.04 0.985
0.7 36.96 0.964 40.34 0.970 41.47 0.983 45.27 0.989
0.8 39.72 0.979 40.94 0.972 43.52 0.988 47.44 0.993

Table A2. Summary of simulation results NMSE and GMSD index.

Sampling Rate BCS-SPL 2DCS MS_SPL_DDWT ABS-SPL

- NMSE GMSD NMSE GMSD NMSE GMSD NMSE GMSD
0.1 0.0126 0.12 0.008 0.10 0.0025 0.020 0.0024 0.014
0.2 0.0063 0.084 0.0033 0.054 0.0022 0.018 0.0017 0.01
0.3 0.004 0.060 0.0017 0.030 0.0019 0.016 0.0012 0.007
0.4 0.0027 0.042 0.001 0.019 7 x 1074 0.005 6.5 x 1074 0.004
0.5 0.0018 0.031 6 x 1074 0.012 5x 1074 0.003 3x 1074 0.0026
0.6 0.0012 0.019 4 x107* 0.008 4x1074 0.002 1x 1074 0.002
0.7 7 x 1074 0.012 3x 1074 0.006 3x 1074 0.0016 1x104 0.0013
0.8 4x1074 0.006 3x107% 0.003 2 x 1074 0.001 66 x107° 82x 1074

Table A3. Summary of average values of optical video transmission indicators.

Index BCS-SPL 2DCS MS_SPL_DDWT ABS-SPL
PSNR 32.98 dB 36.33 dB 36.97 dB 38.56 dB
SSIM 0.9168 0.957 0.9638 0.9755
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