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Abstract: Microwave photonic (MWP) systems are inseparable from conversions of microwave
electrical signals into optical signals, and their performances highly depend on the linearity of electro-
optic modulators. Thin-film lithium niobate (TFLN) is expected to be an ideal platform for future
microwave photonic systems due to its compact size, low optical loss, linear electro-optic effect, and
high bandwidth. In this paper, we propose a TFLN modulator with a low voltage–length product
(VπL) of 1.97 V·cm and an ultra-high-linearity carrier-to-distortion ratio (CDR) of 112.33 dB, using a
dual-parallel Mach–Zehnder interferometer configuration. It provides an effective approach to fully
suppress the third-order intermodulation distortions (IMD3), leading to 76 dB improvement over a
single Mach–Zehnder modulator (MZM) in TFLN. The proposed TFLN modulator would enable
a wide variety of applications in integrated MWP systems with large-scale integration, low power
consumption, low optical loss, and high bandwidth.

Keywords: linearity; Mach–Zehnder modulators; thin-film lithium niobate; integrated microwave
photonic systems

1. Introduction

For decades, lithium niobate (LiNbO3, LN) has been one of the most versatile and
attractive multifunctional optical materials, owing to its wide transparent windows, low
intrinsic absorption, and exceptional electro-, nonlinear-, and acousto-optic properties [1].
Conventional LN photonic devices are based on low-index-contrast waveguides commonly
formed by titanium in-diffusion [2] and proton exchange process [3]. However, these
conventional LN optical waveguides are relatively bulky compared with modern integrated
platforms, such as silicon photonics, which impedes scalability and leads to high power
consumption for electro-optic (EO) devices. The high-quality TFLN fabricated by ion slicing
and wafer bonding enables high-index-contrast and low-loss wave-guides with strong
optical confinements [4–7]. In recent years, a variety of integrated photonic devices have
been developed on the TFLN platform with higher performance [8–13] compared with
traditional bulk LN devices.

MWP systems achieve the generation, transmission, and processing of microwave
signals in the optical domain by virtue of the high bandwidth, low transmission loss, and
anti-electromagnetic interference of optical components. A variety of key components of
MWP systems have been realized such as microwave photonic phased arrays [14], ultra-
wideband waveform generators [15–18], photonic analog-to-digital converter [19], photonic
microwave filters [20,21], and so on. Moreover, integrated microwave photonic systems
with small size, low power consumption, low cost, and high stability can be further realized
by integrating discrete optoelectronic devices on a chip. EO modulators stand as one of
the most important components in the MWP link, and TFLN modulators are attractive for
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developing integrated MWP systems due to their ultra-high bandwidths beyond 100 GHz,
CMOS-compatible drive voltages, and low optical losses [8,9,22,23].

In MWP links, the nonlinearities of EO modulators can introduce additional higher-
order harmonics and intermodulation distortions to the signals [24,25]. Modulation lin-
earity is often quantified as spurious free dynamic range (SFDR) [25] or CDR [26]. As LN
possesses linear electric-optic effect (also called Pockels effect), linearizing a LN modulator
is much simpler and more robust than linearizing a silicon (Si) or indium phosphide (InP)
modulator [27], which involves intrinsically nonlinear modulation mechanisms [28,29].
Therefore, one just needs to compensate for the nonlinear transfer function of a simple
Mach–Zehnder interferometer (MZI) in LN. In order to linearize MZM, a lot of methods
have been developed in both the electrical domain and the optical domain. Traditional
linearization methods in the electrical domain require relatively complex equipment for
electronic control [30,31]. Linearization strategies in the optical domain generally include
dual-polarization control [32], microring-assisted MZI (RAMZI) [33], and dual-series [34]
and dual-parallel [35] MZMs. These methods directly eliminate IMD3 in modulators by
regulating the characteristics of light, greatly improving the linearity without affecting
electrical signals and requiring additional nonlinearity compensation equipment. Tradi-
tional high-linearity LN modulators based on dual-series and dual-parallel MZMs have
been demonstrated with an ultra-high SFDR of 132 dB·Hz2/3 [34] and 123.4 dB·Hz2/3 [35],
respectively. On the TFLN platform, RAMZI with a high SFDR of 120.04 dB·Hz4/5 has been
demonstrated [33]. However, the EO bandwidth of RAMZI is constrained by the photon
lifetime of a ring resonator, so the amplitude of the first-order harmonic (FH) component
and CDR value drop at high radio frequency (RF). The operating wavelength bandwidth is
also narrow at the Fano resonance [33]. The dual-series and dual-parallel MZMs are rela-
tively simple and effective to achieve high linearity, EO bandwidth, and optical bandwidth,
but neither has been demonstrated on the TFLN platform.

