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Abstract: A method for achieving the single-mode and efficient unidirectional emission of a whisper-
ing gallery mode (WGM) semiconductor laser is presented herein. Hybrid square-rectangular lasers
(HSRLs) and hybrid square/rhombus-rectangular lasers (HSRRLs) consisting of a Fabry–Pérot (FP)
cavity and a square or rhombus cavity microcavity are described. In addition, a transmitter optical
subassembly (TOSA) based on an HSRRL chip was fabricated, which has a wide and continuous
wavelength tuning range. Wavelength channels from 1555.75 nm to 1568.15 nm with a spacing of
50 GHz were demonstrated with a good side mode suppression ratio (SMSR) and good output power.
These devices have the potential to meet the typical requirements of optical communication networks.

Keywords: whispering gallery mode; microcavity; semiconductor lasers; transmitter optical
subassembly

1. Introduction

Whispering gallery mode (WGM) optical microcavities are types of light-confining
dielectric structures with high quality (Q) factors, small mode volumes, and a capacity for
planar integration. Optical microcavities of various shapes on the wavelength scale have
been developed based on WGM, such as spherical [1,2], micro-disk [3–7], micro-ring [8–10],
and polygon cavities [11]. Semiconductor lasers based on WGM cavities have the potential
to achieve low thresholds and low power consumption due to the advantages of WGM
cavities. Microdisk semiconductor lasers were first demonstrated in 1992 [12], and room-
temperature microcylinder semiconductor lasers in 1993 [13]. Since then, WGM microcavity
lasers have been extensively studied [14–23]. Nevertheless, isotropic emission is an obvious
shortcoming of conventional WGM microcavities, which limits the emission efficiency of
lasers [24]. Optimizing the cavity shape [25–27] or adding local perturbations to the cavity,
such as notches [28], are common approaches to breaking isotropic emission.

The hybrid cavity is a mode-controllable structure that works by coupling multiple
cavities and easy to operate single-mode, which has been developed for decades to be ap-
plied to monolithic semiconductor lasers, such as cleaved-coupled cavities [29], V-coupled
cavities [30,31], double-ring cavities [32,33], two-section Fabry–Pérot (FP) cavities [34], and
multimode interference hybrid cavities [35]. In addition, hybrid cavity structures facilitate
the realization of wavelength-tunable devices based on a square microcavity connected
with an FP cavity [36]. Industrial-grade 25 Gb/s wavelength division multiplexing (WDM)
lasers have been proposed for 5G network systems [37,38]. Wavelength-tunable technology
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is important in optical communication systems, especially for DWDM. Lasers with a wide
tuning capability, covering the C-band and even the L-band, can be a lower-cost alternative
to fixed wavelength lasers of different channels, thus reducing the inventory cost of DWDM
lasers. In addition, the next-generation passive optical network stage 2 (NG-PON2) features
multiwavelength channels, in which tunable transceiver technology is widely demanded in
subscriber optical network units (ONUs) [39]. In addition to hybrid cavity lasers, a variety
of tunable lasers with different structures have been developed, such as external cavity
lasers (ECLs) [40], DFB laser arrays [41], and DBR lasers [42,43].

In this paper, we provide a review of a hybrid cavity semiconductor laser composed
of a square cavity directly coupled to an FP cavity, which retains the high-Q coupled
mode and efficient unidirectional output. Single-mode operation is realized by hybrid
square-rectangular lasers (HSRLs) [36] and hybrid square/rhombus-rectangular lasers
(HSRRLs) [44,45]. An optical transmitter based on an HSRRL was fabricated that has a
more compact structure, lower fabrication cost, and good tuning performance.

A square microcavity is mainly presented as a WGM cavity; the corresponding mode
theory and unidirectional emission method are numerically analyzed in Section 2. To obtain
a single-mode output light, we extended the output waveguide as an FP cavity; that an
HSRL consists of a square cavity and an FP cavity is introduced in Section 3. In Section 4,
we present the development of a hybrid square/rhombus-rectangular laser, a modified
square-rectangular cavity. In Section 5, we discuss packaging the laser chip to industrialize
and commercialize the potential chip. Conclusions are summarized in Section 6.

