High-Linearity Dual-Parallel Mach–Zehnder Modulators in Thin-Film Lithium Niobate
Abstract
:1. Introduction
2. Device and Principle
2.1. Device Configuration
2.2. Nonlinearity Evaluation
3. Optimization of Modulation Efficiency and Linearity
3.1. Optimization of Modulation Efficiency
3.2. Optimization of Modulation Linearity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.J.; Lončar, M. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 2021, 13, 242–352. [Google Scholar] [CrossRef]
- Schmidt, R.V.; Kaminow, I.P. Metal-diffused optical waveguides in LiNbO3. Appl. Phys. Lett. 1974, 25, 458–460. [Google Scholar] [CrossRef]
- Jackel, J.L.; Rice, C.E.; Veselka, J.J. Proton exchange for high-index waveguides in LiNbO3. Appl. Phys. Lett. 1982, 41, 607–608. [Google Scholar] [CrossRef]
- Wu, R.; Wang, M.; Xu, J.; Qi, J.; Chu, W.; Fang, Z.; Cheng, Y. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials 2018, 8, 910. [Google Scholar] [CrossRef]
- Wolf, R.; Breunig, I.; Zappe, H.; Buse, K. Scattering-loss reduction of ridge waveguides by sidewall polishing. Opt. Express 2018, 26, 19815–19820. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Zheng, Y.; Chen, X. On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide. J. Light. Technol. 2019, 37, 1296–1300. [Google Scholar] [CrossRef]
- Zhang, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 2017, 4, 1536–1537. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef]
- He, M.; Xu, M.; Ren, Y.; Jian, J.; Ruan, Z.; Xu, Y.; Cai, X. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 2019, 13, 359–364. [Google Scholar] [CrossRef]
- Guo, Q.; Gutierrez, B.K.; Sekine, R.; Gray, R.M.; Williams, J.A.; Ledezma, L.; Marandi, A. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 2023, 382, 708–713. [Google Scholar] [CrossRef]
- Chen, J.Y.; Ma, Z.H.; Sua, Y.M.; Li, Z.; Tang, C.; Huang, Y.P. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 2019, 6, 1244–1245. [Google Scholar] [CrossRef]
- Zhang, M.; Buscaino, B.; Wang, C.; Shams-Ansari, A.; Reimer, C.; Zhu, R.; Lončar, M. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 2019, 568, 373–377. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, C.; Rüsing, M.; Mookherjea, S. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett. 2020, 124, 163603. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Tang, S.; Raible, D.E. A prototype high-speed optically-steered X-band phased array antenna. Opt. Express 2013, 21, 32599–32604. [Google Scholar] [CrossRef] [PubMed]
- Mirshafiei, M.; LaRochelle, S.; Rusch, L.A. Optical UWB waveform generation using a micro-ring resonator. IEEE Photonics Technol. Lett. 2012, 24, 1316–1318. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, L.; Lu, L.; Guo, Y.; Chen, J. Phase-coded microwave signal generation based on a segmented silicon Mach–Zehnder modulator. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 3500108. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhou, L.; Zhou, Y.; Xia, Y.; Liu, S.; Lu, L.; Wang, X. Microwave frequency upconversion employing a coupling-modulated ring resonator. Photonics Res. 2017, 5, 689–694. [Google Scholar] [CrossRef]
- Long, Y.; Zhou, L.; Wang, J. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator. Sci. Rep. 2016, 6, 20215. [Google Scholar] [CrossRef]
- Valley, G.C. Photonic analog-to-digital converters. Opt. Express 2007, 15, 1955–1982. [Google Scholar] [CrossRef]
- Gutierrez, A.M.; Sanchis, P.; Brimont, A.; Thomson, D.J.; Gardes, F.Y.; Reed, G.T.; Vidal, B. A photonic microwave filter based on an asymmetric silicon Mach-Zehnder modulator. IEEE Photonics J. 2013, 5, 5501006. [Google Scholar] [CrossRef]
- Sun, Q.; Zhou, L.; Lu, L.; Zhou, G.; Chen, J. Reconfigurable high-resolution microwave photonic filter based on dual-ring-assisted MZIs on the Si3N4 platform. IEEE Photonics J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Kharel, P.; Reimer, C.; Luke, K.; He, L.; Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 2021, 8, 357–363. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, Y.; Pittalà, F.; Tang, J.; He, M.; Ng, W.C.; Cai, X. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 2022, 9, 61–62. [Google Scholar] [CrossRef]