In this paper, we apply the dual-parallel MZM configuration to TFLN modulators to
achieve high linearity. Modulation efficiency is optimized first to achieve a low VπL of 1.97
V·cm. Furthermore, simulation results show that IMD3 can be completely suppressed by
controlling splitting ratios of optical and RF signals. Meanwhile, the dual-parallel MZM
has a CDR of 112.33 dB, which is 76 dB higher than that of a single MZM with the same
modulation efficiency.

2. Device and Principle
2.1. Device Configuration

Figure 1 shows our proposed dual-parallel MZM on TFLN. The third-order nonlin-
earities of two MZMs can cancel each other out by controlling splitting ratios of optical
and RF signals [35]. To maximize modulation efficiency, the proposed structure is based
on a 600 nm thick x-cut TFLN, sitting on top of a 4.7 µm thick SiO2 layer. The input light
propagates along the y-axis of LN and is equally split into two arms by a 1 × 2 multimode
interferometer (MMI) and then combined by a 2 × 2 MMI. A direct current (DC) voltage
induces a phase difference ϕ0 between the two arms to tune the ratio of optical powers
feeding to the two parallel MZMs. The two parallel MZMs both have ground–signal–
ground (GSG) electrode configuration and share a common ground electrode to reduce
footprint. The normalized optical power feeding to the sub-MZM can be calculated as
β = (1 + sin ϕ0)/2 [27]. The RF signal, vrf, is split into two sub-MZMs with a power ratio
of γ : (1− γ). The two RF signals are combined with their respective DC bias voltages,
VDC, by bias-tees before driving the two MZMs. Therefore, MZM1 and MZM2 are driven
by different RF powers of

√
γvrf and

√
1− γvrf, respectively. The DC bias voltages are

denoted as VDC1 and VDC2. The driving signal induces the phase difference ∆θ(V). When
both MZMs are biased at the quadrature points to maximize the modulation efficiency, i.e.,
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∆θ(VDC1) = π/2, and ∆θ(VDC2) = −π/2, the output optical power of this device is given
by [27]:

Iout =
|E in|2

8

[
2− (1 + sin ϕ0) sin

[
∆θ
(√

γvrf, VDC
)]

+(1− sin ϕ0) sin
[
∆θ
(√

1− γvrf, VDC
)]
]

= |Ein|2
8

 2− (1 + sin ϕ0)
(

∆θ
(√

γvrf, VDC
)
− 1

3! ∆θ3(√γvrf, VDC
))

+(1− sin ϕ0)
(

∆θ
(√

1− γvrf, VDC
)
− 1

3! ∆θ3(√1− γvrf, VDC
))


(1)

Due to the linear EO effect of LN, ∆θ(V) can be simply written as

∆θ(V) =
2π

λ
L∆ne f f (V) =

2π

λ
LkV (2)

where L is the length of EO interaction, ∆ne f f (V) is the change in the effective refractive
index, and k is a constant related to material properties and waveguide geometries.

Photonics 2024, 11, x FOR PEER REVIEW 3 of 10 
 

 

i.e., ( )DC1Δ / 2Vθ π=  , and ( )DC2Δ / 2Vθ π= −  , the output optical power of this device is 
given by [27]: 

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2
0 rf DC

 in
out

0 rf DC

3
2 0 rf DC rf DC

in

3
0 rf DC rf DC

2 1 sin sin Δ ,

8 1 sin sin Δ 1 ,

12 1 sin Δ , Δ ,
3!