2. Square Microcavity

The mode theory of square cavities has been extensively studied. The three-dimensional
(3D) square cavity can be simplified to a two-dimensional (2D) model with the effective
refractive index approximation method. Group theory is used to analyze the symmetry of
a square geometry, and Marcatili’s approximate solution based on Maxwell’s equations
is used to calculate mode analytic solutions, which are sufficiently accurate inside the
microcavity and at the boundaries, except for four vertices [11]. The transverse electric
(transverse magnetic) eigenmodes in a square microcavity are denoted as TEp,q (TMp,q),
where p and q are the node numbers of the waves in the two orthogonal directions. The
degeneration of TEp,q, and TEq,p are obvious due to the symmetry of the square, and the
coupling between the two degenerate modes produces high-Q WGMs, which can be classi-
fied into transverse modes with node number m = |p − q|/2 − 1, and longitudinal modes
with node number l = p + q.

Here, a 2D model of a square microcavity with a side length of 10 µm is simulated.
The cavity consists of InP with an effective refractive index of 3.2 and is surrounded by
benzocyclobutene (BCB) with an index of 1.54. WGMs with a wavelength of around
1550 nm are calculated numerically by solving the eigenvalues, and the corresponding
Q factors are estimated using the finite element method (FEM). Figure 1 shows the Q
factors of TE and TM modes with different transverse and longitudinal mode orders.
The simulation result shows that the lower the transverse mode orders m, the higher the
mode Q factor. The free spectral range (FSR) of the TE modes is about 52.6 nm, which is
related to the wavelength interval between TE29,27 and TE30,28 as the adjacent longitudinal
modes. Figure 2 shows the intensity distributions of the fundamental mode TE29,27 and the
first-order mode TE30,26, whose l are both 56, and m are 0 and 1, respectively.

Compared to traditional DFB lasers, WGM lasers are competitive in terms of their
high Q factor. However, isotropic emission is an obvious shortcoming of the traditional
WGM microcavity. Due to the high degree of symmetry of the geometry, it is difficult to
achieve unidirectional output from a square microcavity, which limits laser efficiency and
output power.
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An output waveguide butt-coupled to the square cavity can be used to realize unidi-
rectional emission [11]. Many reports have been made regarding the fabrication of such
a waveguide-coupled square cavity laser without degrading the mode Q factor. Several
coupling schemes based on the envelope node position of the mode distribution were
proposed and calculated. Simulation results confirm that coupling at the vertex of the
square cavity, where the envelope node of all WG-like modes is located, minimally af-
fects mode distributions and enables efficient coupling between WG-like modes and FP
modes [11]. The 3D square microcavity is more complicated than the 2D microcavity, and
the vertical radiation loss is not negligible in the 3D configuration. In addition, coupling
with a waveguide breaks the symmetry of the square cavity, and the coupling position has
a significant impact on the coupling efficiency of different modes.

3. Hybrid Square-Rectangular Laser

Square microcavities usually operate in multiple modes, which is detrimental to long-
distance optical communications. The output waveguide is extended to about 300 µm to
realize single-mode lasers acting as an FP cavity. A hybrid cavity is proposed that couples
a square microcavity with an FP cavity. The coupling position is at the vertex of a square
cavity, which has been confirmed to have the least influence on WGMs, as mentioned
above. The mode coupling of such a hybrid square-rectangular laser (HSRL) is described
by Ma et al. in [36]. Within the same gain spectral range, the WGM cavity usually operates
with a single longitudinal mode due to its short cavity length and large FSR of around
50 nm, while a conventional FP cavity with a cavity length of 200~300 µm instead operates
with a multi-longitudinal mode. A wavelength-tunable hybrid mode was generated to
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couple square WGMs and FP modes, as the diagram in Figure 3 shows. The square cavity
is regarded as a wavelength-selective resonant reflector at the end face of the FP cavity,
whose reflection spectrum and mode field are determined by the structure parameters.
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Figure 3. Schematic diagram of HSRL.