- Feng, H.; Ge, T.; Guo, X.; Wang, B.; Zhang, Y.; Chen, Z.; Wang, C. Integrated lithium niobate microwave photonic processing engine. Nature 2024, 627, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Marpaung, D.; Roeloffzen, C.; Heideman, R.; Leinse, A.; Sales, S.; Capmany, J. Integrated microwave photonics. Laser Photonics Rev. 2013, 7, 506–538. [Google Scholar] [CrossRef]
- Song, M.; Zhang, L.; Beausoleil, R.G.; Willner, A.E. Nonlinear distortion in a silicon microring-based electro-optic modulator for analog optical links. IEEE J. Sel. Top. Quantum Electron. 2009, 16, 185–191. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, H.; Jin, H.; Qi, T.; Li, Y.; Yang, J.; Jiang, X. Linearity comparison of silicon carrier-depletion-based single, dual-parallel, and dual-series Mach–Zehnder modulators. J. Light. Technol. 2018, 36, 3318–3331. [Google Scholar] [CrossRef]
- Manolatou, C.; Lipson, M. All-optical silicon modulators based on carrier injection by two-photon absorption. J. Light. Technol. 2006, 24, 1433. [Google Scholar] [CrossRef]
- Miller, D.A.; Chemla, D.S.; Damen, T.C.; Gossard, A.C.; Wiegmann, W.; Wood, T.H.; Burrus, C.A. Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect. Phys. Rev. Lett. 1984, 53, 2173. [Google Scholar] [CrossRef]
- Childs, R.B.; O’Byrne, V.A. Multichannel AM video transmission using a high-power Nd: YAG laser and linearized external modulator. IEEE J. Sel. Areas Commun. 1990, 8, 1369–1376. [Google Scholar] [CrossRef]
- Clark, T.R.; Currie, M.; Matthews, P.J. Digitally linearized wide-band photonic link. J. Light. Technol. 2001, 19, 172–179. [Google Scholar] [CrossRef]
- Johnson, L.M.; Roussell, H.V. Reduction of intermodulation distortion in interferometric optical modulators. Opt. Lett. 1988, 13, 928–930. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhang, K.; Sun, W.; Ren, Y.; Zhang, Y.; Zhang, W.; Wang, C. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res. 2022, 10, 2366–2373. [Google Scholar] [CrossRef]
- Betts, G.E. Linearized modulator for suboctave-bandpass optical analog links. IEEE Trans. Microw. Theory Tech. 1994, 42, 2642–2649. [Google Scholar] [CrossRef]
- Korotky, S.K.; De Ridder, R.M. Dual parallel modulation schemes for low-distortion analog optical transmission. IEEE J. Sel. Areas Commun. 1990, 8, 1377–1381. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Liu, J.; Tan, S.; Lu, Q.; Guo, W. Low Vπ thin-film lithium niobate modulator fabricated with photolithography. Opt. Express 2021, 29, 6320–6329. [Google Scholar] [CrossRef]
- Wang, R.; Gao, Y.; Wang, W.; Zhang, J.; Tan, Q.; Fan, Y. Suppression of third-order intermodulation distortion in analog photonic link based on an integrated polarization division multiplexing Mach–Zehnder modulator. Opt. Commun. 2020, 475, 126253. [Google Scholar] [CrossRef]
Symbol | Quantity | Value |
---|---|---|
Detector Load | ||
Detector Responsivity | ||
Laser Power |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Cai, L.; Huang, Z.; Zhang, L. High-Linearity Dual-Parallel Mach–Zehnder Modulators in Thin-Film Lithium Niobate. Photonics 2024, 11, 987. https://doi.org/10.3390/photonics11100987
Yang T, Cai L, Huang Z, Zhang L. High-Linearity Dual-Parallel Mach–Zehnder Modulators in Thin-Film Lithium Niobate. Photonics. 2024; 11(10):987. https://doi.org/10.3390/photonics11100987
Chicago/Turabian StyleYang, Tao, Lutong Cai, Zhanhua Huang, and Lin Zhang. 2024. "High-Linearity Dual-Parallel Mach–Zehnder Modulators in Thin-Film Lithium Niobate" Photonics 11, no. 10: 987. https://doi.org/10.3390/photonics11100987
APA StyleYang, T., Cai, L., Huang, Z., & Zhang, L. (2024). High-Linearity Dual-Parallel Mach–Zehnder Modulators in Thin-Film Lithium Niobate. Photonics, 11(10), 987. https://doi.org/10.3390/photonics11100987