8 11 sin Δ 1 , Δ 1 ,
3!

v VE
I

v V

v V v V
E

v V v V

ϕ θ γ

ϕ θ γ

ϕ θ γ θ γ

ϕ θ γ θ γ

  − +   =   + − −   
  − + −    =
  + − − − −  

  

 (1)

Due to the linear EO effect of LN, ( )Δ Vθ  can be simply written as 

( ) 2Δ ( )2 Δ eff VV L LkVnπ πθ
λ λ

==  (2)

where L is the length of EO interaction, Δ ( )effn V  is the change in the effective refractive 
index, and k is a constant related to material properties and waveguide geometries. 

 
Figure 1. Schematic of the dual-parallel MZM in TFLN. 

2.2. Nonlinearity Evaluation 
The nonlinearity of a modulator is typically probed by a technique known as two-

tone test, which utilizes a pair of two closely spaced tones (f1 and f2) to drive the modulator. 
The IMD3 components are at frequencies of 2f1 − f2 and 2f2 − f1. The FH and IMD3 compo-
nents of the modulated optical field can be derived by performing Taylor expansion at the 
corresponding bias point [27]: 

DC

3 5
3 5out out out

FH 0 0 03 5

9 1 25 1cos( ) ( ) cos( )
4 3! 4 5! v V

dI d IA d It v v v t
dv dv dv

ω ω=

    = + +         
 (3)

( )( ) ( )( )
DC

3 5
3 5out out

IMD3 1 2 0 0 1 23 5

3 1 25 1cos 2 ( ) cos 2
4 3! 8 5! v VA td I d It v v

dv dv
ω ω ω ω=

   
− = + −   

   
 (4)

where FHA  and IMD3A  represent the amplitudes of the FH and IMD3 components, re-
spectively, and 0v  denotes the amplitude of the RF signal. 

Figure 1. Schematic of the dual-parallel MZM in TFLN.

2.2. Nonlinearity Evaluation

The nonlinearity of a modulator is typically probed by a technique known as two-tone
test, which utilizes a pair of two closely spaced tones (f 1 and f 2) to drive the modulator.
The IMD3 components are at frequencies of 2f 1 − f 2 and 2f 2 − f 1. The FH and IMD3
components of the modulated optical field can be derived by performing Taylor expansion
at the corresponding bias point [27]:

AFH cos(ωt) = (v0

[
dIout

dv

]
+ 9

4 v3
0

[
1
3!

d3 Iout
dv3

]
+ 25

4 v5
0

[
1
5!

d5 Iout
dv5

]
)

v=VDC
cos(ωt) (3)

AIMD3 cos((2ω1 −ω2)t) = ( 3
4 v3

0

[
1
3!

d3 Iout
dv3

]
+ 25

8 v5
0

[
1
5!

d5 Iout
dv5

]
)

v=VDC
cos((2ω1 −ω2)t) (4)

where AFH and AIMD3 represent the amplitudes of the FH and IMD3 components, respec-
tively, and v0 denotes the amplitude of the RF signal.
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By plugging Equations (3) and (4) into Equation (1), we obtain the amplitude of the
FH and IMD3 components of the dual-parallel MZM.

AFH = 1
8 v0

2π
λ Lk

[
−(1 + sin ϕ0)

√
γ + (1− sin ϕ0)

√
1− γ

]
+

3
64 v3

0(
2π
λ Lk)3

[
(1 + sin ϕ0)(

√
γ)3 − (1− sin ϕ0)(

√
1− γ)

3
] (5)

AIMD3 =
3

32
v3

0(
2π

λ
Lk)

3[
−(1 + sin ϕ0)(

√
γ)3 + (1− sin ϕ0)(

√
1− γ)

3]
(6)

The CDR is defined as

CDR =
PIMD3

PFH
=

RD
2 (PLηAIMD3)

2

RD
2 (PLηAFH)

2 (7)

where PIMD3 and PFH represent RF powers of IMD3 and FH components in the out-
put of the receiver. RD, η, and PL denote the detector load, detector responsivity, and
laser power, respectively. Their typical values, listed in Table 1, are used to calculate the
nonlinear distortion.

Table 1. Link parameters used to evaluate CDR.