A 2D model of the HSRL with a square side length a = 10 µm, FP cavity length
L = 300 µm, and width d = 2 µm was numerically simulated to be made of InP and sur-
rounded by BCB, with the equivalent refractive indexes of InP and BCB set to 3.2 and 1.54,
respectively. The simulations were carried out using the finite-difference time-domain
(FDTD) method. A time-domain source excited the TE mode in the FP cavity, and the
photonic signal reflected from the square cavity was monitored. The mode spectrum of
the hybrid modes was derived from the reflected signal at a steady state when low-quality
modes were dissipated, and processed by the Pade approximation and Fourier trans-
form [11], as shown in Figure 4. The peaks of the curve appeared at 1559.5 nm, 1556.5 nm,
and 1551.9 nm, indicating the high Q modes of different orders, and the FSR of the hybrid
modes was about 51 nm, corresponding to the parameters of the square cavity. In the
steady state, the magnetic amplitude Hz distributions of the fundamental mode and the
first-order mode are shown in Figure 5a,c. The hybrid modes were not identical to the
WGMs compared to Figure 2a,b. The WG-like modes were a combination of the two cavity
modes. Figure 5b,d show the k-space mode distribution (p, q) of the fundamental mode and
the first-order mode, respectively, where p and q denote the wave numbers in the x and
y directions, respectively. The fundamental mode at 1559.5 nm consisted of (28, 30) and
(27, 31), which were square modes, and (29, 29), which was a waveguide mode pointing
towards the FP cavity. Similar to the fundamental mode, the first-order mode at 1556.5 nm
consisted of (28, 32), (27, 33), and (30, 30).
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Figure 5. The Hz distribution of the TE fundamental WG-like mode in (a) coordinate-space and
(b) k-space, and of the 1st-order WG-like mode in (c) coordinate-space and (d) k-space.

The HSRL was fabricated, and the relative intensity noise, frequency noise, and
linewidth were characterized. In the experiment, injection currents IFP and ISQ were
provided for the two microcavities. The optical output of the HSRL was coupled into a
single-mode fiber (SMF). By adjusting IFP and ISQ, the wavelength of the hybrid mode
shifted due to the heating effect and free carrier dispersion. Under the specific injection
current, stable single-mode operation was realized, with a good SMSR of about 40 dB,
and a narrow linewidth of around 2.9 MHz [46]. However, the P–I curve was not smooth,
because the mode hopping phenomenon can easily occur when the high-Q fundamental
WG-like mode is coupled with FP modes. The FP modes in a square-rectangular hybrid
cavity are a mixture of the fundamental transverse mode and a large proportion of high-
order symmetric modes, which degrades the far-field radiation characteristics and the
coupling efficiency of an SMF. An optimized design is required to realize a stable and
tunable single-mode laser.

4. Hybrid Square/Rhombus-Rectangular Laser

Deep etching of the HSRL preserves the high-Q WGMs in the square cavity, but
generates high-order transverse modes that occupy a large fraction in the FP cavity. The
fundamental transverse mode fraction, termed η, can be obtained from the overlap integral
between the FP fundamental transverse modes and the hybrid modes. The reduction of
η increases mode hopping and reduces the coupling efficiency of the laser to an SMF. To
improve η in the FP cavity, Hao et al. proposed a hybrid square/rhombus-rectangular laser
(HSRRL) consisting of a square/rhombus microcavity (SRM) and an FP cavity [44,45].