Symbol Quantity Value

RD Detector Load 50 Ω

η Detector Responsivity 0.7 A/W

PL Laser Power 0.01 W

3. Optimization of Modulation Efficiency and Linearity
3.1. Optimization of Modulation Efficiency

Figure 2a shows the cross-section of the phase shifter area in the dual-parallel MZM.
The TFLN waveguide has an etching depth, h, of 300 nm and a sidewall angle, θ, of
70 degrees. The 300 nm etching depth can achieve both low bending loss and high modula-
tion efficiency. Figure 2b,c show the simulated electric field (1 V is applied to the electrodes)
and optical TE00 mode, respectively. The electric field changes the refractive index of LN,
thus changing the effective refractive index of the waveguide mode, which can be expressed
as [36]

∆ne f f = −
n3

e r33V
2
· Γ (8)

Γ ≡
s

SLN

Eele(x,z)
V · |Eo(x, z)|2dxdz∫ +∞

−∞

∫ +∞
−∞ |Eo(x, z)|2dxdz

(9)

where ne is the extraordinary index of LN, r33 is the electro-optical coefficient of LN, Eo(x, z)
is the electric field of the optical TE00 mode, and Eele(x, z) is the electric field of the RF
signal along the z-axis. Γ represents the overlap between optical and electrical fields. Thus,
the k in Equation (2) can be calculated by

k = −n3
e r33

2
· Γ (10)

and the VπL, which quantifies modulation efficiency, can be expressed as [36]

Vπ L =
λ

2ne3r33Γ
(11)
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Figure 2. (a) The cross-section of the phase shifter area. (b) RF electric field distribution and (c) electric
field of the optical TE00 mode.

Figure 3 shows the dependence of VπL on waveguide width and the gap between
the electrodes. It can be seen that VπL would be lower with a larger top width, w, of the
ridge waveguide and a narrower gap, G, between the electrodes. Considering the optical
loss caused by electrode absorption, we highlight the relation between w and G (black line)
under the condition that the optical loss is 0.1 dB/cm, and find that the lowest VπL is 1.97
V·cm when w and G are 1.3 µm and 4.6 µm, respectively. The optical loss of 0.1 dB/cm is
almost negligible and thus satisfies the approximation of linearity calculation.
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line of 0.1 dB/cm loss.

3.2. Optimization of Modulation Linearity

Using the optimized geometry of the phase shifter, the value of k can be calculated
according to Equation (2). Then, we can quantitate modulation linearity. Figure 4a,b show
the powers of FH and IMD3 components as a function of optical power splitting ratio,
β, and RF power splitting ratio, γ, respectively. The parameters used in calculation are
as follows: λ= 1550 nm; L = 5 mm; and v0 = 1 V. Because two sub-MZMs operate at the
quadrature bias points of π/2 and −π/2, the DC bias voltages are VDC1 = 1.97 V and
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VDC2 = −1.97 V according to VπL = 1.97 V·cm. Based on the results shown in Figure 4a,b,
the CDR defined in Equation (7) is plotted as a function of γ and β in Figure 4c. It can be
seen that the IMD3 component can be completely eliminated in Figure 4b, which leads to
the high CDR in Fig-ure 4c. However, the FH component can be very weak in Figure 4a,
which produces the low CDR in Figure 4c. Figure 4d illustrates two relationships between γ
and β, corresponding to the conditions that the amplitudes of the FH and IMD3 components
are 0. The values of γ and β should be chosen on the curve of PIMD3 = 0 and away from the
area of PFH approaching 0. Maximum CDRs are marked as white circles in Figure 4c.
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Figure 4. Calculated (a) power of the FH component, (b) power of the IMD3 component, and (c) CDR
at different power splitting ratios. (d) The relationships between RF power splitting ratio and optical
power splitting ratio when the powers of the FH and IMD3 components are 0.