4.1. Theory

The SRM is a square cavity with a deformation δ, and an FP cavity of length L and
width d is directly connected to the deformed vertex of the SRM, as shown in Figure 6.
Theoretically, the deformation of the SRM acts as a transition region between the square
cavity and the FP cavity, increasing the loss of higher-order transverse modes in the FP
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cavity, thus improving the fundamental mode fraction. The SRM also acts as an equivalent
reflector, whose performance at different δ is simulated in [44].
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At a specific δ = 0.2 µm, and with the other optimal parameters that L = 300 µm and
d = 2 µm, the mode pattern of the z-direction magnetic field Hz is calculated. Figure 7a,b
show the intensity distribution of the highest Q modes in HSRL and HSRRL, respectively,
including intensity profiles around the output facet of the FP cavity and far-field radiation
profiles. According to Figure 7, the hybrid mode with a Q of 12,058 in HSRL consisted
of a fundamental WG-like mode and many higher-order FP modes. In comparison, this
mode in the HSRRL had a Q factor of 4081. This is because the hybrid modes in the HSRRL
combined high-order WG-like modes and fundamental FP modes that broke the perfect
symmetry of a square due to the deformation. Figure 7 shows the calculation result that the
η of the modes in HSRRL was over 90%, which was much higher than the modes in HSRL
of about 35%. The innovative design of HSRRL significantly improved far-field radiation
characteristics, which is beneficial for the coupling efficiency of an SMF.
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Photonics 2024, 11, 1080 7 of 12

4.2. Experiment

An AlGaInAs/InP epitaxial wafer on an n-doped InP substrate was used to fabricate
an HSRRL, with the AlGaInAs active layer consisting of compressively strained multiple
quantum wells (MQWs). The AlGaInAs MQWs layer provided gain that performed well at
high temperatures due to its good confinement of electrons. The process can be roughly
divided into four steps using contacting photolithography and inductively coupled plasma
(ICP) etching techniques [47]. First, the SiO2 mask layer is deposited on the AlGaInAs/InP
wafer, where the pattern of the hybrid cavity is formed and transferred to the wafer by ICP
etching. To obtain a high-Q WGM, the etch depth should be deeper than 4 µm, which crosses
the active region. The pattern of the hybrid cavity is laterally surrounded by a 200 nm SiNx
layer to prevent injection current leakage, and a BCB confinement layer is deposited to
flatten the surfaces. Second, an electrical isolation trench between the WGM and FP cavities
is etched on the ohmic contact layer. Third, a SiO2 layer is deposited with the electrical
injection window etched on the ohmic contact layer. Finally, the Ti/Pt/Au P-electrodes are
patterned separately for the FP and WGM cavities by electron beam evaporation and lift-off.
The N-side of the wafer is polished and thinned to about 120 µm, and an Au/Ge/Ni layer
is deposited by magnetron sputtering. The microscope image of the HSRRL chip is shown
in the inset of Figure 8a, whose size after cleavage is 270 µm × 350 µm. And pad 1 and pad
2 are the P-electrodes of the FP and the SRM cavity, respectively, whose injection currents
are noted as IFP and ISRM, respectively. Compared to conventional distributed feedback
(DFB) lasers and distributed Bragg reflector (DBR) lasers, the manufacturing process of
HSRRL is less expensive because there is no need for grating etching or epitaxial regrowth.
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Figure 8. Characteristics of the HSRRL bare chip with (a) P–I–V curves with a fixed injection current
of ISRM and (b) spectrum with injection currents of IFP = 53 mA and ISRM = 10 mA. Inset: microscope
image of the fabricated HSRRL chip.

The laser characteristics of a laser chip, including P–I–V curves and the optical spec-
trum, were measured when the ambient temperature was 15 ◦C, and the optical output
power was received through a multimode fiber. The P–I curves show some kinking due to
mode hopping; further research will optimize the resonant cavity structure to reduce mode
hopping. Output characteristics under the specific injection currents I1 and I2 are shown in
Figure 8.

5. Test Results After Packaging

The HSRRL is a novel design that realizes the wavelength-tunable function widely
required for next-generation communication technologies such as DWDM, NGPON2,
and coherent optical communication. We packaged the HSRRL chip as a transmitter
optical subassembly (TOSA) to evaluate its potential for commercial application. The chip
was mounted on an AlN submount to form a chip-on-carrier (COC). The COC was then
mounted in a hermetic box-can containing a thermoelectric cooler (TEC) for temperature
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control. Figure 9a shows a schematic diagram of a nine-pin box package scheme. Pins
#3, #4, and #5 are high-speed G-S-G transmission lines with an impedance of 50 ohms,
connected to the electrodes of the FP cavity. Pin 6# is connected to the P-electrode of the
SRM. The output light from an HSRRL was coupled into an SMF adapter via a square
aspherical lens with a maximum coupling efficiency of approximately 47%. Figure 9b
shows the finished product.
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Figure 9. (a) Schematic diagram of a nine-pin box packaging scheme and (b) the finished product.