The relationship between the FH power and γ when the IMD3 component is fully
eliminated (blue line in Figure 4d) is plotted in Figure 5a. It can be observed that when
γ = 0.172 and β = 0.914, the IMD3 component is fully eliminated while the FH power and
CDR reach the maximum of −30.76 dBm and 112.33 dB, respectively. When β is 0.914, ϕ0
is 0.976, and the corresponding DC bias voltage is 1.22 V. This point thus can be regarded
as the optimal operation point to obtain the highest modulation linearity. The curve in
Figure 5a is symmetric with respect to the vertical line of γ = 0.5 because of the same
structure of two MZMs. Then, we calculate the FH power for other phase shifter lengths by
taking the same procedure of obtaining the optimum combination of γ and β as mentioned
above. The result is presented in Figure 5b. It can be seen that the optimum values of γ
and β are insusceptible to the length of the phase shifter. On the other hand, the RF power
of the FH components increases as the phase shifter becomes longer. Note that the large
modulation length can also lead to low half-wave voltage but low EO bandwidth [22]. The
length near 5 mm thus represents the optimal modulation length of the dual-parallel MZM.
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To linearize the modulation of the dual-parallel MZM, γ and β should be precisely
set at the optimum values. Considering the difficulty in controlling γ and β exactly at
their optimal values in practice, the power of the FH component, the power of the IMD3
component, and the CDR of the optimized dual-parallel MZM are calculated, while γ and
β deviate from their ideal values, as shown in Figure 6a,c. The CDR of the dual-parallel
MZM falls to ~30 dB, when the variations in γ and β are within ±10%.

Photonics 2024, 11, x FOR PEER REVIEW 7 of 10 
 

 

above. The result is presented in Figure 5b. It can be seen that the optimum values of γ 
and β are insusceptible to the length of the phase shifter. On the other hand, the RF power 
of the FH components increases as the phase shifter becomes longer. Note that the large 
modulation length can also lead to low half-wave voltage but low EO bandwidth [22]. The 
length near 5 mm thus represents the optimal modulation length of the dual-parallel 
MZM. 

  
Figure 5. (a) The relationship between the power of the FH component and the RF power splitting 
ratio under the condition of PIMD3 = 0. (b) The power splitting ratios (both γ and β) and the FH power 
at different phase shifter lengths. 

To linearize the modulation of the dual-parallel MZM, γ and β should be precisely 
set at the optimum values. Considering the difficulty in controlling γ and β exactly at their 
optimal values in practice, the power of the FH component, the power of the IMD3 com-
ponent, and the CDR of the optimized dual-parallel MZM are calculated, while γ and β 
deviate from their ideal values, as shown in Figure 6a,c. The CDR of the dual-parallel 
MZM falls to ~30 dB, when the variations in γ and β are within ±10%. 

  

  

Figure 6. Variations in the powers of FH and IMD3 components of the dual-parallel MZM at a
different (a) RF power splitting ratio and (b) optical power splitting ratio near their optimal values.
(c) Degradations of CDR as the power splitting ratios (both γ and β) deviate from their ideal values.
(d) Performance of the modulation linearity of the single MZM at different phase shifter lengths.

In the experimental system, γ can be controlled by an electric coupler and an adjustable
attenuator [37]. When the attenuator has a typical precision of 0.2 dB in commercially
available components, the CDR falls to 55 dB for the worst deviation, which is marked
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as the dots in Figure 6c. β is controlled by a stabilized DC voltage supply which has a
common precision of 0.1%, and thus its influence on the CDR can be ignored.

Furthermore, we calculate the powers of the FH and IMD3 components of a single
MZM, which has the same dimension as one MZM of the dual-parallel MZM, by taking
the derivatives of its output light, as shown in Figure 6d. The IMD3 component cannot be
suppressed, so the CDR in Figure 6d is much lower than that of the dual-parallel MZM.
The CDR is 36 dB for a 5 mm long phase shifter in the single MZM in Figure 6d, which
is also marked as a black dash-dotted line in Figure 6c for comparison. Therefore, the
dual-parallel MZM has higher modulation linearity than the single MZM by at least 20 dB,
even taking into account the variation in the splitting power in practice.

4. Conclusions

In summary, we demonstrate the design and optimization of a high-linearity dual-
parallel MZM in TFLN platform. The modulator achieves a high CDR of 112 dB by
optimizing the power splitting ratios of RF and optical signals, which is improved by 76 dB
compared with the single MZM. The high linearity is attributed to the compensation of
the IMD3 components induced by two parallel MZMs in this device. Consequently, the
proposed device architecture substantially enhances the linearity of TFLN MZMs, holding
great promise for applications in integrated MWP systems. In the future, we will fabricate
the device proposed in this work and compare its performance with that of the single MZM.
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