The tunable TOSA based on the HSRRL showed good tuning performance in the
experiment. The wavelength tunability of the HSRRL is based on the free carrier dispersion
of the semiconductor, which changes the refractive index and results in a mode shift,
combined with temperature variations due to the injection current. By adjusting the
injection current of the FP and SRM cavities, the FP modes and WGMs, respectively, were
shifted according to the Vernier effect. However, the heating effect of the injection currents
affected the refractive index. During the test process, we controlled the temperature of
the COC at 40 ◦C by TEC. Injection currents IFP and ISRM were applied to pin 5 and pin
8. Figure 10a shows the spectra with a fixed IFP of 40 mA and an adjustable ISRM. As
the ISRM increased, the center wavelength of the output beam, which starts at 1555.77 nm,
increased at a rate of approximately 0.025 nm/mA, and jumped between the adjacent
longitudinal hybrid modes at a wavelength interval of 1.4 nm. The SMSR was measured to
be 41.26 dB. Figure 10b shows the spectra with a fixed ISRM of 20 mA and an adjustable
IFP. Several modes of WGMs at about 1556.45 nm, 1555.77 nm, 1572.38 nm, and 1572.40 nm
were operated in turn and increased continuously at a rate of about 0.033 nm/mA as the
IFP increased.
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A tunable device based on an HSRRL chip provides a wide and continuous tunable
wavelength range. We could coarsely tune the wavelength by adjusting the ISRM, and
then adjust the IFP and TEC temperature to precisely obtain the required wavelength. The
disparity in wavelength tuning accuracy arose from differences in temperature changes due
to the varying areas of the SRM and FP cavities. As Figure 11a shows, a 13 nm tuning range
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from 1555.75 nm to 1568.15 nm with a wavelength spacing of 50 GHz was realized on the
modular level package. Figure 11b shows the corresponding SMSRs and peak intensities of
each wavelength channel. During wavelength switching, the TOSA device could maintain
a good single-mode laser state in which SMSRs were larger than 35 dB, which satisfied the
application requirement. The output intensity fluctuated in the range of −2~3 dBm due to
variations in injection currents.
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6. Conclusions

In conclusion, we introduced the WGM square microcavity laser, HSRL laser, and
HSRRL laser. Additionally, we packaged and characterized HSRRL lasers at the module
level. A systematic account of the evolution and development of these coupled-cavity lasers
was presented. The hybrid cavity structure consisting of a WGM cavity and an FP cavity is
a feasible and cost-effective method to fabricate a single-mode semiconductor laser with
efficient unidirectional emission, high Q factor, and tunable wavelength. The characteristics
of the hybrid mode in the HSRL were analyzed by simulation, and stable single-mode
lasing was realized experimentally. The HSRRL was modified from the HSRL, and its
fundamental transverse mode fraction in the FP cavity was improved from 35% to 91%,
leading to a higher coupling efficiency to an SMF. The HSRRL was packaged in a hermetic
box-can with a coupling efficiency of 47% for the SMF, and was tested at the module level.
This study represents the first attempt at the industrialization of an HSRRL. The TOSA,
which was based on the HSRRL chip, has a wide and continuous wavelength tuning range
that is expected to encompass C-band DWDM specifications. During wavelength switching,
the TOSA operated in a favorable single-mode state, demonstrating SMSRs greater than
35 dB, along with satisfactory output power suitable for various applications.

Compared with traditional optical transmitter devices, the TOSA based on an HSRRL
has the advantages of a compact structure, simple fabrication process, stable single-mode
emission, simple tuning mechanism, and wide continuous tuning range, which meet the
requirements of next-generation communication technology, including DWDM, NGPON2,
and coherent optical communication. We expect that such a device can be improved to
be more reliable, and be commercialized and industrialized for large-scale production in
the future.
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